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Abstract. Fake news (FN) have affected people’s lives in unimaginable ways. The automatic classification of FN is
a vital tool to prevent their dissemination and support fact-checking. Related work has shown that FN spread faster,
deeper, and more broadly than truthful news on social media. Deep learning has produced state-of-the-art solutions
in this field, mainly based on textual attributes. In this paper, we propose to combine compact representations of
the textual news properties generated using DistilBERT, with topological metrics extracted from their propagation
network in social media. Using a dataset related to politics and distinct learning algorithms, we extensively assessed
the components of the proposed solution. Regarding the textual attributes, we reached results comparable to state-
of-the-art solutions using only the news title and contents, which is useful for FN early detection. We assessed the
influential topological metrics, and the effect of their combination with the news textual features. We also explored the
use of ensembles. Our results were very promising, revealing the potential of the features proposed and the adoption of
ensembles.

Categories and Subject Descriptors: Information Systems [Data Mining]: Data Streaming; Artificial Intelligence [Machine
Learning]: Supervised Learning; Information Systems [Web Applications]: Social Network

Keywords: DistilBERT, fake news, fake news classification, topological features, ensembles

1. INTRODUCTION

The fake news phenomenon has increased in the last decade, affecting various aspects of everyday life,
including politics, health, education, among others. Social networks play an active role in this context,
as the same mechanisms for democratizing information are used to spread untruths. The effects of a
rumor or fake news can be tragic, compromising democracy worldwide or affecting people’s lives in
unimaginable ways [Wang 2017].

Currently, there is no consensus on the concept of fake news [Zhou and Zafarani 2020], which can be
defined broadly or strictly [Shu et al. 2017]. In the broad interpretation, news, statements, speeches
or posts on social networks are considered to contain false information related to public figures and
organizations. This aspect also includes works for the detection of rumors, satires and bots [Bondielli
and Marcelloni 2019].

In the strict definition adopted by this work, Fake News (FN) refer to fake journalistic articles
whose veracity can be verified and which were published intentionally to deceive the consumer of the
news [Shu et al. 2017]. The concept emphasizes authenticity and intention, in addition to indica-
ting that FN are similar to news that followed the journalistic protocol, making it difficult for their
recipients to identify them.

Identifying misleading information is not easy for humans [Zhou and Zafarani 2020], and the harm-
ful potential is so relevant that many fact-checking initiatives are being developed. Such initiatives are
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directed either by groups of the mainstream media individually (e.g., Washington Post and CNN in
the United States - USA, and Folha de São Paulo and Estadão in Brazil) or in consortium (e.g., Pro-
ject Comprova1), as well as by less influential journalistic groups (e.g., PolitiFact2, Agência Lupa3).
However, the quantity in which they are produced, the speed of their dissemination and the comple-
xity in performing manual fact checking lead to the need for automatic mechanisms to combat fake
news [Reis et al. 2019].

FN Detection is the task that aims to identify whether a news item is false or true. Works focused
on the news classification task were developed using supervised machine learning approaches [Bondielli
and Marcelloni 2019; Zhou and Zafarani 2020]. Such approaches are based on the training of classifiers
using labeled data and are essentially differentiated by the learning algorithms used (shallow or deep
learning), and by the features explored in the task, which are divided into features related to news
itself, and the social context of the news spread [Shu et al. 2019].

Features extracted from the news (e.g., title, text and image) allow the early detection of false
news, i.e., before it spreads, as they do not depend on the spread of the news on social networks.
However, this approach usually limits solutions to the domain of training data used to construct
predictive models. A study [Reis et al. 2019] argues that features related to the news source and
the engagement generated in its propagation are the most discriminatory in the FN classification.
A proposal for the classification of FN outlets based on the topology of the propagation network is
presented in [Pierri et al. 2020]. Proposals for features representing the social context include news
broadcast profiles on social networks [Shu et al. 2019], social behavior (e.g., likes) [Bauskar et al.
2019] and propagation patterns [Shu et al. 2020].

Related works that explore textual attributes and Deep Learning [Liao et al. 2021; Shu et al.
2019; Zhou et al. 2020] in FN classification have reported the best results. A new trend in natural
language processing (NLP) is to create models by transfer learning from representations of encoded
languages using massive amounts of data, such as BERT (Bidirectional Encoder Representations from
Transformers) [Devlin et al. 2019]. Another opportunity is to verify if the topological approach to
detect FN broadcasting vehicles proposed in [Pierri et al. 2020] can contribute to FN classification
regardless of the source.

In this article, we explore the combination of textual content of the news and the topology of the
news diffusion networks for FN classification. More specifically, we propose the use of DistilBERT
[Sanh et al. 2019], a lighter version of BERT, to generate features that compactly represent the news.
As social context, we propose to represent the properties of the diffusion network of each news item on
Twitter by topological metrics, considering tweets, retweets and mentions. We developed experiments
using a politics-related dataset available on FakeNewsNet4 (FNN) [Shu et al. 2018], using different
algorithms for supervised learning and stacking ensemble. We assessed the contribution of each type
of feature separately and their combination.

This article is an extension of our previously presented work [Sáenz et al. 2020]. We have signifi-
cantly evolved it by: a) extending the set of topological features used for classification and assessing
their contribution for FN classification; b) extending the experimental settings, and analyzing in more
detail the performance results; c) leveraging stacking ensembles to improve the classification of fake
news; and d) updating the theoretical background and related work.

With regard to related work, our main contributions are:

- a solution for fake news classification that combines compact DistilBERT representations of textual

1https://projetocomprova.com.br/
2https://www.politifact.com/
3https://piaui.folha.uol.com.br/lupa/
4https://github.com/KaiDMML/FakeNewsNet
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content of the news and topological metrics describing its diffusion network. The combination of
classifiers in a stacking ensemble achieved the best results, comparable to the state-of-the-art
solutions[Shu et al. 2019; Zhou et al. 2020; Liao et al. 2021].

