
Combining Fog and Cloud Computing to Support
Spatial Analytics in Smart Cities

João Paulo Clarindo1, João Pedro C. Castro1,2, Cristina D. Aguiar1

1 Institute of Mathematics and Computer Science – University of São Paulo – Brazil
jpcsantos@usp.br, cdac@icmc.usp.br

2 Computing Center – Federal University of Minas Gerais – Brazil
jpcarvalhocastro@ufmg.br

Abstract. Spatial data generated by an Internet of Things (IoT) network is important to assist the spatial analytics
process in issues related to smart cities. In these cities, IoT devices generate spatial data constantly. Thus, data can get
increasingly voluminous very fast. In this article, we investigate the challenge of managing these data through the use
of a spatial data warehouse designed over a parallel and distributed data processing framework extended with a spatial
analytics system. We propose an architecture aimed to assist a smart city manager in the decision-making process.
This architecture integrates a cloud computing layer, where these technologies are located, with a fog computing layer
for extracting, transforming, and loading the data into the spatial data warehouse. Furthermore, we introduce a set of
guidelines to aid smart city managers to implement the proposed architecture. These guidelines describe and discuss
important issues that should be faced by the managers. We validate our architecture with a case study that uses real
data collected by IoT devices in a smart city. This case study encompasses the execution of three different categories
of spatial queries, demonstrating the architecture’s efficacy and effectiveness to support spatial analytics in the context
of smart cities.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Spatial databases and GIS; H.3.4 [Systems
and Software]: Information Networks; H.4.2 [Information Systems Applications]: Decision support

Keywords: cloud computing, fog computing, internet of things, parallel and distributed data processing, smart cities,
spatial analytics, spatial data warehouse

1. INTRODUCTION

In the last few years, the world population has been growing rapidly. From projections made by the
United Nations, the population will reach 8 billion people in 2025 [Fraga and Queirolo 2018]. Hence,
providing the necessary infrastructure to accommodate a significant amount of people in cities can
be a challenge for public authorities and companies. According to Ramaswami et al. (2016), the
meta-principles for developing a sustainable and healthy city are “improvements in transportation,
basic sanitation and energy supply”, “sustainability”, and “technology integration”. Thus, the concept
of smart cities emerged.

There are several definitions of smart cities in the literature, as discussed in [Ismagilova et al. 2019].
In this study, the authors state that there is no agreement regarding the most accepted definition.
However, there are elements and terms that are frequently highlighted, such as Information and
Communication Technology (ICT), Internet of Things (IoT), interaction, sustainability, citizens, and
quality of life. Amongst these definitions, we choose to limit our scope to two that encompass the
concepts of ICT and IoT. These definitions are described as follows. Peng et al. (2017) describe
smart cities as being “essentially built by utilising a set of advanced ICT, including smart hardware
devices (e.g., wireless sensors, smart meters, smart vehicles, and smartphones), mobile networks (e.g.,

Copyright©2021 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021, Pages 342–360.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 343

Wi-Fi, 3G/4G/5G network), data storage technologies (e.g., data warehouse and cloud platform),
and software applications (e.g., back-office control systems, mobile apps, big data analytical tools)”.
Additionally, Yeh (2017) defines that a smart city “involves the implementation and deployment of
ICT infrastructures to support social and urban growth through improving the economy, citizens
involvement, and government efficiency”.

A network of IoT devices can be used to provide information in a smart city. According to Patel
and Patel (2016), IoT can be classified as “interconnected objects that have data regularly collected,
analysed, and used to initiate action, providing a wealth of intelligence for planning, management and
decision-making”. The different layers of an IoT architecture include: (i) the smart device/sensor layer,
which is responsible for collecting data from the environment through the employment of connection
standards such as Wi-Fi, GSM and Bluetooth; (ii) the network layer, which is composed of gateways
and gateway networks that support different communication protocols for sending data to the service
layer ; and (iii) the service layer, in which data is processed and prepared to obtain the information
required by a desired application [Patel and Patel 2016; Atzori et al. 2017].

The IoT technology is very important in a smart city environment. For instance, it is possible to
apply this paradigm in the context of urban mobility, where sensors placed on streets and highways
collect data on the number of vehicles and average vehicle speed in order to assist in decision-making
for the improvement of urban traffic. Another IoT application scenario includes monitoring a public
transport system, whose fleet contains sensors that collect data related to the number of passengers,
vehicle type (e.g., buses, trams, etc.), route taken, and maximum speed, aiming to improve the
existing lines. Other examples include pollution control, water consumption analysis, electric energy
measurements, and tourist attraction measurements [Atzori et al. 2017].

Data generated on these scenarios usually include spatial data, which can be represented by geome-
tries (such as points, lines, and polygons) or combinations of them. For example, sensors inserted in a
highway can generate spatial data related to the region where it is located. Furthermore, smartphones
can provide location data to determine the number of vehicles on a street that are not equipped with
sensors based on Global Navigation Satellite Systems (GNSS). These positioning systems are generally
composed of ground receivers and orbital platforms, including the North American Global Position-
ing System (GPS) and the Russian Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
(English: Global Navigation Satellite System) [Bansal et al. 2021; Eldrandaly et al. 2019].

Performing analytical queries on data generated by an IoT network in a smart city can assist
managers in the decision-making process. For instance, a smart city manager can be interested in
determining “how many vehicles traveled through a given district, per day, per month”. The query
results can be displayed on a map according to the district, helping the manager to intuitively obtain
the necessary knowledge. In order to enable the execution of this type of query, IoT data needs to
be extracted, transformed, and loaded in a Spatial Data Warehouse (SDW). A SDW is a subject-
oriented, integrated, time-variant, and non-volatile collection of conventional and spatial data. It
provides support for the costly Spatial On-Line Analytical Processing (SOLAP) queries, which are
analytical queries extended with spatial predicates [Han et al. 1998; Rivest et al. 2001].

In smart cities, IoT devices generate spatial data constantly [Bonomi et al. 2014]. Also, because
sensors all over the city can collect and transmit masses of data, data scale becomes increasingly
big [Chen et al. 2014]. To deal with big data, the management of the SDW can benefit from the
use of a cloud computing environment as infrastructure and from the employment of a parallel and
distributed data processing framework, such as Hadoop [Shvachko et al. 2010] and Spark [Zaharia et al.
2016], to reduce the complexity of the cloud. The processing of the spatial queries can also benefit
from the use of Spatial Analytics Systems (SASs), which are developed on top of those frameworks to
provide extended functionalities to deal with spatial data and spatial predicates [Castro et al. 2020].

On the other hand, for IoT applications that require low latency, using cloud computing environ-

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

344 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

ments may be inefficient, due to the delay caused by data transferring between the cloud and the
devices [Javadzadeh and Rahmani 2020]. The paradigm called fog computing emerged to solve these
problems. It employs computational resources close to the edge of the network, providing data pro-
cessing, storage, and distribution services [Bonomi et al. 2014; Shi and Dustdar 2016; Javadzadeh and
Rahmani 2020]. Some advantages of using fog computing include the wide geographic distribution of
services, sensor networks distributed on a large scale, real-time interactions, predominance of wireless
access, and heterogeneity, since sensors of different natures can exist on a single network.

