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Abstract. This article presents and analyzes the indicator geostatistical modeling and some visualization techniques
of uncertainty models for categorical spatial attributes. A set of sample points of some categorical attribute is used as
input information. The indicator approach requires a transformation of sample points on fields of indicator samples
according to the classes of interest. Experimental and theoretical semivariograms of the indicator fields are defined
representing the spatial variation of the indicator information. The indicator fields, along with their semivariograms,
are used to determine the uncertainty model, the conditioned probability distribution function, of the attribute at any
location inside the geographic region delimited by the samples. The probability functions are considered for producing
prediction and probability maps based on the maximum class probability criterion. These maps can be visualized using
different techniques. In this article, it is considered individual visualization of the predicted and probability maps and a
combination of them. The predicted maps can also be visualized with or without constraints related to the uncertainty
probabilities. The combined visualizations are based on three-dimensional (3D) planar projection and on the Red-
Green-Blue to Intensity-Hue-Saturation (RGB-IHS) fusion transformation techniques. The methodology of this article
is illustrated by a case study with real data, a sample set of soil textures observed in an experimental farm located in
the region of São Carlos city in São Paulo State, Brazil. The resulting maps of the case study are presented and the
advantages and the drawbacks of the visualization options are analyzed and discussed.

Categories and Subject Descriptors: D.2 [Software Engineering]: Design Tools and Techniques; I.4 [Image Pro-
cessing and Computer Vision]: Enhancement; I.6 [Simulation and Modeling]: Model Development

Keywords: Indicator Geostatistics, Spatial Modeling of Categorical Attributes, Uncertainty Visualization

1. INTRODUCTION

Continuous and categorical spatial attributes can be computationally modelled, from a set of sample
points obtained from field works or other spatial data sources, for many environmental applications in
a geographical region of interest. The attribute representations are used as input for spatial modelling
functions whose outputs simulate Earth related phenomena in a Geographical Information System
(GIS) database, allowing to go deep in studies and analyses to support better decision makings for
real world problems.

The representation of uncertainty has become a topic of interest in different visualization domains
such as geographic visualization, information visualization, and scientific visualization, as well as in
related domains such as Visual Analytic and decision science [Kinkeldey and Hensi 2018]. Geospa-
tial data will always leave their user uncertain about the true nature of the world [Goodchild 2020].
Geostatistical approaches yield tools for representing the stochastic local or global uncertainty models
of geographical attributes from their input sample sets. Maps of predictions, which are derived from
mean, median or mode values, and related uncertainty quality maps, based on standard deviation,
quantile or probability values, can be extracted from the attribute uncertainty models. So, the pre-
dictions can be accompanied with their uncertainty values that qualify the predictions and are also
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spatially distributed in the region of interest. In special, using indicator geostatistical functions for
interpolations and simulations, the uncertainty fields take into account the sample values and also
their relative spatial locations [Deutsch and Journel 1998]. Moreover, the indicator geostatistics allow
modelling uncertainties of categorical, besides the continuous, attribute information [Goovaerts 1997],
[Isaaks and Srivastava 1989], [Felgueiras et al. 2015] and [Felgueiras et al. 2016].

A significant topic for the attribute representations is to visualize their uncertainty fields in a way
that facilitates the analysis of the spatial distribution in terms of quality of the attribute modelling
[Foody and Atkinson 2002]. Many scientific articles have been addressed the subject of visualization
methods to represent spatial data uncertainties [Pebesma et al. 2007], [Tan and Chen 2008], [Sun and
Wong 2010], [Senaratne et al. 2012], [Deitrick and Wentz 2015], [Ślusarski and Jurkiewicz 2020], [Pérez-
Díaz et al. 2020]. Decision makers usually deal with uncertainties based on how current conditions or
policies affect the future results in their decision. But, a comprehensive geovisualization of uncertainty
in spatial data can be enhanced by providing a visual representation of their attribute uncertainty,
which in turn can assist users to more easily recognize an underlying pattern of data [Koo et al. 2018].