- experiments based on the fine-tuning of language representation models (DistilBERT), which is
still little explored in FN classification. Our results were promising, showing that the classification
of FN based only on the title and content of the news achieves results close to the state-of-the-
art [Shu et al. 2019; Zhou et al. 2020; Liao et al. 2021], which also consider the text of the
propagation posts;

- evaluation of the contribution of topological features of propagation networks as representative
attributes of social engagement, previously restricted to identifying communication vehicles that
propagate false news [Pierri et al. 2020]. We improved our previous results [Sáenz et al. 2020]
by considering additional topological features.

- an encompassing experimental setting to assess all components of the proposed approach.

The remaining of this article is structured as follows. Section 2 describes the theoretical background
and Section 3 presents works related to the classification of FN. Section 4 describes the proposed
combination of features extracted from the news and topological metrics of their dissemination for the
classification of FN. Section 5 details the experiments performed. Section 6 presents the conclusions
and points to future research.

2. THEORETICAL BACKGROUND

2.1 Social Network Analysis

Network Analysis consists on studying the properties and characteristics of networks (or graphs),
which are composed by a set of nodes connected through links called edges. Social network analysis
(SNA) is the process of investigating social structures through the use of networks and graph the-
ory [Hansen et al. 2020]. SNA has been extensively deployed to understand various phenomena in
internet social media networks (e.g., Twitter, Facebook), in applications such as Political Polariza-
tion analysis [Takikawa and Nagayoshi 2017], Fake News detection [Zhou and Zafarani 2019], Bots
detection [Wang et al. 2016] or Community Detection [Leão et al. 2020], among others. Typically
nodes represent social entities (e.g., people or actors in the network) connected by edges representing
static (e.g., friendship , follower, subscriber) or dynamic relationships (e.g., respond, mention, like).
For instance, diffusion networks are used to analyze how the social transmission of a behavior follows
the social network of associations or interactions among individuals, since individuals who spend a lot
of time together, or who interact more have more opportunity to learn from each other. In Twitter,
for instance, diffusion models can be created by representing as nodes users who post tweets, and
connecting by edges users who replied to, retweeted or mentioned them in each others’ tweets [Pierri
et al. 2020]. In this work, we will adopt this type of diffusion model to represent the interaction
between users in the spreading of news.

Many insights about the nature and behavior of users in a social network structure can be derived
from topological metrics describing the network [Costa et al. 2007], among them:

- Number of nodes and number of edges, which describe how large the network is.

- Nodes’ degree (in-degree, out-degree), which in the context of diffusion networks represent the
interaction between users (e.g., retweet, reply to, or mention).

- Average degree, which is the average of all nodes degrees, it is a global metric that represents how
connected are the nodes in the network.

- Network density, which is a measure of how many actual connections between nodes exist, com-
pared to the possible number of connections.
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- Network diameter, which is the length of the longest shortest path between any two nodes in the
network. It provides an intuition of how difficult it can be to reach a node from any other on the
network.

- Network strongly and weakly connected components. Both types of components are directed
subgraphs. In strongly connected components, all nodes in the same subgraph can reach each
others (and be reachable from each other). A weakly connected component is one in which all
components are connected by some path, ignoring direction. They both indicate the closed groups
can be found in the network.

- Network’s clustering coefficient, which represents the probability of finding sub-groups of highly
connected nodes within the network.

- Network’s k-core, which is the greatest number k of edges that every node in the graph could at
least have without being empty. It is a measure of sparsity of the graph.

In this work we will explore social topological metrics to investigate whether they can contribute as
discriminatory features for fake news classification.

2.2 Supervised Machine Learning

Supervised machine learning is the task of learning a function that maps an input to an output
based on example input-output pairs. The resulting models can be used to predict the output of
new, unknown data records. While classification algorithms deal with discrete labels, regression is a
predictive modeling task that deals with continuous values. Traditional classification algorithms are
SVM (support vector machine), Naive Bayes, variations on tree induction (e.g., C5, Random Forest),
Logistic regression, among others [Murphy 2012].

An ensemble consists in combining different base (or weak) models with the purpose of a collective
decision. It is a performance boosting technique used for different machine learning tasks. The premise
is that each individual base model contributes with a different hypothesis space, and their aggregation
in a final model reduces the computational cost of training a single model for a complex task [Zhang
and Ma 2012]. There are different types of ensemble, such as bagging, boosting stacking and mixture
of experts. In this work, we adopt the mixture-of-experts ensemble models [Polikar 2009], composed
of different base classifiers, all of them trained on the same data, but by different algorithms (and/or
parametrizations), as a means to generate variability. Then a second level classifier is used to assign
weights for their combination according to some rule, such as voting majority, averaged probabilities,
etc.

Deep learning has emerged as a powerful technique that allows computational models to learn
representations of large sets of data using computing power. In a nutshell, deep learning uses a cascade
of multiple layers of nonlinear processing units for feature extraction and transformation. The lower
layers, closer to the data input, learn simpler features, while higher layers learn more complex features
derived from lower layer ones [Zhang et al. 2018]. The scenario of deep neural networks for natural
language processing has significantly changed with recent work on transfer learning based on language
models pre-trained in an unsupervised manner on massive sets of data. BERT [Devlin et al. 2019] is
a bidirectional model based on the transformer architecture, which replaces the sequential nature of
recurrent networks with a much faster attention-based approach. A pre-trained BERT model can be
fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of
tasks (e.g., sentiment analysis) without substantial task-specific architecture modifications, and with
much smaller training sets. DistilBERT [Sanh et al. 2019] is based on knowledge distillation, which
consists on training a more compact model to reproduce the behaviour of a larger one. This allows the
fine-tuning to be based on much more compact language representations, which provides faster and
lighter text processing, with a much lower computational cost, allowing experiments even with limited
computational resources, such as those caused by the current pandemic situation. The experiments
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that compare BERT and DistilBERT reveal DistilBERT preserves 95% of the full BERT model, while
using 66M parameters (instead of 110M).

In this work, we will leverage DistilBERT to generate compact representations of news, to be used
as features. We will explore both traditional classification algorithms and ensembles to classify fake
news based on properties of the news and topological features of their diffusion network.