The challenge is to propose an IoT architecture for smart cities that encompasses cloud computing,
fog computing, and frameworks for parallel and distributed data processing, and also provides efficient
support for storing SDWs and providing spatial analytics. Although there are some proposals in the
literature [Silva et al. 2020; Zhang et al. 2020; Diaconita et al. 2018; Yuan and Zhao 2012] that
investigate some related architectures, they do not consider all these technologies in the same setting.
In this article, we overcome these shortcomings.

The contributions of our article are described as follows.

— Proposal of an architecture aimed to help smart city managers and residents in their decision-
making process, by employing a SDW that uses a parallel and distributed data processing frame-
work in the fog and in the cloud, aided by a SAS to process spatial queries.

— Definition of a set of guidelines to assist in the implementation of the proposed architecture.
— Validation of the efficacy and effectiveness of the proposed architecture through the execution of

three different categories of spatial queries using an application that handles data generated from
a real city.

A preliminary version of this article is described in [Santos et al. 2020]. Here, we provide a detailed
description of the background and include new related work. We also further detail the previews
guidelines and propose new ones. Furthermore, we improve the case study by managing data related
to parking in addition to data related to measurement. Finally, we introduce new spatial queries and
categorise them according to their type of spatial operation.

This article is organised as follows. Section 2 describes the technical background. Section 3 reviews
related work and highlights the differentials of our proposal. Section 4 presents the proposed architec-
ture. Section 5 introduces the guidelines for implementing the architecture. Section 6 describes the
case study, details interesting spatial queries, and discusses their usefulness in the decision-making
process. Section 7 concludes the article.

2. TECHNICAL BACKGROUND

In this section, we detail notions related to spatial data manipulation (Section 2.1) and spatial data
warehouses (Section 2.2).

2.1 Spatial Data Manipulation

Spatial data (or geographic data) are components that represent the geometry of spatial objects.
Considering the vector data type, spatial data are of three types: points, lines, and polygons. They
may have simple geometry, being defined considering one of these types, or complex geometry, being
represented by sets of points, lines, and polygons. A point is stored as a set of coordinates, such
as latitude and longitude. The other types of spatial data are represented by a data structure (for
instance, a vector) that contains the points that form them.

There are several spatial operations that can explore the relationships between spatial data, as
categorised in [Castro et al. 2020]. In this article, we are interested in topological predicates, metric

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 345

relationships, and type-dependent operations. Topological predicates can be evaluated by using the
nine-intersection model, which relies on point sets and point set topology to evaluate the nine possible
intersections of interior, exterior, and boundary of two spatial objects [Egenhofer 1989; Gaede and
Günther 1998]. Two topological predicates used in our case study analysis are the containment and the
intersection spatial join queries, which are defined as follows. Given an object o′ with a spatial extent,
the containment query, as illustrated in Figure 1a, finds all objects o enclosed by o′. Furthermore,
given two collections R e S of spatial objects, the intersection spatial join query, as illustrated in
Figure 1b, finds all pairs of objects (o, o′) ∈ R× S having at least one point in common with o′.

(a) Containment Query (b) Intersection Query

Fig. 1: Examples of spatial queries with topological predicates. Object o′ is represented in blue and objects o are
represented in orange.

Metric relationships explore measures like distances and directions, where mathematical operations
like the Euclidean and the Manhattan distances are used [Egenhofer 1989]. Two metric relationships
used in our case study analysis are the k-nearest neighbours and the distance spatial join queries,
which are defined as follows. Given an object o′ with a spatial extent, the k-nearest neighbours query,
as illustrated in Figure 2a, finds the k objects o next to o′. Furthermore, given two collections R e S
of spatial objects, the distance spatial join query, as illustrated in Figure 2b, finds all pairs of objects
(o, o′) ∈ R× S where the distance between o and o′ is less than or equal to a n value.

k = 3

(a) k-NN Query

n = 1

(b) Distance Join Query

Fig. 2: Examples of spatial queries with metric relationships. Object o′ is represented in blue and objects o are
represented in orange.

Type-dependent operations are those that can be executed over only one specific type of spatial
object. In our case study analysis, we are interested in spatial queries that involve generating a
new geometry from a distance around a specific geometry. That is, we are interested in finding
approximations of a spatial object using algorithms like convex hull [Brinkhoff et al. 1994] and buffer.
Given a collection R of spatial objects, a convex hull query, as illustrated in Figure 3a, finds the
smallest convex object o′ that encloses all o objects in R. Also, given an object o′ with a spatial
extent, a buffer query, as illustrated in Figure 3b, finds all objects o enclosed or intersected in a zone
that is drawn around o′ within a specified distance n of o′.

2.2 Spatial data warehouses

In order to implement an SDW, it is necessary to be aware of spatial redundancy. According to the
experiments conducted in [Mateus et al. 2016], higher spatial redundancy can lead to unsatisfactory
performance results. Therefore, the authors propose that this type of data warehouse should be
modelled using a special type of star schema, called Geographic Hybrid Star Schema. This schema

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

346 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

(a) Convex Hull Query

n = 1.5

(b) Buffer Query

Fig. 3: Examples of spatial queries with type-dependent operations. Object o′ is represented in blue and objects o are
represented in orange.

stores each geographic attribute of a spatial hierarchy in a different dimension table, avoiding spatial
redundancy. We use as a basis these findings to propose the SDW that stores the spatial data of the
case study described in Section 6. We also use the pictograms introduced in [Vaisman and Zimnyi
2014] to indicate the geographic attributes that are represented as points, lines, and polygons.

Figure 4 depicts the schema of the proposed SDW. It represents data related to sensors and parking
lots scattered in a smart city that collects data on vehicle quantity and average speed. There are
seven dimension tables: (i) Date and Time, storing the moment in which a measurement occurred;
(ii) Report, storing the distance between the two street sensors that performed the measurement and
their geographic locations; (iii) Garage, storing the geographic location of the sensors placed in parking
garages and the total spaces available for vehicles to park there; and (iv) Road, District, and City, storing
the geographic locations associated with the report and the garage. These three tables represent a
spatial hierarchy and therefore their data are stored separately. The dimension tables are linked
through two fact tables: (i) Measurement, which stores, for each measurement, the following numeric
measures: vehicle count, measurement time, and vehicle speed; and (ii) Parking, which stores the
vehicle count as its numeric measure.

MEASUREMENT
reportID (PK, FK)
dateID (PK, FK)
timeID (PK, FK)

measurementTime
vehicleSpeed
vehicleCount

DATE

dateID (PK)
day

week
month
year

REPORT

reportID (PK)
roadID (FK)

districtID (FK)
cityID (FK)

firstSensorGeo
secondSensorGeo

reportDistance

ROAD

roadID (PK)
roadGeo
roadType
roadName
postalCode

DISTRICT

districtID (PK)
districtGeo

districtName
districtPopulation

CITY

cityID (PK)
cityGeo

cityName
cityPopulation

TIME

timeID (PK)
second
minute
hour

PARKING

garageID (PK, FK)
dateID (PK, FK)
timeID (PK, FK)

vehicleCount

GARAGE

garageID (PK)
roadID (FK)

districtID (FK)
cityID (FK)
garageGeo
totalSpaces

Fig. 4: Logical schema of the SDW proposed to support the case study, which models data related to sensors and
parking lots scattered in a smart city that collects data on vehicle quantity and average speed.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 347

3. RELATED WORK

Investigating IoT, big data, and smart cities in the same set is a quite recent area of research. In this
section, we survey related work by classifying them into three classes: (i) literature reviews; (ii) use
of data warehousing as an underlying technology; and (iii) use of IoT devices in the context of smart
cities.