Typically, an uncertainty map is visualized separately from the data map using a gray scale look
up table (LUT) where the minimum and maximum values are assigned to the black and white colors
respectively, or vice-versa. The intermediary colors are defined as midway gray levels proportional to
the attribute values. It is also common to show the uncertainty maps using different color tables, as
the rainbow colors for example.

[Koo et al. 2015] present a framework for combining visual variables to represent simultaneously an
attribute and its uncertainty. The authors use three categories of uncertainty visualizations: coloring,
overlap symbols and integrate symbols. [Koo et al. 2018] has implemented the framework for attribute
uncertainty visualization as an extension of the software known as ArcGis, mainly for choropleth maps
and proportional symbol maps for thematic mapping of attributes. Another interesting approach
is to use fusion techniques to visualize the attribute data merged with their quality for displaying
both information integrated in a single map. [Hengl 2003] describes two methods for visualization
of uncertainty associated with predictions of continuous and categorical variables. Both methods
are based on the Intensity-Hue-Saturation (IHS) color model with uncertainty coded with whiteness.
Also, in a GIS environment, it is common to obtain 3D planar projections of attribute representations
and to use the uncertainty as the texture of the rendered images.

In this context, the objective of this article is to explore the modelling and visualization the un-
certainties of categorical spatial attributes. The uncertainty modelling is performed by procedures of
indicator geostatistics applied to a sample set of points of a spatial categorical attribute. It is consid-
ered the following visualization techniques: individual visualization of the uncertainty maps, with and
without probability constraints; visualization of the predictions combined with their uncertainties us-
ing 3D planar projections; and visualization resulting from fusion technique based on Red-Green-Blue
to Intensity-Hue-Saturation (RGB-IHS) color transformation. The methodology is illustrated with a
case study that utilize a punctual sample set of soil texture observed in an experimental farm located
in the region of São Carlos city in São Paulo State, Brazil. Four classes of soil texture, namely Sandy,
Medium Clayey, Clayey and Too Clayey, are considered in order to obtain the predictions along with
their uncertainties. The paper presents and analyses the resulting maps of this case study and the
advantages and the drawbacks of the visualization options are discussed. This article is an extended
version of [Felgueiras et al. 2017] presented in XVIII Brazilian Symposium on GeoInformatics.

The organization of this article starts with this introduction section. Section 2 presents summaries
of the main concepts linked to the main issues of this research. Section 3 addresses the methodology of
this research while section 4 describes the case study used to illustrate the modelling and visualizations
resulting from application of the proposed methodology. Section 5 shows results and analyses related
to the adopted attribute uncertainty modelling and map visualizations. In the section 6, conclusions
are reported along with suggestions for future researches.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.



332 · C. A. Felgueiras, J. O. Ortiz, E. C. G. Camargo, L. M. Namikawa and T. S. Körting

2. CONCEPTS

2.1 Indicator Geostatistics

Geostatistical procedures can be used to generate statistical uncertainty models of spatial attributes
and, from them, to derive attribute realizations, predictions (such as mean, median and mode values)
and uncertainty metrics based on probabilities and confidence intervals of standard deviations and
quantiles.

The geostatistical indicator approaches allow modeling the joint conditional distribution functions
of continuous or categorical random variables, at any unknown spatial location u, considering an
available sample points set. The Simulation process consists of drawing realizations from the joint
conditional distribution functions.

For a categorical variable, its conditional probability distribution function (cpdf ) is built from
estimations on indicator fields obtained by indicator transformations applied to the original sample
set, of nsamples, z (uj ), j = 1, ...,nsamples, considering any number of nclasses. Instead of the variable
Z (uj), consider its binary indicator transformation I (uj ; k) as defined by the relation of Equation 1.