3. RELATED WORK

The exploitation of FN in the context of elections, central to Donald Trump’s victory in 2016 in the
USA and followed in other countries, motivated a significant interest in the theme. Surveys like [Zhou
et al. 2020; Bondielli and Marcelloni 2019; Shu et al. 2017] contribute with a conceptual framework
and the compilation of important works in the area.

Much of the work relies on the use of supervised machine learning for FN classification, either
through traditional or deep learning algorithms. According to [Shu et al. 2019], the two large groups
of attributes used for FN Detection are features extracted from the news content or the social context.
The first involves textual characteristics extracted from the headline or text of the news (e.g., n-grams),
derived attributes (e.g., linguistic characteristics, emotions) or obtained from images published with
the news. The second involves properties extracted from the user’s profile, patterns of social interaction
or news spread. A study [Reis et al. 2019] evaluates the contribution of different types of features to
the classification of FN, concluding that all contribute in a discriminatory way, but that some may
be more useful, among them, those extracted from the social engagement generated by news. Using
5 different algorithms, it reports F-measure results ranging from 0.75 to 0.81 in the tested datasets.

Supervised approaches require labeled data for training [Zhou and Zafarani 2020], and several efforts
have focused on building data sets for this purpose, such as [Wang 2017; Shu et al. 2018]. The present
work makes use of the Politifact dataset, one of those available in the FakeNewsNet (FNN) [Shu et al.
2018] repository. Unlike most datasets, Politifact includes not only properties textual contents related
to the news, but also the interactions that resulting in its propagation into the Twitter social network.
Thus, it allows the classification of FN using the news content, the social context or their combination.
In order to respect Twitter’s privacy policy, FNN provides a program that automates the download
of news data (title, text, image URLs, etc.) and information related to the social context (tweets,
retweets, user profiles, timelines of users, followers and followed by users who tweeted about the news).

It is possible to find more than a dozen published proposals using the Politifact dataset. We
highlight the approaches dEFEND [Shu et al. 2019], with F-measure 0.92 using textual attributes
extracted from news and posts, GCAL [Liao et al. 2021] with F-measure of 0.92 using the same
previous features, but also users profiles, and SAFE [Zhou et al. 2020], which has the best result
reported using only the news content (0,89).

dEFEND uses the textual content of the news and tweets that mentioned it. It proposes the use of
encoders to extract features from this content and co-attention mechanisms (news and comments) in
order to improve the classification performance and to select sentences that justify the classification
performed (explainability). GCAL evolves dEFEND, by exploring user profiles, comments and news
to generate an heterogeneous graph. Such a graph is processed by a neural network of graphs with
attention mechanisms, which allow not only to perform a classification with a considerable F1 metric,
but also to find, like its predecessor, sentences within the news item that can explain the prediction
made. SAFE, on the other hand, explores the similarity between textual content (title and text) and
images of the news using convolutional neural networks. These works show the relevant role of the
use of Deep Learning applied to the textual content of the news.

To deal with the dependence on the content of the training corpus, other proposals on Politifact
propose the use of the social context, such as user profile [Shu et al. 2019], reactions [Bauskar et al.
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Fig. 1. Architecture proposed for the classification of Fake News

2019] and patterns of news spread [Shu et al. 2020]. These works confirmed the importance of features
on social engagement in the news classification [Reis et al. 2019], but better performance is obtained
when combined with the textual news features [Shu et al. 2019; Shu et al. 2020].

The analysis of social networks topology has been realized in different contexts to detect different
patterns [da Fonseca Vieira et al. 2019]. A study [Pierri et al. 2020] shows promising results
for automatic classification of communication vehicles as mainstream or of misinformation based
exclusively on topological metrics of the diffusion network, which have the advantage of being more
difficult to be simulated through robots. These same attributes are explored in the present work for
the classification of news.

The present work differs from those related to FN classification by combining DistilBERT for proces-
sing the textual content of the news, with topological attributes extracted from the news dissemination
network.

4. FEATURE EXTRACTION FROM NEWS AND DIFFUSION NETWORKS FOR FAKE NEWS
CLASSIFICATION

The proposal for FN classification evaluated in this work combines a) news representations based on
fine-tuning models of language representations using DistilBERT [Sanh et al. 2019], and b) characte-
ristics of the social context using topological metrics of the networks used in the dissemination of fake
news. Unlike [Shu et al. 2019; Zhou et al. 2020], we extract textual features only from the headline
and/or text of the news. The innovative characteristic of our work is to represent the social context by
metrics that characterize the topology of the social network used for their dissemination, i.e., tweets
and retweets where the URL of the news is present. The inclusion of properties of the topology of the
diffusion network enables to have a set of features independent of the news domain, and that is not
easy to reproduce artificially using robots.

Figure 1 outlines the proposed approach. We combine the two types of features by concatenating
the vectors representing each aspect in a single vector, used as input to a supervised classification
algorithm. According to [Gadzicki et al. 2020], this approach of combining multi-modal features is
referred to as early-maturing fusion.

4.1 Textual features of news

In our work, we used DistilBERT as an encoder to create a compact representation of the news. In this
way, the headline and text of the news, which are originally unstructured data, are transformed into
another structured representation: vectors of floating numbers that summarize the textual content.
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In our experiments, we used both the headline, the news, and the combination of both, to verify the
most relevant properties of the news in FN detection. Our proposal differs from [Zhou et al. 2020],
which seeks local patterns of increasing complexity using convolutions, and from [Shu et al. 2019]
which uses encoders that align news and associated posts.

We used the library transformers5, which includes DistilBERT. Regarding the raw text of the
headline and news content, we use functions for the tokenization, padding and masking. Then, we
extracted the vector representation of them with DistilBERT in base and lowercase (’distilbert-base-
uncased’).

4.2 Diffusion network features

In article, we propose leveraging topological metrics from the diffusion networks that spread news (fake
or true) in Twitter, more specifically, by retweeting, replying or mentioning users in these tweets. This
approach was originally proposed for classifying news outlets as mainstream or misinformation.