Considering the literature reviews, i.e., class (i), there are studies that present challenges related to
IoT-generated data. Bansal et al. (2021) describe a systematic survey on the theme and challenges
related to IoT Big Data (IoTBD), such as volume, variety and velocity. The authors also highlight
trends in IoTBD research, such as leveraging edge and fog infrastructures and multi-cloud manage-
ment. Javadzadeh et al. (2020) provide a systematic literature review of current research related
to fog computing applications in smart cities. The review compares the approaches considering ser-
vice objectives e application classification. It also highlights that only few studies found have dealt
extensively with big data analysis. Therefore, there is a lack in the literature regarding this issue.

We now move our discussion to studies in the literature that propose the construction of data
warehousing environments with data based on IoT, i.e., class (ii). We consider here studies that are
not directly related to smart cities. The work of Rahman et al. (2019) investigate data sources from
IoT-based soil nutrient measurement data to build a data warehouse that can be used to support
analysis related to types of plants and fertilisers needed at a soil location. In [Al-Ali et al. 2017],
the authors introduce an energy management system for smart homes that uses off-the-shelf business
intelligence and big data analytics software packages to better manage energy consumption and to
meet consumer demand. The study described in [Kumar et al. 2020] uses IoT to avoid spreading
the COVID-19 virus. However, these related studies provide solutions to very specific problems. The
architecture that we propose in this article is more generic and broad.

Let us now review studies classified in class (iii). Silva et al. (2020) present a big data analytics
embedded smart city architecture. The authors use a Representational State Transfer (RESTful) for
communication between devices and a parallel and distributed environment based on Hadoop. The
RESTful service runs over a smart gateway between the devices and the cluster. The authors also
introduce a case study involving real data on traffic, parking, air pollution, and water use in smart
cities, comparing the performance between a cluster with a single Hadoop node, two Hadoop nodes and
a JQuery-based system. Zhang et al. (2020) propose the SafeCity architecture, which contains three
layers: (i) a data security layer to handle secure communication with devices; (ii) a data computation
layer to process data in a Hadoop environment; and (iii) a decision-making layer to support AI-based
operations for decision-making. The authors also present a system evaluation for data processing and
computation, using real data from a smart city. Both [Silva et al. 2020] and [Zhang et al. 2020] do not
provide spatial data manipulation and do not use concepts related to data warehousing environments.

Diaconita et al. (2018) propose an architecture based on Hadoop to efficiently manage smart cities.
The architecture uses Hadoop-compatible solutions to resource management (e.g., Apache Hadoop
YARN), bulk data transfer (e.g., Apache Sqoop1), sensors data ingestion (e.g., Apache Storm2), data
processing (e.g., Apache Spark), and data warehousing (e.g., Apache Hive3). The work also describes
a performance comparison of queries executed in HiveQL with several execution engines, like Spark,
Apache Tez4, and Hadoop MapReduce, using real data related to road networks, taxicabs and points
of interest. Yuan and Zhao (2012) propose the architectural solution for SDWs in the context of IoT
environments called SDWIT. It has the following layers: data processing layer, storage layer, and
analysis application layer. SDWIT features include accessing and analysing IoT data in real time

1https://sqoop.apache.org/
2https://storm.apache.org/
3https://hive.apache.org/
4https://tez.apache.org/

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

348 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

over a traditional SDW. However, [Diaconita et al. 2018] do not focus on spatial data and [Yuan and
Zhao 2012] do not consider the support of parallel and distributed data processing frameworks in their
architecture. Furthermore, these two studies are not based on SASs and fog computing.

In contrast to the surveyed studies, we propose a novel architecture that employs both parallel
and distributed data processing frameworks and SASs, allowing the execution of fast and reliable
spatial decision-making analyses over IoT data from smart cities. Our architecture excels not only
in the integration of these technologies with an SDW in the cloud, but also in the inclusion of a fog
computing layer to handle spatial data analytics and Extract, Transform, and Load (ETL) processes.
We also introduce a set of guidelines to aid smart city managers in the process of implementing our
architecture. Further, we validate the architecture with a case study that describes an application
that handles real data generated from a smart city. The aim of this case study is to investigate the
efficacy and effectiveness of the architecture, but not its efficiency. Thus, carrying out performance
evaluations is out of the scope of this article.

4. THE PROPOSED ARCHITECTURE

In this section, we describe a novel architecture for collecting and analysing, in a fast and reliable
manner, data from IoT devices in smart cities. The proposed architecture is depicted in Figure 5. It
achieves its goals through the employment of three different layers: (i) the terminal layer; (ii) the fog
computing layer; and (iii) the cloud computing layer. We discuss each layer as follows.

Environment

Nature

Urban Traffic

Smarthouses

Health

Renewable
Energy

Public
Transportation

Network Edge

Low Latency

Network Core

High Latency

Data
Collected

Terminal
Layer
Vehicles

Smartphones

Bluetooth
Sensors

RFID
Sensors

Wearable
Devices

Fog
Computing

Layer

Fog node

…

Cloud Computing Layer

Internet

Parallel and Distributed processing
environment

Spatial Data Warehouse

SAS
Spatial Analytics Systems

Parallel and Distributed
Storage systems

Dimension
Table

SOLAP
Operations

Dimension
Table

Fact
table

Dimension
Table

Dimension
Table

Clients

Client—IoT devices latency

GIS APIs Data MiningWeb Apps

Data

Storage

Spatial Data

Processing

IoT
Devices

…

Fog node

Real-time
data analytics

ETL

Wi-Fi Receptors

Bluetooth Receptors

Fog node

RFID Receptors

Fig. 5: Overview of the proposed architecture, which encompasses cloud computing, fog computing, and frameworks
for parallel and distributed data processing, and also provides efficient support for storing SDWs and providing spatial
analytics.

Terminal layer. The terminal layer consists of a network of IoT devices, which are interconnected by
using technologies such as Radio Frequency Identification (RFID), Global Positioning System (GPS),
and network communication standards, such as Ethernet and Bluetooth. These devices are available
in many parts of a smart city, such as weather stations, traffic lights, and public transportation. The
devices are aimed to collect spatial and conventional data.

Fog computing layer. Data collected by terminal layer devices are sent to receivers in the fog
computing layer. These receivers, called fog nodes, can be limited with regard to data processing
and storage. However, by being located close to the network edge, they are in an optimal position to
allow the execution of real-time data analytics and ETL operations. This is due to the low latency in
communication between the terminal layer devices and these nodes.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 349

Cloud computing layer. After the data goes through the ETL process in the fog computing layer,
it is sent to the cloud computing layer. In this layer, data are persisted in an SDW stored in a parallel
and distributed storage system. This allows SOLAP queries to be processed with the help of a SAS,
enhancing their performance considerably. Due to the scalable nature inherent to cloud computing
environments, the number of nodes can increase or decrease according to the demand of queries from
clients. Examples of clients include web applications, Geographic Information Systems (GIS), and
different types of Application Programming Interfaces (APIs).