I(uj ; k) =

{
1, if Z(uj) = k
0, otherwise

(1)

This transformation is equivalent to associate probability 1 (100%) for Z (uj) values which are
equal to class k and 0 otherwise. The result of transformation expressed in Equation 1 generates
k indicator fields, with 0 and 1 values, i(uj),j = 1, ..., nsamples of the indicator variable I (uj ; k).
Next, experimental indicator semivariograms, γ̂, are defined, from the Equation 2, for each one of the
k indicator fields to represent their spatial variations:

γ̂(hk) =
1

2N(h)

N(h)∑
j=1

[i(uj ; k)− i(uj + h; k)] (2)

where i(uj ; k) and i(uj+h; k) are the j -th values of the indicator variable I, separated by the distance
vector h, and N (h) is the number of the pairs of points that are separated by h.

The k indicator fields and their respective theoretical semivariograms are used by the kriging pro-
cedure for assessment of class probabilities at any spatial location inside the region of interest. More-
over, the sequential indicator simulation procedure uses kriging, applied on the indicator sample and
pre-realization values, in order to infer the cpdfs and the class realizations of the categorical vari-
able ([Goovaerts 1997] and [Goovaerts 2001]). Maps of predictions with c∗(uα) and uncertainties
Unc∗(uα)values, based on local maximum probabilities Pk(u) of any cpdf, can be evaluated from the
set of realization fields as presented by the Equations 3 and 4.

c∗(uα) = cl(uα) where P(cl(uα)) > P(ck(uα)) ∀l, k = 1...nclasses (3)

Unc∗(uα) = 1− Max(P(ck(uα))) k = 1...nclasses (4)

In Equations 3 and 4, uα, α = 1, .., gridsize(nrowsxncolumns), are spatial locations regularly
distributed in the geographical space, determining regular grid representation structures.

The results of Equation 3 can also be constrained by a threshold of uncertainty probability TP, as
show in Equation 5.

c∗∗(uα) = c∗(uα) where Unc∗(uα) < TP (5)

Moreover, the maps produced from equations 3 and 5 can be limited to a number of classes of
interest smaller than the total number of input classes.
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2.2 3D Planar Projections

The 3D planar projections allow the visualization of 3D information in a 2D surface using geometric
transformations. Parallel projections position the viewpoint at the infinite while when the viewpoint
is elsewhere the projections are known as perspective projections. The 3D planar projections are
generally based on applying geometric transformations based on Translations, Scaling and Rotations.
Many books of basic computer graphics, such as [Newman and Sproul 1978] and [Foley et al. 1995],
present details of the mathematics evolved on this subject. Rendering planar projections of 3D
information considers hidden lines or surfaces and inclusion of additional 2D texture information to
accomplish more realistic 2D images. As an example, Figure 1 depicts the 3D Planar Projection
of a Shuttle Radar Topography Mission (SRTM) elevation grid using wired and textured parallel
projections.

2.3 RGB - IHS Transformations

The human eye perceives color information through three types of cones with sensitivity to the Red
(R), Green (G) and Blue (B) wavelengths of visible electromagnetic energy. This physical schema is
the base of the RGB color system, where individual intensities of Red, Green and Blue combine to
define a color. In terms of human perception, it is more natural to evaluate the values Intensity (I),
the Hue (H) and the Saturation (S) of a color. Intensity corresponds to the total energy measure
involved in all wavelengths and provides the brightness sensation. The Hue is the average wavelength
of the light and determines the object color. Saturation expresses the purity of the color with low
saturation values producing pale tones and high saturation values presenting pure colors. The IHS
color system is also known by other names, depending on how the Intensity component is named: HSV
system has Value (V) for Intensity; and HLS has Lightness (L) for Intensity (there is a slight change
in this system but the overall idea is the same).There are different ways to perform the RGB-IHS
transformation, and vice-versa, mostly presented in books of Computer Graphics, such as [Foley et al.
1995] for example.