Considering this purpose, for each news item, we construct a diffusion network using the tweets
and retweets that include the respective news URL. In this diffusion network, the nodes represent
users who (re)tweeted the news, responded to these tweets, or are mentioned in them. Pairs of nodes
are connected by directed and unweighted edges, whenever the user represented by the origin has
retweeted, answered or mentioned the destination node. An example is shown in Figure 1, where
users A, B, C, D, E and F (re)tweeted a post that contains an URL representing a news i, fake or
true. In this graph, user C was mentioned by B, responded to a tweet from E, and retweeted a tweet
from F. User A retweeted a tweet from user B. Finally User D did not interact with other users in the
context of this news broadcast. Thus, this network represents the way people interact to spread this
news item on Twitter.

Once constructed the diffusion network for a given piece of news, we calculate a set of metrics
that characterizes the respective topological properties. These metrics represent the complexity of
the respective network, its propagation power and the strength of connection and cohesion among the
participants. We seek to determine whether the way in which users interact with each other and form
closed groups, can contribute to the detection of FN. The metrics to be calculated, demonstrated in
[Pierri et al. 2020] to have managed to reach several cases in diffusion networks, such as when users
within the network form groups, networks where there is no mono-directionality in the diffusion of
news or networks where there is a single user who distributes the news among all others (broadcast).
The metrics adopted in [Pierri et al. 2020], and experimented in our original work [Sáenz et al. 2020]
are:

- Number of strongly connected components
- Size of the largest strongly connected component
- Number of weakly connected components
- Size of the largest weakly connected component
- Diameter of the largest weakly connected component
- Clustering coefficient
- K-Core number

In this article, we included four additional metrics that characterize the network as a whole and
that were used in some other works [Zhou and Zafarani 2019; Shu et al. 2020], to determine if they
can contribute to the improvement of the results:

- Number of nodes
- Number of edges

5https://huggingface.co/transformers/
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Table I. Politifact news dataset in experiments
Type # True news # Fake News Total

Complete original dataset 624 432 1056

News with textual content 505 385 890

News with textual content and diffusion network 304 355 659

- Density of the network
- Diameter of the network

To calculate these topological attributes, we first uploaded the news with their tweets and retweets to
the graph-oriented database neo4j 6. There, each news, tweets and retweets were represented as nodes
of an heterogeneous network. The links in that network had different types and connected different
types of nodes: news with tweets and tweets with retweets. We designed a query to construct and
extract the diffusion networks for each news item, with the characteristics described before, from the
network stored on neo4j. For each of the extracted networks, we imported them and calculated the
metrics listed before using networkx7.

5. EXPERIMENTS

5.1 Dataset

We used the news set Politifact available in the FNN repository. Using the program made available
by the FNN to extract the data, we were able to collect 507 true and 385 false news out of a total
of 1058 news available. To build the news dissemination network, the respective tweets and retweets
were also collected where the news is referenced. However, some of the tweets/retweets could not
be downloaded for various reasons (e.g., removal on Twitter). In order to avoid the reproduction of
untrustworthy diffusion networks, in our experiments involving topologies we despise all the news with
problems in the collection of tweets/retweets. The dataset with social context was limited to 304 true
news and 355 false news, with their tweets and retweets.

Table I contrasts the amount of news from the repository and collected in each case.

5.2 Objectives and experiment setup

We developed a set of experiments with the following objectives:

(a) Determine the most influential textual properties of the news to the classification of FN, when
compressed using DistilBERT: news title, text or both.

(b) Investigate which topological features of the news diffusion network add value to FN classification,
and how to best represent them.

(c) Explore different ways to combine DistilBERT textual representations of news and topological
features.

(d) Determine which classification algorithm, within a set of candidate algorithms, produces the best
results.

In terms of algorithms, we adopted Logistic Regression (LR), Random Forest (RF), K-Nearest
Neighbors (KNN), Support Vector Machines (SVM) and Näıve Bayes (NB) algorithms8. These al-
gorithms were explored in the feature analysis developed in [Reis et al. 2019], except for Logistic

6https://neo4j.com/
7http://networkx.github.io/
8We also tried other algorithms, including multi-layer perceptron, which did not yielded good results, and thus are not
reported in this article
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Regression. We also experimented with mixture-of-experts ensembles, which combine predictive mo-
dels trained using distinct algorithms, using voting and averaged probabilities to consolidate these
results in a single, final prediction.

To evaluate the results, we used Precision, Recall and F1. For the aggregation of results considering
both fake and true news classes, we used weighted average. We applied a repeated cross-validation
strategy to train and test each algorithm and features configuration, with 10 repetitions and 10 folds
(r = 10, k − folds = 10). All results reported in the remaining of this section refer to the average of
the values obtained in these set of executions. In the remaining of this section we present these results
using charts, but the tables in Annex A detail all average results, and the corresponding standard
deviations.

We performed statistical tests to verify if there is a significant difference in the performance of sets
of models [Demšar 2006]. We used the ANOVA statistical test to compare a set of distributions, and
two-tailed Student T-Test for a pairwise comparison of models. In both statistical tests we used a
confidence level of 0.05, and we adopted the null hypothesis that there was no significant difference
between the results obtained from the compared models. The p-values obtained from these tests can
also be found in Annex A.

All these experiments were developed in the Python environment, using the scikit-learn9 library. We
used the default parameters/hyperparameters of these algorithms as available in the library. Attempts
to improve parametrization (including GridSearchCV10 for SVM) did not yield better results.

5.3 Experiments with DistilBERT

The first experiment was carried out to compare the classification performance according to the textual
properties of the news. Thus, all the news retrieved from the repository were used, i.e., 890 news. The
algorithms were trained using as input: a) the vector corresponding only to the title, b) the vector
corresponding only to the textual content of the news, and c) the two concatenated vectors.

The results in terms of weighted averaged F1 (W-F1) are presented in the chart displayed in Figure
5.3 (the detailed results are in Table VI in Annex A). We observed that the use of DistilBERT on
the combination of title and text yields the best results in four out of the five algorithms. These
differences are statistically significant compared to title only and text only, according to p-values
presented in Table VII. The performance of the models trained using title only or text only are
statistically comparable. The best performing algorithm was LR (WF1 = 0.906), followed by RF
(WF1 = 0.892) and SVM (WF1 = 0.878) (Table VIII).