5. GUIDELINES FOR IMPLEMENTING THE PROPOSED ARCHITECTURE

In this section, we propose a set of guidelines to aid smart city managers in the process of implementing
the proposed architecture to support spatial analytics in smart cities. Because the context behind each
smart city may be different, it is not mandatory to follow every guideline in its completeness. Managers
should choose the appropriated hints provided by the guidelines according to the specific characteristics
of the smart city in which the architecture is being employed. Thus, a concise yet general description
of each guideline is provided, allowing further specialisation based on the requirements imposed by
each smart city application.

Guideline 1. Deploying IoT devices on the terminal layer. IoT devices must be deployed in
the terminal layer considering the communication protocols supported by each sensor and the coverage
of each device. A smart city manager must also consider the communication compatibility between
these devices and the fog nodes. Some investigations found in the literature can be used to assist
in the deployment of these devices. We indicate the work of Alablani and Alenazi (2020), which
introduces an algorithm for sensor distribution and sink placement called EDTD-SC. This algorithm
uses triangulation and clustering techniques to find optimal locations to improve sensor coverage over
a smart city.

Guideline 2. Distributing fog nodes across the fog computing layer. After the disposition of
the IoT devices in the terminal layer, a smart city manager must define which devices must be used
as fog nodes. For instance, some approaches in the literature use Raspberry Pi computers5, which
are small single-boarded computers, as fog nodes, using containerisation over these resource-limited
devices [Bellavista and Zanni 2017; Xu and Zhang 2019]. Because Raspberry Pi computers are low cost
and support many communication protocols, they are a viable choice to the heterogeneous nature of
an IoT network. Communication between the fog nodes and the cloud computing layer can be carried
out using 4G/5G or Wi-Fi protocols. Each fog node uses the Docker container technology6 for creating
containers for each application available in a fog node (e.g., ETL and real-time data analytics). We
indicate the reading of the work of Pérez de Prado et al. (2020) , which presents the challenges and
opportunities on the schedule of smart containers in the Cloud-Fog-IoT interfaces.

Guideline 3. Securing the connection between IoT devices and fog nodes. A smart city
manager must be concerned with the data flow security between the IoT devices and the fog nodes, as
sensitive information may be transmitted. For instance, at the terminal layer, some security threats
include signal jamming between IoT devices and Denial of Service (DoS) attacks [Puthal et al. 2019].
At the fog computing layer, security threats include phishing attacks, infected code injection, session
hijacking, and distributed DoS [Puthal et al. 2019; Rauf et al. 2018]. To deal with these issues, smart
city managers can take decisions using as a basis the work of Ni et al. (2018) . In this work, the
authors discuss security-related challenges in fog-assisted IoT applications. The authors also review
state-of-the-art solutions to address security and privacy issues in a fog environment deployed in an
IoT network.

5https://www.raspberrypi.org/
6https://www.docker.com/

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

350 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

Guideline 4. Storing and querying data in the fog computing layer. Due to the intrinsic
nature of his tasks, a smart city manager might require mechanisms for storing and querying data
over a fog node. Multiple data management systems, like NoSQL databases (e.g., Couchbase Server7
and Apache Cassandra8) can be employed [Yang 2017]. As suggested in Guideline 2, storage services
can be operated by containers inserted in the fog node. Polyglot persistence [Medvedev et al. 2016;
Sadalage and Fowler 2012] can be used in a fog node network since it takes into consideration the
node processing and physical storage, as well as the queries that should execute in each node.

Guideline 5. Modelling the ETL process at the fog computing layer. To enable ETL process-
ing in the fog computing layer, a smart city manager must define the conceptual and logical modelling
of the ETL process. The conceptual model is a schema that represents the data flow between the fog
computing layer and the cloud computing layer. The approaches described in [Ali and Wrembel 2017;
El-Sappagh et al. 2011] propose techniques for the implementation and optimisation of ETL workflows
at the conceptual level. The logical model provides a detailed description of an ETL workflow from
the description of data and relationships. Furthermore, in [Ali and Wrembel 2017] is proposed the use
of two logical implementations of an ETL workflow: (i) an architecture graph, which employs graphs
to represent an ETL workflow, with the edges representing different types of relationships between
ETL activities; and (ii) Parameterized Directed Acyclic Graphs (DAG-P), where vertices represent
tasks and edges represent relationships between tasks.

Guideline 6. Enabling the ETL process at the fog computing layer. To enable ETL pro-
cessing in the fog computing layer, a smart city manager must select tools that allow programming,
scaling, and monitoring tasks in the ETL workflow. There are several tools on the market which
support ETL and workflow monitoring. An example is Apache Airflow9, which is an open-source
platform that uses Directed Acyclic Graphs (DAGs) for authoring, scheduling and monitoring work-
flows. We indicate that the tasks be written using the Python programming language, since it is
natively supported by Airflow. Airflow provides integration with Hadoop, Spark, and several cloud
platforms. Another example is Pentaho Data Integration (or Kettle)10, which provides a graphical
environment for the creation of ETL workflow operations. This tool supports connections to several
DBMSs and provides several plugins created by the community.

Guideline 7. Choosing the appropriate SAS to implement the SDW in the cloud com-
puting layer. The SDW application should process SOLAP queries efficiently. Therefore, a smart
city manager must select a SAS that is able to completely fulfil the requirements of the SDW appli-
cation. Because there are several SASs available in the literature with different characteristics and
capabilities, choosing the most appropriate SAS can become considerably challenging. Thus, smart
city managers should use as a basis of choice the state-of-the-art user-centric comparison of existing
SASs described in [Castro et al. 2020]. For a system-centric view of SASs, the work of Pandey et al.
(2018) should be referred, as it compares several SASs in the literature based on their query processing
performance.

Guideline 8. Multidimensional modelling of data contained in the cloud computing layer
A smart city manager should perform multidimensional modelling at the logical and the physical
level. At the logical level, the manager should on the use of schemas such as the star schema, the
snowflake schema, and the Geographic Hybrid Star Schema. At the physical level, the manager
should use structures such as star join bitmap indexes and materialised views. For a conventional star
schema modelling, the work of [Kimball et al. 2011] can be used. In a spatial data context, Vaisman
and Zimányi (2014) presents design discussions to model an SDW and also introduce the concept of
trajectory data warehouses, which can be appropriate for IoT devices that collect data from sensors

7https://www.couchbase.com
8http://cassandra.apache.org
9http://airflow.apache.org/
10https://sourceforge.net/projects/pentaho/

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 351

installed in, for instance, in vehicles. The work of Mateus et al. (2016) details the design of novel
schemas for an SDW deployed in a cloud environment. The authors also evaluate the performance of
SOLAP query processing with the employment of a cloud-based spatial index.

Guideline 9. Configuring the SDW to process SOLAP queries on the cloud computing
layer. After choosing the appropriate SAS, a smart city manager must configure the SDW envi-
ronment in the cloud computing layer to process SOLAP queries. The parallel and distributed data
processing framework and the distributed file system must be compatible with the chosen SAS. There
are several Platform-as-a-Service (PaaS) on the market that support these frameworks natively, such
as Microsoft Azure11 and Amazon Web Services12. The manager must consider the periodicity in
which data should be extracted from the fog computing layer, as well as carefully specify data dis-
tribution over the SDW. These SOLAP services must support APIs and GIS applications in order to
visualise the results of SOLAP queries.