The RGB-IHS and IHS-RGB color transformations are widely used in remote sensing applications
to fuse images of different resolutions and/or sensors. Three bands from a multispectral image are
selected and associated to a corresponding RGB component and then transformed into IHS model.
Next, in the IHS-RGB reverse transformation the process replaces one of the IHS components. Usually,
the intensity component is replaced by one panchromatic band with higher resolution when a pan-
sharpening fusion is required. In this case, the resulting RGB components present an enhanced image
with higher spatial resolution with the colors of the multispectral image. In this research, we explore
this fusion procedure using the spatial attribute predicted image, as the input multispectral image,
and it respective uncertainty as auxiliary information that will replace the Intensity and Saturation
components.

Fig. 1. Planar projection of a SRTM grid data: wired (left) and rendered with texture of a remote sensing image (right)
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3. METHODOLOGY

Considering specifically spatial categorical attributes, the methodology of this research, for their
uncertainty modelling and visualizations, comprises the following sequence:

—A sampling set of points of the categorical attribute, given as the input data, is initially transformed
in indicator sample sets according to the number of classes considered.

—Experimental and theoretical semivariograms are obtained for the indicator sample fields to repre-
sent their respective spatial variability.

—The indicator fields and their theoretical semivariograms are used to run Sequential Indicator Simu-
lation (SIS) functions of the Geostatistical Software Library (GSLib) [Deutsch and Journel 1998], in
order to obtain realization values and from them prediction and uncertainty maps of the attribute
in the spatial region of interest.

—Prediction and uncertainty maps are visualized individually using different lookup tables and con-
straints.

—Prediction and uncertainty maps are combined in 3D planar projection visualizations.
—RGB-IHS transformation is applied in the Red, Green and Blue components of the predicted cate-

gorical map.
—IHS-RGB reverse transformation is applied by replacing the Intensity or the Saturation component

by the Uncertainty map.
—RGB layers from the reverse transformation are combined in order to display and compare the

results of the fusion processes.

4. A CASE STUDY

In order to illustrate the proposed methodology, a set of points of soil texture data sampled in the
region of an experimental farm known as Canchim is used. This region of interest is located at the city
of São Carlos, São Paulo, Brazil, and covers an area of 2660 ha between the north-south coordinates
from s 21o54’32” to s 21o59’39” and the east-west coordinates from w 47o48’11” to w 47o51’59”.

The input data set consists of 86 samples of soil texture information each classified as one of the
following four classes: Sandy, Medium Clayey, Clayey or Too Clayey. Figure 2 illustrates the borders
of the Canchim farm and the spatial locations, black * marks inside the region, of the classified soil
texture samples. The classified map, used as background of this figure, is obtained by nearest neighbor
estimations showing regions of influence of each class. The SPRING GIS [Camara et al. 1996] is used
to store, analyze and visualize all the geoinformation of this case study.

5. RESULTS AND DISCUSSIONS

5.1 Soil texture estimated by Indicator Geostatistics

The spatial dependence analyses are based on the indicator sample fields of the soil texture classes
generated by the indicator transformation as defined in Equation 1.

The spatial dependencies are represented by the indicator semivariograms generated from the indi-
cator sample set defined by each texture class. The experimental indicator semivariograms are assessed
and fitted by theoretical ones in the SPRING GIS and the PyESSDA [Felgueiras et al. 2019] compu-
tational environment. The indicator semivariogram parameters, along with the global probabilities of
each texture class, are reported in Table I. All semivariograms are fitted with exponential functions.
The global probabilities are assessed by the ratio between the number of samples of each class and
the total number. These parameters and the sample set are used as input for the SIS function.
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Fig. 2. Distribution of the soil texture sample points within the Canchim region

Figure 3(a) shows the map of predicted soil texture classes while Figure 3(b) shows the map of their
uncertainties. These maps are obtained from the resulting realizations of the GSLib SIS function
known as sisim. Those estimations are assessed from the cpdfs’ higher probability criterion, as in
Equations 3 and 4, for each spatial location considered.

A visual qualitative comparison between the map of predictions in Figure 3(a) and the map of
nearest neighbors’ interpolation in Figure 2 shows that both maps agree with the local information
presented in the texture sample set. The differences appear in the smoother class transitions presented
in the map predicted from the geostatistical simulated values.