These results revealed a promising approach of minimum requirements for FN detection. First, in
terms of absolute performance, we obtained a result close to state of the art represented by dEFEND
[Shu et al. 2019] and GCAL [Liao et al. 2021], which depend on the spread of the news on the social
network. Second, when compared to a similar minimum requirements approach (SAFE) [Zhou et al.
2020], which uses only the news content (textual and visual), it presents superior results. However,
the comparison with these works should be regarded as a reference since each of them uses a different
number of news from Politifact, with different proportions of real and fake news.

Figure 3 shows the performance for the Fake News class. The best results are obtained when using
the concatenation of the title and the text of the content, and the best algorithms are LR and RF,
with F1 = 0.89 and F1 = 0.871, respectively. Since these differences are statistically significant, these
results show the consistency of our approach, yielding similar good results for the most relevant class
in this task (i.e., the Fake News class).

9https://scikit-learn.org/
10https://scikit-learn.org/stable/modules/grid search.html
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Fig. 2. Weighted Averaged F1 Score of news classification using DistilBERT representation of news textual contents

Fig. 3. F1 Score for the Fake News class using DistilBERT representations of news textual contents

We conclude that leveraging DilstilBERT to represent basic textual characteristics of the news
allows us to reach a performance comparable to state-of-the-art approaches, but using considerably
less data.

5.4 Experiments with topological metrics

This second set of experiments aims to analyze the discriminating power of topological metrics for
fake news classification. For this purpose, we carried out several experiments, namely: a) assessment
of the proper representation for topological metrics for classification purposes; b) an evaluation of the
predictive power of the topological metrics; and c) a performance comparison between our previous
work [Sáenz et al. 2020] and the models constructed with a refined set of topological metrics. These
experiments consider the news for which we were able to collect the respective diffusion network, and
thus the dataset includes only 659 news (Table I).

First, we experimented with two data representations: a) raw values, as extracted from the original
diffusion graphs; and b) normalization considering z-score, which expresses the features in terms of
units of standard deviations. The boxplots in Figure 4 show the results considering all executions
using all the five algorithms and all metrics, which reveals that the best results were obtained with
the z-score normalization. In general, we observe this behavior for all metrics with a few exceptions.
For all algorithms, the differences in the results are statistically significant, with a single exception,
RF, where the null hypothesis was not refuted (Table X). Thus, all results reported in the remaining
of this section were obtained using the topological metrics represented as z-scores.
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Fig. 4. Comparing results obtained from raw values and z-score normalized values

Table II. Topological metrics used as features per classifier
Topological Metric Acronym Baseline All Metrics Custom Metrics

Number of strongly connected components scc X X
Size of the largest strongly connected component lscc X X X
Number of weakly connected components wcc X X
Size of the largest weakly connected component lwcc X X X
Diameter of the largest weakly connected component dwcc X X X
Clustering coefficient cc X X X
K-Core number kc X X X
Number of nodes nodes X X
Number of edges edges X
Density of the network density X X
Diameter of the network diameter X

In our previous work [Sáenz et al. 2020], we used the topological metrics originally proposed in
[Pierri et al. 2020], which we consider our baseline for this set of experiments. In an attempt to
improve these previous results, we considered four additional topological features. We shall refer to
these classifiers as all metrics. Table II details the metrics considered as features for each type of
classifier.

The chart in Figure 5 compares the average results of the baseline and all metrics classifiers, con-
sidering the weighted averaged precision, recall and F1 metrics (detailed results are summarized in
Table XI). We observe improvements for all performance metrics and all algorithms. These improve-
ments are statistically significant for all algorithms and metrics with two exceptions (Table XII). For
the algorithms SVM and LR, the results for weighted precision are comparable. Improvements range
from 0.2 pp (percentage points) to 5.6 pp in weighted precision; from 2.2 to 3.9 in weighted recall,
and from 1.9 to 5.6 in weighted F1. In terms of algorithms, the best improvements were achieved
on KNN classifiers, with an increment in the scores of near 3 pp for weighted precision, 4 pp for
weighted recall and 5 pp for weighted F1. The most significant improvements were observed for the
weighted F1 measure due to the improvements in both precision and recall. Thus, we conclude that
these additional metrics improve FN classification.

Then we investigated if there were particularly influential topological metrics for FN classification.
For this purpose, we used the leave-one-out technique, where we disregarded one metric each time
and trained/tested the classifiers with all the other metrics. We did this for all topological metrics,
and results are summarized in Table XIV. Figure 6 shows the differences for seven topological metrics
for which we noticed any impact on the results when removed. The differences are calculated with
regard to all metrics classifiers. In general, the metrics with the greatest differences were density
followed by the number of nodes, two of the newly proposed metrics. However, the behavior was
very dependent on the classification algorithm used. For instance, for the RF algorithm, leaving
out the nodes feature slightly improves the results (ranging between 1.4 and 1.6 pp). However, this
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Fig. 5. Comparing weighted results from baseline, all metrics and custom metrics sets

Fig. 6. Performance differences between all metrics and baseline/Leave-one-out classifiers

behavior is not always consistent when compared to the other algorithms. Leave-one-out executions
also yielded better results than baseline for most of the algorithms. Thus, we conclude that the value
of the topological metrics can be verified when they are explored as a combination that represents the
diffusion graph rather than individually.

Based on these results, we built classifiers using the topological metrics of which the leave-one-out
exclusion experiments resulted in an impact, even if very small. We shall refer to classifiers based
on this set of features as custom metrics, where the metrics considered as features are listed in Table
II. The chart in Figure 5 also compares the results of custom metrics classifiers with the results of
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Fig. 7. Performance for the Fake News class (baseline, all metrics and custom metrics sets classifiers)

all metrics and baseline classifiers. Like all metrics, custom metrics classifiers perform better than the
baseline classifiers, where these improvements are statistically significant. However, the performance
of custom metrics and all metrics is statistically comparable for all three metrics (Table XIII). Thus,
we conclude that the excluded metrics were not relevant for the classification. The metrics included
in custom metrics highlight the size of the diffusion network, how separate/isolated the users are, and
the existence and characteristics of potential news broadcasting groups.