Guideline 10. Ensuring secure spatial queries processing in the cloud computing layer.
Since cloud computing environments can be virtually accessed from anywhere, smart city managers
should be concerned with security issues related to cloud applications. In the same way that fog nodes
are subject to security threats like phishing and DDoS attacks (Guideline 3), a cloud environment
also has security concerns [Almorsy et al. 2010; Balani and Varol 2020]. Solutions for issues related
to security in a cloud computing environment are presented in [Singh et al. 2016]. Another way to
ensure confidentiality is the encryption of the data stored in the SDW. Data encryption should be
done carefully so that it does not compromise the performance of the SDW application. To this end,
we indicate the reading of the work of Lopes et al. (2021) , which proposes an encryption methodology
for a cloud DW stored according to the star schema, considering the capability of processing analytical
queries over the encrypted DW.

6. CASE STUDY

In this section, we describe a case study that illustrates the use of the proposed architecture. We
define the requirements of a spatial application, whose objective is to process data collected from
multiple IoT devices in the context of smart cities. This case study is aimed to validate the efficacy
and effectiveness of the proposed architecture. Focusing on details regarding the performance and
reliability of the architecture is out of the scope of the article.

For this case study, we use a dataset provided by Ali et al. (2015), which contains vehicle traffic
data observed between two street sensors and vehicle count data observed in sensors placed in parking
garages. These sensors are distributed in the municipality of Aarhus, Denmark. The dataset, which
is publicly available in the authors’ website13, contains both conventional (e.g., distance in meters
between the sensors, type of road, etc.) and spatial data (e.g., the sensors locations, represented by
points) referring to the period from February to June 2014. The sensors generated data every five
minutes.

As the dataset only provides data regarding the sensor location (i.e., points), we extended it with
new information to enrich the analyses performed in our spatial application. To this end, we use road
(i.e., lines) and city (i.e., polygons) data obtained by Geofabrik14 from OpenStreetMap, and statistical
district data obtained from OpenDataDK15. We guarantee the spatial relationship between the data
in the sense that a road intersects with sensors, a district contains multiple roads, and a city contains
several districts.

11http://azure.microsoft.com
12http://aws.amazon.com
13http://iot.ee.surrey.ac.uk:8080/
14https://www.geofabrik.de/
15https://www.opendata.dk/city-of-aarhus/statistikdistrikter

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

352 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

The requirements imposed by the SDW application are described as follows. The application should
be deployed in the cloud and should communicate with a SAS to process its queries. Furthermore,
data handled by the application should be stored in an SDW designed according to the logical schema
depicted in Figure 4, which should also be located in the cloud. Another requirement of the application
is that it should support different types of spatial queries based on the definitions of Gaede and Günther
(1998) , such as spatial join, containment, and k-nearest neighbour queries. The application should
also provide good performance results. Finally, it is important to highlight that the developers who are
going to implement the application have some previous knowledge of the SQL programming language.

According to the proposed architecture (Section 4) and guidelines (Section 5), the case study appli-
cation should be implemented as follows: (i) use of the Apache Airflow to perform the ETL process;
(ii) storage of the SDW data in the HDFS as the application requires data storage in the cloud; and
(iii) selection of Sedona [Yu et al. 2019] as the SAS to process the spatial queries aimed to decision-
making, as it complies with the application’s requirements regarding performance and spatial queries,
as well as supports the SQL programming language through the use of SedonaSQL [Pandey et al.
2018; Castro et al. 2020].

In Section 6.1, we describe aspects related to data loading, including the pre-processing on the
data. Once the process of loading the data provided by the IoT sensors into the SDW is complete,
smart city managers are able to execute different types of analyses using SedonaSQL. We define
some query examples that address key points of the application’s requirements, which are divided
into three different categories: (i) spatial queries with a topological predicate (Section 6.2); (ii) spatial
queries with metric relationships (Section 6.3); and (iii) spatial queries with type-dependent operations
(Section 6.4). These queries may be employed by a smart city manager to support spatial analytics.
We employ QGIS16 to visualise the results of the queries.

6.1 Data Loading into the Cloud Layer

The dataset used in this case study consists of 449 reports and 8 garages. Data from these reports and
garages are stored in Comma-Separated Values (CSV) files. To be loaded into the SDW, the data must
go through an ETL process in the fog computing layer (Guideline 6). Thus, Apache Airflow should
be employed to: (i) extract the data from the CSV files; (ii) perform transformations to arrange the
data according to the logical schema depicted in Figure 4; and (iii) load the data into HDFS for later
use by Sedona. To accurately simulate the fog computing layer, Airflow was executed in a Docker
container.

Furthermore, in order to employ SedonaSQL for processing spatial queries over the SDW stored in
HDFS, it is necessary to load its tables into structures called DataFrames. These structures, which
resemble relational tables, do not transform the textual representations of the spatial data into spatial
objects by default. Therefore, it is necessary to carry out the transformations. SedonaSQL provides
a function to convert Well-Known Text (WKT) representations into spatial objects. An example of
using this function during the process of loading the Report table is detailed in the following query:

SELECT reportID, roadID, districtID, cityID, reportDistance,
ST_GeomFromWKT(firstSensorGeo) AS firstSensorGeo,
ST_GeomFromWKT(secondSensorGeo) AS secondSensorGeo

FROM sensor

16https://qgis.org/

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 353

6.2 Spatial Queries with Topological Predicate

A containment query is to return the quantity of vehicles that traveled in Aarhus University/Com-
munity Hospital district, grouped by day and month. An interesting knowledge that can be obtained
from this type of analysis is to identify the days in which the district had the largest number of vehicles
and to investigate whether a holiday or an event happened, as displayed in Figure 6. The following
command expresses this query:

SELECT day, month, SUM(vehicleCount)
FROM measurement, date, report, district, road
WHERE ST_Contains(districtGeo, roadGeo)

AND ST_Intersects(roadGeo, ST_MakeLine(firstSensorGeo, secondSensorGeo))
AND measurement.reportID = report.reportID
AND measurement.dateID = date.dateID
AND report.districtID = district.districtID
AND report.roadID = road.roadID
AND district.name = ’Universitetet/Kommunehospitalet’

GROUP BY day, month
ORDER BY day, month

Fig. 6: Containment query returning the quantity of vehicles that traveled in Aarhus University/Community Hospital
district grouped by day and month, considering the period between 2014-2-13 and 2014-6-1.

By interpreting the query results, a smart city manager can obtain different types of knowledge.
For instance, the measurement of zero vehicles on March 25, 2014 (2014-3-25) could indicate that this
was a day in which the sensors in the designated district were entirely disabled. Another interesting
knowledge that can be obtained is that the traffic in this district seems more intense in weekdays
when compared to weekends.

Another analysis, which resembles an intersection spatial join query, is to return the districts in
which the average vehicle speed reported from the set of sensors that intercept it is greater than 60
km/h (37.28 mph). This analysis is necessary to check if there are districts where the maximum
permitted speed is not being respected by the drivers. The query results are depicted in Figure 7,
with each selected district being highlighted in red and the average vehicle speed (in km/h) displayed
in its centre. The following command expresses this query:

SELECT districtGeo, AVG(vehicleSpeed) AS a
FROM measurement, report, district
WHERE ST_Intersects(ST_MakeLine(firstSensorGeo, secondSensorGeo), districtGeo)

AND measurement.reportID = report.reportID AND report.districtID = district.districtID
GROUP BY districtGeo
HAVING a >= 60

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

354 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

The analysis of the query results indicate that the average vehicle speed is higher in the northern
districts of the municipality of Aarhus. A smart city manager can extract different types of knowledge
from this information. An example is the fact that drivers can be less inclined to drive over the
speed limit in central areas of the municipality (highlighted in purple in Figure 7), probably due to
the increased number of pedestrians in these areas. Another example resides in the assumption that
the average speed in the northern districts is higher due to the fact that some of them connect with
external highways (displayed as pink lines in Figure 7).