As expected for environmental attributes, the uncertainties depicted in Figures 3(b) and 3(c) are
higher at the borders and at the transition areas of the soil texture class regions. Consequently, the
probability uncertainty values are lower in the middle of each map class. It is possible also to observe
that the minimum uncertainty values appear at the sample locations since the geostatistical procedures
are exact, i.e., the estimation is equal to the sample value at any sample location. Figure 3(c) depicts
the map of uncertainties using a rainbow look up table color. The map in Figure 3(b), compared with
the one in Figure 3(c), seems to be better to emphasize borders and transitions between classes where
the uncertainties are higher, among classes of the predicted map. Other lookup tables can be used in
order to highlight specific details.

Table I. Parameters of Indicator Semivariograms related to the Soil Texture Classes
Texture Class Nugget Effect Contribution Range Global Probability

Sandy 0.0 0.14 1915 0.20
Medium Clay 0.0 0.22 902 0.35

Clayey 0.01 0.20 1059 0.38
Too Clayey 0.03 0.05 695 0.07
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Fig. 3. Map of (a) predictions, (b) uncertainties in a gray scale LUT and (c) uncertainties in a rainbow LUT

Also, the information of predictions can be constrained to the probabilities and to the number of
classes. Figure 4 and 5 show the maps of predictions constrained to probability uncertainty thresholds
of .5 and .25. This means that the areas of the original classes maintained on the maps in Figures 4a
and 4b represent regions with at least 50 and 75 percent of certainty probability, respectively. The
maps in Figure 4 use all the input classes while in Figure 5 only the classes medium clayey and clayey
are taken into account. In short, it is possible to visualize the maps of prediction with or without
constraints, depending on the decision making processes requested for the considered application.

Fig. 4. Prediction maps of all texture classes constrained by different uncertainty threshold values: (a) .5 and (b) .25
(adapted from [Felgueiras et. al. 2016])
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Fig. 5. Prediction maps of medium clayey and clayey texture classes constrained by different uncertainty threshold
values: (a) .5 and (b) .25 (adapted from [Felgueiras et. al. 2016])

5.2 Uncertainty visualization by 3D planar projection

Figure 6(a) displays the uncertainty information in a 3D Planar Projection using the gray level map
of Figure 2(b) as the texture of the final rendered figure while in Figure 6(b) the texture is gathered
from the predicted map in Figure 2(a). Figures 6(a) and 6(b) can also be rendered using different
azimuth and zenith angles and are considered qualitative applications.

These drawings are useful in order to have a visual perception of the vertical variation of the
uncertainty information at different angles together with other soil texture information. Other textures
can be used, e.g., the one of Figure 2(c), 4(a), 4(b), 5(a) or 5(b).

Fig. 6. Planar projections of the uncertainty map displayed in (a) gray levels and (b) predicted classes as texture of the
rendered map
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Fig. 7. Map of (a) Predictions, (b) Red component, (c) Green component and (d) Blue component

5.3 Uncertainty Visualization by RGB-IHS fusion

All images that has been considered in this application are color coded with 8 bits, so the minimum
and the maximum values for colors are 0 and 254. The 255 value is used as the background color. The
texture classes have the following R, G, B color composition: Sandy 254, 254, 0 (Yellow); Medium
Clayey 254, 0, 0 (Red); Clayey 0, 254, 0 (Green) and; Too Clayey 0, 0, 254 (Blue). Taking into account
its class colors, the predicted texture map can be decomposed in three new maps corresponding to
the Red, Green and Blue components. These maps are presented in Figure 7(a) to 7(d).

Applying the RGB-IHS transformation to the components of the RGB texture map results in
a Saturation component equal to 254, the maximum value, for the entire region. The Intensity
component is assigned to 127, a medium value. The Hue component varies according the colors
presented in the predicted map. Low Hue values (Black) represents the yellow color, low medium values
Green, high medium values Blue and high values Red. The prediction map and its IHS components
are shown in Figure 8(a) to 8(d).