Finally, we assessed the specific results for the Fake News class. Figure 7 details these results for
precision, recall and F1. The statistical tests revealed that the F1 performance all metrics and cus-
tom metrics are comparable, but statistically superior to the baseline. Compared to the performance
of the baseline classifiers, we observed that the use of more features (all metrics or custom metrics)
increases the precision, sometimes at the expense of recall, with a few exceptions. In the specific case
of the RF algorithm, for instance, the precision decreases, and the recall increases. By comparing the
FN results with the averaged results, we can observe that the recall for FN detection is higher when
compared to RN (real news) recall. For instance, while the recall for the LR classifier is close to 94%,
the averaged recall is 30 pp lower for the same algorithm. However, the difference in terms of precision
is much smaller, ranging from 1.5 pp to 8.9 pp. From these results, we conclude that the predictive
models using topological metrics display a good performance for classifying fake news.

5.5 Experiments with combinations of features

This final set of experiments aim to assess the combination of DistilBERT representations of news
and topological features. First, we assessed the differences of performance between classifiers using
DistilBERT features only, and the concatenation of these features with topological ones. Notice the
results are not the same reported in Section 5.3 since a different dataset is used. The second assessment
involved the combination of classifiers in mixture-of-experts ensembles, using both voting and averaged
probabilities to make a final prediction.

First, we compared the performance of the models constructed with and without the topological
features. The later combine in a single vector the DistilBERT representations of title and/or text and
the topological features (Custom metrics set in Table II). The averaged results are presented in Table
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III. Among the models using topological features, the one combining the title and text yielded the best
result, which is statistically significant (Table XV). When compared to their counterpart using textual
features only, we observe that, in most cases, the concatenation of topological features with textual
ones (title, news text, or both) improve the respective results achieved. The best absolute scores,
considering the three performance metrics, were are achieved by using LR using the combination of
the title, text and topological metrics (averaged P = 88.9%, R = 88.7% and F1 = 88.6%). However,
improvements are statistically significant only for the SVM and Näıve Bayes algorithms, with a few
exceptions. Nevertheless, this is a major improvement compared to our previous work [Sáenz et al.
2020], when the inclusion of topological metrics (Baseline metrics in Table II) affected negatively the
results.

Regarding the algorithms, the best results were produced by LR and RF, (with no statistical
differences between them), followed by KNN models (Table XVI). The performances achieved using
these algorithms are consistent with those reported in [Reis et al. 2019] for fake news detection using
distinct kinds of features.

Table III. Weighted averaged scores of news classification using title, text and topological features using ML algorithms
LR RF KNN SVM NB

Weighted Precision

Title .869 (± .006) .855 (± .006) .826 (± .004) .827 (± .003) .828 (± .003)

Text .870 (± .003) .872 (± .004) .826 (± .006) .814 (± .006) .719 (± .005)

Title and Text .888 (± .003) .888 (± .006) .848 (± .005) .843 (± .003) .765 (± .005)

Title and Top. .872 (± .006) .856 (± .006) .829 (± .003) .832 (± .004) .835 (± .003)

Text and Top. .869 (± .005) .874 (± .005) .826 (± .005) .820 (± .007) .725 (± .007)

Title, Text and Top. .889 (± .004) .888 (± .003) .845 (± .006) .847 (± .002) .773 (± .005)

Weighted Recall

Title .864 (± .005) .849 (± .005) .821 (± .005) .809 (± .003) .823 (± .004)

Text .867 (± .003) .870 (± .004) .821 (± .005) .798 (± .006) .701 (± .004)

Title and Text .885 (± .004) .885 (± .005) .844 (± .004) .830 (± .003) .756 (± .004)

Title and Top. .867 (± .006) .851 (± .006) .825 (± .003) .814 (± .004) .831 (± .004)

Text and Top. .867 (± .005) .871 (± .004) .819 (± .004) .800 (± .006) .709 (± .005)

Title, Text and Top. .887 (± .004) .885 (± .003) .841 (± .006) .834 (± .002) .764 (± .004)

Weighted F1

Title .864 (± .005) .848 (± .006) .820 (± .005) .803 (± .003) .823 (± .004)

Text .867 (± .003) .870 (± .004) .819 (± .005) .793 (± .007) .685 (± .003)

Title and Text .885 (± .004) .884 (± .005) .843 (± .004) .826 (± .004) .751 (± .005)

Title and Top. .867 (± .006) .850 (± .007) .825 (± .003) .808 (± .005) .831 (± .004)

Text and Top. .867 (± .005) .871 (± .004) .817 (± .004) .794 (± .006) .695 (± .007)

Title, Text and Top. .886 (± .004) .884 (± .004) .840 (± .006) .830 (± .002) .760 (± .005)

Finally, we explored mixture-of-expert ensembles to investigate if combinations of these classifiers
would result in better performance. We constructed many ensembles as combinations of 2 to 5 base
classifiers, all of them trained using the same dataset and set of features, but with distinct algorithms.
To find the best ensemble, we tried the following variations: a) combinations of classifiers based on
distinct algorithms, b) two combination rules (majority of votes and average probability), and c)
variations on the features (i.e., only title, title and topological, only text, text and topological, title
and text and title, text and topological).