■ districts with an average
 vehicle speed higher
 than 60 km/h
 highways
■ central area

Fig. 7: Intersection spatial join query returning the districts of the municipality of Aarhus, in which the average vehicle
speed reported from the set of sensors that intercept it is greater than 60 km/h (37.28 mph).

6.3 Spatial Queries with Metric Relationships

A k-nearest neighbours query is to return the average vehicle speed identified by the 10 nearest
reports from the Aarhus Cathedral, which is represented by a point (10.210556, 56.156944). This type
of analysis is necessary to verify if drivers are respecting the speed limit in the surrounding area of
a highly frequented point of interest, as shown in Figure 8. The following command expresses this
query:

SELECT AVG(vehicleSpeed), ST_MakeLine(firstSensorGeo, secondSensorGeo) AS reportGeo
FROM measurement, report
WHERE measurement.reportID = report.reportID
GROUP BY reportGeo
ORDER BY ST_Distance(reportGeo, ST_GeomFromWKT(’POINT(10.210556 56.156944)’))
LIMIT 10

The results displayed in Figure 8 can enable smart city managers to perform a wide variety of
analyses. In particular, one can identify that the highest average speeds around Aarhus Cathedral
can often be observed in the main streets of its district, which are highlighted in red. smart city
managers can also observe that these speeds do not go over 33 km/h. This can indicate that drivers
do not tend to speed up in this region, a fact that might indicate the occurrence of heavy traffic.

An interesting query is to compare the amount of occupied parking spots and the amount of vehicles
transiting in the streets in the last week of May. In order to perform such analysis, a distance spatial
join is executed, which considers the sensors in the streets that are located at a distance of at most
100 m from sensors placed in parking garages. Only parking garages that had at least one vehicle
parked in the period were considered. The following command expresses this query:

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 355

■ average vehicle speed
 in km/h
⚫ sensors

Fig. 8: K-nearest neighbours query returning the average vehicle speed identified by the 10 nearest reports from the
Aarhus Cathedral.

SELECT garage.garageID AS "Garage Name",
road.roadName AS "Street Name",
ROUND(AVG(measurement.vehiclecount),0) AS "Average number of vehicles in traffic",
ROUND(AVG(parking.vehiclecount),0) AS "Average number of parked vehicles"

FROM (SELECT reportID, SUM(vehiclecount) AS vehiclecount
FROM measurement, date
WHERE measurement.dateID = date.dateID AND month = 5 AND week = 4
GROUP BY reportID) AS measurement,

(SELECT parking.garageID, AVG(vehiclecount) AS vehiclecount
FROM parking, date
WHERE parking.parkingID = date.dateID AND month = 5 AND week = 4
GROUP BY garageID) AS parking,
report, garage, road

WHERE report.reportID = measurement.reportID
AND parking.garageID = garage.garageID
AND garage.roadID = road.roadID
AND ST_Distance(

ST_MakeLine(report.firstsensorgeo, report.secondsensorgeo),garage.geo) <= 0.01
GROUP BY garage.garageID

The query results are displayed in Table I. By analysing these results, a smart city manager can
realise that there is no direct relationship between the average number of vehicles in traffic and the
average number of parked vehicles in the period. This is clear due to the fact that there are streets
with: (i) a high number of vehicles in traffic and few vehicles parked (such as Kalkværksvej); (ii) a
high number of vehicles in traffic and a high amount of vehicles parked (such as Værkmestergade);
and (iii) a few number of vehicles in traffic and a high amount of vehicles parked (such as Østergade).
However, it is important for a smart city manager to run this analysis on different weeks and months
in order to investigate if this lack of relationship is dependent of the time period.

Table I: Distance join query returning the average number of vehicles in traffic and the average number of parked
vehicles, considering the sensors in the streets of the municipality of Aarhus that are located at a distance of at most
100 m from sensors placed in parking garages.

Garage Name Street Name Average number of
vehicles in traffic

Average number of
parked vehicles

BRUUNS Værkmestergade 5,605 166
BUSGADEHUSET Frederiksgade 4,223 84
KALKVAERKSVEJ Kalkværksvej 4,458 49

MAGASIN Åboulevarden 4,223 108
SALLING Østergade 3,618 191

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

356 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

6.4 Spatial Queries with Type-Dependent Operations

A convex hull query is to return the minimal convex polygon (i.e., the convex hull) that contains all
the sensors in the municipality of Aarhus. This analysis can be useful to verify the coverage area of
the sensors in the municipality, as displayed in Figure 9. In order to compute the result of this query,
it is necessary to first aggregate the sensor geometries, as displayed in the following command:

SELECT ST_ConvexHull(ST_Collect(sensors.sensorGeo))
FROM (SELECT report.firstSensorGeo AS sensorGeo FROM report

UNION
SELECT report.secondSensorGeo AS sensorGeo FROM report) AS sensors

The results displayed in Figure 9 reveal that several districts in the extremities of the municipality
are beyond the sensor coverage area. Further, it is possible to visualise that there are sensors positioned
outside the municipality limits. A smart city manager should analyse these results to better determine
the sensor distribution across the municipality districts.

■ buffer area
⚫ sensors
■ convex hull polygon

Fig. 9: Convex Hull query returning the minimal convex polygon that contains all the sensors in the municipality of
Aarhus.

Another analysis, which represents a buffer query, is to return the average vehicle count of the
sensors located within a 100 m buffer of each school in the municipality of Aarhus, considering the
five highest measurements. Data relating to schools in the municipality of Aarhus was extracted from
OpenStreetMap and contains as attributes the identifier, name of the school and its representation
as a point. This type of analysis can be useful to determine the movement around school areas in
different regions of the municipality. The following command expresses this query:

SELECT ROUND(AVG(measurement.vehicleCount),0) as AVGvehicleCount, schoolID
FROM schools, report, measurement,

ST_Buffer(schools.geom, 0.01) AS schoolbuffer,
ST_MakeLine(firstSensorGeo, secondSensorGeo) AS sensorset

WHERE ST_Intersects(sensorset,schoolbuffer)
AND measurement.reportID = report.reportID

GROUP BY schoolID
ORDER BY AVGvehicleCount DESC
LIMIT 5

Figure 10 shows the visualisation of the query results. It is important to highlight that the buffers
are not depicted as regular circular shapes due to the map projection adopted. Through the analysis
of the query results, a smart city manager can verify if the movement is higher around a certain school
in comparison with the others.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 357

■ buffer area
⚫ schools

Fig. 10: Buffer query returning the average vehicle count of the sensors located within a 100 m buffer of each school in
the municipality of Aarhus, considering the five highest measurements.