Figure 9 depicts the results of the IHS-RGB fusion transformation replacing Intensity and Saturation
by the Uncertainty map of Figure 2(b). In Figure 9(b), the original colors of the predicted map tend
to darker colors where the uncertainty is very small. This occurs because any color with low intensity
appears as black. To avoid the dark colors, one could remap the uncertainty interval values to larger

Fig. 8. Map of (a) Predictions, (b) Intensity component, (c) Hue component and (d) Saturation component
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Fig. 9. IHS-RGB fusion transformation showing: (a) Uncertainty map and; (b) and (c) Intensity and Saturation replaced
by the Uncertainty map respectively

values. In any case the map in Figure 9(b) shows the predominant colors of each class going from low
intensities, where uncertainties are low, to high intensities, where uncertainty values are larger.

The map in Figure 9(c) has similar behavior as the one in Figure 9(b) where Saturation is considered
instead of Intensity. In this case, low saturated colors appear at locations with small uncertainties and
the colors appear whitened or paled. Also, here it is possible to use a remap interval of uncertainty
to avoid too paled effects. Using the Saturation component, the original predicted colors seem to be
preserved better than when the Intensity is considered. Moreover, the maps in Figure 9(b) and 9(c)
can be rendered using the inverted uncertainty information as shown in Figure 10(a).

This can be done after applying an inverted linear function, mapping 0 to 254 and vice-versa, in
the uncertainty map of Figure 9(a) before the fusions. The results of using inverted uncertainties
are shown in Figure 10(b) and 10(c) where black and paled regions appear at the class transitions

Fig. 10. IHS-RGB fusion transformation showing: (a) Inverted Uncertainty map and; (b) and (c) Intensity and Satu-
ration replaced by the Inverted Uncertainty map respectively
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where the uncertainty values are larger. These images keep their original color classes, or saturate in
white, where the uncertainty values are smaller. Although the effectiveness of the above visualization
methods has not yet been evaluated by a substantial number of users, it suggests that the maps in
Figures 8(b), 8(c), 9(b) and 9(c) allow one to have an integrated perception of both information,
the predicted colors or classes and the uncertainties, mixed in the same map. Furthermore, these
maps can be used as background of cartographic charts in order to enhance their final presentation,
for example. Also, it is possible to use the fusioned maps as texture information for the 3D planar
projection as presented in Figure 5.

6. CONCLUSIONS

This article presents and analyzes the indicator geostatistical modeling and some visualization tech-
niques of uncertainty models for categorical spatial attributes. A set of sample points of some cat-
egorical attribute is used as input information. The indicator approach requires a transformation of
sample points on fields of indicator samples according to the classes of interest. Experimental and
theoretical semivariograms of the indicator fields are defined representing the spatial variation of the
indicator information. The indicator fields, along with their semivariograms, are used to determine
the uncertainty model, the conditioned probability distribution function, of the attribute at any loca-
tion inside the geographic region delimited by the samples. The probability functions are considered
for producing prediction and probability maps based on the maximum class probability criterion.
These maps can be visualized using different techniques. In this paper, it is considered individual
visualization of the predicted and probability maps and a combination of them. The predicted maps
can also be visualized with or without constraints related to the uncertainty probabilities. The com-
bined visualizations are based on three-dimensional (3D) planar projection and on the Red-Green-Blue
to Intensity-Hue-Saturation (RGB-IHS) fusion transformation techniques. The methodology of this
article is illustrated by a case study with real data, a sample set of soil textures observed in an exper-
imental farm located in the region of São Carlos city in São Paulo State, Brazil. The resulting maps
of the case study are presented and the advantages and the drawbacks of the visualization options
are analyzed and discussed. For planning purposes, all the maps that has been shown in this article
can be considered for decision making activities when an application manager aims to save financial
and/or environmental resources. In the future, we intend to explore similar methodology for spatial
modelling and visualization of spatial continuous attributes and other fusion techniques.
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