Figure 8 presents the weighted F1 distributions, considering all ensembles using as learning func-
tion the average probability and majority voting. In average, the ensembles based on majority voting
concentrate the best results, with the highest median (WF1 = 85.4%), and first/third quartile values
(83.8% and 86.6%, respectively). The probability-based ensembles presented a less consistent perfor-
mance (median WF1 = 84.9%, Q1 WF1 = 83.1% and Q3 WF1 = 86.5%), with more outliers below
Q1. A statistical t-test revealed these differences are significant (p − value = 0.033). However, a
few average probability ensembles achieved the best absolute F1 scores. For both learning functions,
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Fig. 8. Comparing classification committees grouped by majority vote or probability

Table IV. Performance comparison of the best algorithm with the best ensembles, according to the type of features
LR RF KNN Prob LR RF KNN Voting LR RF KNN

Weighted Precision

Title .869 (± .006) .856 (± .007) .826 (± .004) .870 (± .003) .865 (± .005)

Text .870 (± .003) .868 (± .007) .826 (± .006) .872 (± .005) .872 (± .005)

Title and Text .888 (± .003) .888 (± .006) .848 (± .005) .893 (± .004) .892 (± .003)

Title and Top. .872 (± .006) .857 (± .007) .829 (± .003) .870 (± .006) .867 (± .007)

Text and Top. .869 (± .005) .874 (± .005) .826 (± .005) .883 (± .007) .879 (± .006)

Title, Text and Top. .889 (± .004) .887 (± .006) .845 (± .006) .900 (± .003) .896 (± .006)

Weighted Recall

Title .864 (± .005) .851 (± .007) .821 (± .005) .865 (± .004) .860 (± .005)

Text .867 (± .003) .865 (± .008) .821 (± .005) .869 (± .005) .870 (± .005)

Title and Text .885 (± .004) .886 (± .005) .844 (± .004) .891 (± .004) .889 (± .003)

Title and Top. .867 (± .006) .852 (± .007) .825 (± .003) .866 (± .005) .863 (± .006)

Text and Top. .867 (± .005) .871 (± .006) .819 (± .004) .880 (± .007) .876 (± .006)

Title, Text and Top. .887 (± .004) .884 (± .006) .841 (± .006) .897 (± .003) .894 (± .006)

Weighted F1

Title .864 (± .005) .850 (± .007) .820 (± .005) .865 (± .004) .859 (± .005)

Text .867 (± .003) .865 (± .008) .819 (± .005) .868 (± .005) .870 (± .005)

Title and Text .885 (± .004) .885 (± .005) .843 (± .004) .891 (± .004) .889 (± .003)

Title and Top. .867 (± .006) .851 (± .006) .825 (± .003) .866 (± .005) .862 (± .006)

Text and Top. .867 (± .005) .871 (± .006) .817 (± .004) .880 (± .007) .876 (± .006)

Title, Text and Top. .886 (± .004) .884 (± .006) .840 (± .006) .897 (± .003) .893 (± .006)

the best performances were achieved by ensembles composed of classifiers trained with LR, RF and
KNN (89.3% for majority voting, and 89.7% for average probability). Models solely trained with
LR, RF and KNN algorithms achieved the best scores in previous experiment (Table III), and their
combination in an ensemble boosted the model performance.

Table IV compares the results in terms of weighted averaged precision, recall and F1 achieved by
the best machine learning algorithm (LR), the best voting by majority ensemble and the best average
probability ensemble. These results enable to compare the performance according to the set of features
explored. It is possible to confirm that the best results are achieved by combining features representing
the news title, text and topological features, an expected result given the individual performance of
the base classifiers. These improvements are statistically significant, with a single exception (Table
XVII). In terms of weighted F1, the improvements range from 0.2 to 0.7 pp points in the voting by
majority ensemble, and 0.2 to 1.1 pp points in the average probability ensemble. These differences
are consistent with increases in precision and recall.

Table IV reveals that the performance of the best voting and average probability ensembles (i.e.,
composed by title, text and topological) is improved by 0.4 and 0.6 pp, respectively, when compared

Journal of Information and Data Management, Vol. 12, No. 1, July 2021.



JIDM - Journal of Information and Data Management · 77

Table V. Positive class (FN) scores of news classification using title, text and topological features comparing best

algorithm with best committees
LR RF KNN Prob LR RF KNN Voting LR RF KNN

FN Precision

Title .877 (± .007) .844 (± .008) .825 (± .006) .866 (± .004) .857 (± .006)

Text .876 (± .005) .873 (± .008) .813 (± .006) .869 (± .007) .870 (± .007)

Title and Text .896 (± .008) .887 (± .008) .838 (± .004) .895 (± .005) .890 (± .005)

Title and Top. .884 (± .007) .845 (± .007) .828 (± .005) .868 (± .004) .864 (± .009)

Text and Top. .876 (± .006) .873 (± .007) .805 (± .003) .876 (± .007) .874 (± .005)

Title, Text and Top. .897 (± .006) .884 (± .005) .834 (± .006) .902 (± .005) .895 (± .006)

FN Recall

Title .880 (± .007) .899 (± .005) .859 (± .006) .897 (± .008) .898 (± .006)

Text .885 (± .003) .885 (± .009) .880 (± .006) .899 (± .006) .900 (± .004)

Title and Text .898 (± .005) .910 (± .007) .891 (± .007) .911 (± .005) .913 (± .007)

Title and Top. .877 (± .008) .898 (± .009) .864 (± .005) .895 (± .009) .894 (± .009)

Text and Top. .883 (± .007) .897 (± .006) .890 (± .006) .912 (± .008) .906 (± .007)

Title, Text and Top. .898 (± .004) .910 (± .008) .888 (± .010) .914 (± .005) .915 (± .008)

FN F1

Title .877 (± .005) .869 (± .006) .840 (± .003) .879 (± .004) .875 (± .006)

Text .879 (± .002) .878 (± .006) .843 (± .004) .883 (± .004) .884 (± .003)

Title and Text .895 (± .004) .897 (± .005) .862 (± .004) .902 (± .004) .901 (± .004)

Title and Top. .879 (± .005) .869 (± .007) .844 (± .003) .880 (± .006) .877 (± .007)

Text and Top. .879 (± .005) .884 (± .005) .844 (± .004) .893 (± .006) .889 (± .006)

Title, Text and Top. .896 (± .004) .896 (± .005) .859 (± .006) .907 (± .003) .904 (± .006)

to their counterpart, trained using title or text only. However, this improvement is statistically signi-
ficant only for the average probability ensemble. Thus, we conclude that the ensemble using average
probability as meta-learning function, and base classifiers that concatenate textual and topological
features yields the best result. We achieved superior results when compared to Safe, and very near
results when compared to the state-of-the art dEFEND and GCAL. Recall that these works should
be regarded as references, rather than baselines.