It is also possible for the manager to seek a more detailed analysis, investigating the average vehicle
count per hour for a certain school, as depicted in Figure 11. The following command expresses the
query necessary to run this analysis:

SELECT SUM(measurement.vehiclecount), hour, day
FROM schools, report, measurement, date, time

ST_Buffer(schools.geom, 0.01) AS schoolbuffer,
ST_MakeLine(firstSensorGeo, secondSensorGeo) AS sensorset

WHERE ST_Intersects(sensorset,schoolbuffer)
AND measurement.reportID = report.reportID
AND measurement.dateID = date.dateID
AND measurement.timeID = time.timeID
AND schools.schoolID = ’4448940550’
AND month = 2

GROUP BY hour, day
ORDER BY day, hour

After interpreting the results depicted in Figure 11, a smart city manager can obtain some knowledge
regarding the movement of vehicles around the analysed school. For instance, it is possible to realise
that the number of vehicles in the vicinity of the school is greater during business hours. A smart city
manager can also observe that there is a small decline in the vehicle count at 7h, a fact that can be
further investigated.

Fig. 11: Buffer query returning the average vehicle count per hour and day in February 2014, considering the period
from 0h to 23h.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

358 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

7. CONCLUSIONS AND FUTURE WORK

In this article, we propose an architecture aimed to help smart city managers to enable analyses over
IoT data in the context of smart cities. The architecture is composed of three layers. The cloud
computing layer is a cloud computing environment based on parallel and distributed data processing
frameworks and spatial analytics systems. The fog computing layer is responsible for extracting,
transforming and loading the data into a spatial data warehouse. The terminal layer consists of a
network of interconnected IoT devices aimed to collect spatial and conventional data.

Based on our architecture, we introduce a set of guidelines to aid smart city managers in the process
of implementing our architecture. We provide a concise yet general description of each guideline,
allowing further specialisation based on the requirements imposed by each smart city application.
The proposed guidelines focus on the following issues: deploying IoT devices, distributing fog nodes,
securing the connection between IoT devices and fog nodes, data storing and querying, modelling and
enabling the ETL process, choosing an appropriate spatial analytics system to implement the spatial
data warehouse, modelling and configuring the spatial data warehouse, and ensuring secure spatial
queries.

Furthermore, we validate the proposed architecture and guidelines by employing them to implement
a spatial data warehousing application that analyses data collected from real IoT devices located in
the municipality of Aarhus, Denmark. Three different categories of spatial queries were executed,
i.e., spatial queries with topological predicate, spatial queries with metric relationships, and spatial
queries with type-dependent operations. We also highlight important findings that can be obtained
from these queries and how these findings can assist smart city managers in the decision-making
process. Although our case study encompasses the municipality of Aarhus, our architecture can be
applied to any smart city that employs spatial data generated by IoT devices to improve government
intelligence.

We are currently investigating data mining aspects to encompass in our proposed architecture and to
enhance the spatial analytics in the context of smart cities. Future work also includes the development
of additional case studies, using real data from sensors that collect measurements in different contexts,
such as public transport and air and water pollution. To comply with this extension, it is necessary
to specify new spatial queries that are important to the decision-making in this context as well as
to investigate new query categories, such as spatial queries with numerical operations, geometric
set operations, and directional relationships. Another future work is to improve the performance
of the spatial queries carried out using our proposed architecture. New case studies should also
focus on investigating performance and reliability issues of the architecture. In addition to execute
the expensive star join operation of data warehousing environments, these queries also require the
computation of costly operations over the spatial data. Furthermore, they should consider the support
of the underlying spatial analytics system to comply with our architecture.

ACKNOWLEDGMENT

This work was supported by Brazilian National Council for Scientific and Technological Development
(CNPq) and by the São Paulo Research Foundation (FAPESP). C. D. Aguiar has been supported by
the grant #2018/22277-8, FAPESP.

REFERENCES

Al-Ali, A. R., Zualkernan, I. A., Rashid, M., Gupta, R., and Alikarar, M. A smart home energy management
system using IoT and big data analytics approach. IEEE Transactions on Consumer Electronics 63 (4): 426–434,
11, 2017.

Alablani, I. and Alenazi, M. EDTD-SC: An IoT Sensor Deployment Strategy for Smart Cities. Sensors 20 (24):
7191, 12, 2020.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

Combining Fog and Cloud Computing to Support Spatial Analytics in Smart Cities · 359

Ali, M. I., Gao, F., and Mileo, A. CityBench: A configurable benchmark to evaluate RSP engines using smart
city datasets. In Arenas M. et al. (eds) The Semantic Web - ISWC 2015. ISWC 2015. Lecture Notes in Computer
Science. Vol. 9367. Springer, Bethlehem, PA, USA, pp. 374–389, 2015.

Ali, S. M. F. and Wrembel, R. From conceptual design to performance optimization of ETL workflows: current
state of research and open problems. VLDB Journal 26 (6): 777–801, 12, 2017.

Almorsy, M., Grundy, J., and Müller, I. An Analysis of the Cloud Computing Security Problem. In Proceedings
of the APSEC 2010 Cloud Workshop. APSEC, Sydney, 2010.

Atzori, L., Iera, A., and Morabito, G. Understanding the Internet of Things: definition, potentials, and societal
role of a fast evolving paradigm. Ad Hoc Networks vol. 56, pp. 122–140, 3, 2017.

Balani, Z. and Varol, H. Cloud Computing Security Challenges and Threats. In 8th International Symposium on
Digital Forensics and Security, ISDFS 2020. IEEE, Beirut, Lebanon, 2020.

Bansal, M., Chana, I., and Clarke, S. A Survey on IoT Big Data. ACM Computing Surveys 53 (6): 1–59, 2, 2021.
Bellavista, P. and Zanni, A. Feasibility of fog computing deployment based on docker containerization over Rasp-

berryPi. In ICDCN ’17: 18th International Conference on Distributed Computing and Networking. ACM, New York,
NY, USA, pp. 1–10, 2017.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. Fog computing: A platform for internet of things and analytics.
Studies in Computational Intelligence vol. 546, pp. 169–186, 2014.

Brinkhoff, T., Kriegel, H. P., Schneider, R., and Seeger, B. Multi-Step Processing of Spatial Joins. ACM
SIGMOD Record 23 (2): 197–208, 5, 1994.

Castro, J. P., Carniel, A., and Ciferri, C. Analyzing spatial analytics systems based on Hadoop and Spark: A
user perspective. Software: Practice and Experience 50 (12): 2121–2144, 12, 2020.

Chen, M., Mao, S., and Liu, Y. Big data: A survey. Mobile Networks and Applications 19 (2): 171–209, 1, 2014.
Diaconita, V., Bologa, A. R., and Bologa, R. Hadoop oriented smart cities architecture. Sensors (Switzer-

land) 18 (4): 1–20, 4, 2018.
Egenhofer, M. J. A formal definition of binary topological relationships. In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 367 LNCS.
Springer Verlag, Berlin, Heidelberg, Germany, pp. 457–472, 1989.

El-Sappagh, S. H. A., Hendawi, A. M. A., and El Bastawissy, A. H. A proposed model for data warehouse ETL
processes. Journal of King Saud University - Computer and Information Sciences 23 (2): 91–104, 7, 2011.

Eldrandaly, K. A., Abdel-Basset, M., and Shawky, L. A. Internet of Spatial Things: A New Reference Model
With Insight Analysis. IEEE Access vol. 7, pp. 19653–19669, 2019.

Fraga, E. and Queirolo, G. Crescimento populacional fará mundo mudar de cara até 2100. https://folha.com/
ne67804j, 2018. [Online; access sep. 20].

Gaede, V. and Günther, O. Multidimensional access methods. ACM Computing Surveys 30 (2): 170–231, 6, 1998.
Han, J., Stefanovic, N., and Koperski, K. Selective materialization: An efficient method for spatial data cube

construction. In LNCS. Vol. 1394. Springer, Berlin, Heidelberg, Germany, pp. 144–158, 1998.
Ismagilova, E., Hughes, L., Dwivedi, Y. K., and Raman, K. R. Smart cities: Advances in research—An information

systems perspective. International Journal of Information Management vol. 47, pp. 88–100, 2019.
Javadzadeh, G. and Rahmani, A. M. Fog Computing Applications in Smart Cities: A Systematic Survey. Wireless

Networks 26 (2): 1433–1457, 2, 2020.
Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., and Becker, B. The Data Warehouse Lifecycle Toolkit.

Vol. 3. John Wiley & Sons Inc, Hoboken, NJ, 2011.
Kumar, K., Kumar, N., and Shah, R. Role of IoT to avoid spreading of COVID-19. International Journal of

Intelligent Networks vol. 1, pp. 32–35, 2020.
Lopes, C. C., Cesário-Times, V., Matwin, S., Ciferri, C. D. d. A., and Ciferri, R. R. An Encryption

Methodology for Enabling the Use of Data Warehouses on the Cloud. In Research Anthology on Artificial Intelligence
Applications in Security. IGI Global, Hershey, PA, USA, pp. 528–559, 2021.

Mateus, R. C., Siqueira, T. L. L., Times, V. C., Ciferri, R. R., and Ciferri, C. D. A. Spatial data warehouses
and spatial OLAP come towards the cloud: design and performance. Distributed and Parallel Databases 34 (3): 425–
461, 9, 2016.

Medvedev, A., Zaslavsky, A., Santiago, M. I., Haghighi, P. D., and Hassani, A. Storing and indexing IoT
context for smart city applications. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9870 LNCS. Springer Verlag, St. Petersburg, Russia,
pp. 115–128, 2016.

Ni, J., Zhang, K., Lin, X., and Shen, X. S. Securing Fog Computing for Internet of Things Applications: Challenges
and Solutions. IEEE Communications Surveys and Tutorials 20 (1): 601–628, 1, 2018.

Pandey, V., Kipf, A., Neumann, T., and Kemper, A. How good are modern spatial analytics systems? Proc.
VLDB Endow. 11 (11): 1661–1673, July, 2018.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

360 · J. P. Clarindo and J. P. C. Castro and C. D. Aguiar

Patel, K. K. and Patel, S. M. Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Tech-
nologies, Application & Future Challenges. IJSR 6 (5): 6122–6132, 2016.

Peng, G. C. A., Nunes, M. B., and Zheng, L. Impacts of low citizen awareness and usage in smart city services:
the case of London’s smart parking system. Information Systems and e-Business Management 15 (4): 845–876, 11,
2017.

Pérez de Prado, R., García-Galán, S., Muñoz-Expósito, J. E., Marchewka, A., and Ruiz-Reyes, N. Smart
Containers Schedulers for Microservices Provision in Cloud-Fog-IoT Networks. Challenges and Opportunities. Sen-
sors 20 (6): 1714, 3, 2020.

Puthal, D., Mohanty, S. P., Bhavake, S. A., Morgan, G., and Ranjan, R. Fog Computing Security Challenges
and Future Directions [Energy and Security]. IEEE Consumer Electronics Magazine 8 (3): 92–96, 5, 2019.

Rahman, A., Ermatita, and Budianta, D. Data Warehouse Design for Soil Nutrients with IoT Based Data Sources.
In Proceedings - 1st International Conference on Informatics, Multimedia, Cyber and Information System, ICIMCIS
2019. Institute of Electrical and Electronics Engineers Inc., Jakarta, Indonesia, Indonesia, pp. 181–186, 2019.

Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R., and Kumar, E. Meta-principles for developing
smart, sustainable, and healthy cities. Science (New York, N.Y.) 352 (6288): 940–3, 5, 2016.

Rauf, A., Shaikh, R. A., and Shah, A. Security and privacy for IoT and fog computing paradigm. In 2018 15th
Learning and Technology Conference, L and T 2018. IEEE, Jeddah, KSA, pp. 96–101, 2018.

Rivest, S., Bédard, Y., and Marchand, P. Toward better support for spatial decision making: defining the char-
acteristics of Spatial On-Line Analytical Processing (SOLAP). Geomatica 55 (4): 539–555, 2001.

Sadalage, P. J. and Fowler, M. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley Professional, Chicago, IL, USA, 2012.

Santos, J. P. C., Castro, J. P. d. C., and Ciferri, C. D. d. A. SOLAP Query Processing over IoT Networks in
Smart Cities: A Novel Architecture. In Anais do XXI GeoInfo - Simpósio Brasileiro de Geoinformática. INPE, São
José dos Campos, Brazil, pp. 118–129, 2020.

Shi, W. and Dustdar, S. The Promise of Edge Computing. Computer 49 (5): 78–81, 5, 2016.
Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The Hadoop Distributed File System. In 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST). IEEE, Incline Village, NV, USA, pp. 1–10, 2010.
Silva, B. N., Khan, M., and Han, K. Integration of Big Data analytics embedded smart city architecture with REST-

ful web of things for efficient service provision and energy management. Future Generation Computer Systems vol.
107, pp. 975–987, 6, 2020.

Singh, S., Jeong, Y. S., and Park, J. H. A survey on cloud computing security: Issues, threats, and solutions.
Journal of Network and Computer Applications vol. 75, pp. 200–222, 11, 2016.

Vaisman, A. and Zimnyi, E. Data Warehouse Systems: Design and Implementation. Springer Publishing Company,
Incorporated, Berlin, Heidelberg, Germany, 2014.

Xu, Q. and Zhang, J. PiFogBed: A Fog Computing Testbed Based on Raspberry Pi. In 2019 IEEE IPCCC. IEEE,
London, United Kingdom, 2019.

Yang, S. IoT Stream Processing and Analytics in the Fog. IEEE Communications Magazine 55 (8): 21–27, 2017.
Yeh, H. The effects of successful ICT-based smart city services: From citizens’ perspectives. Government Information

Quarterly 34 (3): 556–565, 9, 2017.
Yu, J., Zhang, Z., and Sarwat, M. Spatial data management in apache spark: the geospark perspective and beyond.

GeoInformatica 23 (1): 37–78, 2019.
Yuan, L. and Zhao, J. Construction of the system framework of Spatial Data Warehouse in Internet of Things

environments. In 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI).
IEEE, Nanjing, China, pp. 54–58, 2012.

Zaharia, M., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I., Xin, R. S., Wendell, P., Das,
T., Armbrust, M., Dave, A., Meng, X., Rosen, J., and Venkataraman, S. Apache Spark. Communications
of the ACM 59 (11): 56–65, 10, 2016.

Zhang, H., Babar, M., Tariq, M. U., Jan, M. A., Menon, V. G., and Li, X. SafeCity: Toward Safe and Secured
Data Management Design for IoT-Enabled Smart City Planning. IEEE Access vol. 8, pp. 145256–145267, 2020.

Journal of Information and Data Management, Vol. 12, No. 4, October 2021.