Finally, Table V details the results for the Fake News class only, also in terms of the best machine
learning algorithm (LR), majority voting ensemble and average probability ensemble. These results
enable to compare the performance according to the set of features explored. It endorses the bene-
fits of the topological features combined with ensembles for the classification. In terms of F1, the
improvements of the ensembles for textual features vary from 0.3 to 0.4 pp and the for the use of
ensembles combined with topological features vary from 0.1 to 1.4 pp. These differences are consistent
with precision and recall results. Again, the best result was achieved by the probability ensemble
(F1 = 90.7%) using title, text and topological metrics of news as features, which is statistically sig-
nificant. Compared to the LR model, it improved 1.1 pp, highlighting the relevance of the use of
ensembles and topological metrics.

Our experiments revealed that the use of ensembles combined with topological features improve the
performance of textual DistilBERT models based on single classifiers and can reach near state-of-the-
art results.

6. CONCLUSIONS

The present work proposed an FN classification process based on the compact representation of news
content (title and text) using DistilBERT and the metrics representing their dissemination in the
social network. We explored different combinations of these features, using five different classification
algorithms and stacking ensembles.

By generating features using DistilBERT only on the textual attributes of the news, we achieved
results comparable to the state of the art [Shu et al. 2019; Zhou et al. 2020], and superior to most
works that used the Politifact data set (e.g., [Shu et al. 2020; Papanastasiou et al. 2019]. Among
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these works, there are both minimum requirement approaches (news content only) [Zhou et al. 2020],
which are applicable in the context of early news detection, and approaches that extract information
from the respective diffusion network [Shu et al. 2019; Shu et al. 2020; Papanastasiou et al. 2019].
Note that even applied only to the news title, the proposed approach achieves very good performance,
denoting the discriminatory capacity of this feature.

We considered new metrics for representing the diffusion network, and assessed their contribution
for fake news classification. Our results show that the inclusion of topological metrics as features
improves the classification of fake news, mainly by improving the recall. These results were observed
for individual machine learning algorithms and ensembles.

Future work includes, among other topics, the assessment of our proposal in other datasets; the
execution of experiments using the original BERT model instead of the distilled version; the analysis of
metrics representative of the news dissemination topology (e.g., centralities); the exploration of deep
learning algorithms to combine multi-modal features; the investigation of more complex ensemble
topologies and late fusion approaches for fake news classification; the study of features extracted from
images; and the addition of interpretability mechanisms.
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APPENDIX A. DETAILED RESULTS FOR MODELS PERFORMANCES

APPENDIX A.1 Experiments with DistilBERT

Table VI presents the average performance of each model trained using compact representations of
news textual features, with the respective standard deviation. Bold cells represent the best result per
type of feature, and shaded cells the best results per performance metric. Tables VII and VIII presents
the p-values of the t-tests performed to compare pair of models per type of feature and algorithms,
respectively. Shaded cells indicate the cases where the null hypotheses was not refuted (i.e. there
is no significant difference between the models). These conventions are adopted for all tables in this
appendix.

Table VI. Average results for experiments using Title, Text and the combination of them
LR RF KNN SVM NB

Weighted F1

Title .884 (± .004) .863 (± .005) .849 (± .005) .838 (± .003) .840 (± .004)

Text .884 (± .005) .870 (± .006) .846 (± .008) .837 (± .003) .630 (± .002)

Title and Text .906 (± .005) .892 (± .004) .871 (± .004) .878 (± .002) .742 (± .003)

FN F1

Title .862 (± .005) .837 (± .007) .820 (± .006) .797 (± .004) .819 (± .004)

Text .863 (± .005) .845 (± .008) .820 (± .008) .800 (± .004) .678 (± .001)

Title and Text .890 (± .006) .871 (± .004) .850 (± .005) .852 (± .002) .743 (± .002)

Table VII. p-values of pairwise t-test comparison of models using different types of textual features
Title and Text Title

LR RF KNN SVM NB LR RF KNN SVM NB

Weighted F1

Title 4.05E-09 5.12E-10 4.66E-09 5.03E-18 3.85E-22

Text 5.51E-09 1.65E-07 4.99E-08 3.06E-18 5.47E-27 0.92 3.13E-02 0.36 0.43 8.30E-29

FN F1

Title 1.66E-09 1.16E-09 7.67E-10 3.49E-19 1.16E-20

Text 1.44E-09 9.10E-08 1.48E-08 3.46E-18 3.98E-23 0.70 0.08 0.86 0.06 3.36E-26

Table VIII. p-values of pairwise t-test comparison of models using different algorithms
LR RF SVM

Title and Text Text Title Title and Text Text Title Title and Text Text Title

Weighted F1

RF 1.39E-05 3.41E-04 2.55E-07

SVM 2.22E-12 1.36E-15 8.91E-16 2.03E-08 1.55E-11 9.13E-11

KNN 7.47E-13 1.70E-10 6.51E-12 7.25E-10 2.82E-07 2.60E-06 2.92E-05 4.18E-03 4.92E-05

NB 1.79E-25 1.13E-29 2.05E-14 3.57E-25 6.52E-27 1.46E-09 2.42E-28 6.08E-31 0.32

FN F1

RF 6.39E-07 4.88E-05 8.37E-07

SVM 1.62E-13 4.24E-17 3.62E-17 2.01E-10 2.79E-12 1.99E-12

KNN 2.81E-12 4.67E-11 5.63E-12 5.70E-09 9.22E-07 2.74E-06 2.01E-10 2.79E-12 1.99E-12

NB 1.30E-23 3.72E-27 1.12E-13 4.69E-24 7.98E-23 2.41E-07 1.65E-26 3.09E-25 2.05E-10
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APPENDIX A.2 Experiments with topological metrics

Table IX presents the average performance of each model trained using the raw or normalized values
for the topological metrics, with the respective standard deviation, and Table X presents the p-values
of the t-tests performed to compare pair of models according to these representations. Table XI
displays the average performance of each model according to each set of topological metrics (baseline,
all metrics and custom), and tables XII and XIII present the p-values of the t-tests performed to
compare pair of models per topological metrics. Table XIV display the average results for the Leave-
One-Out models, with the respective standard deviations.

Table IX. Average results for experiments using raw data and z-score normalized values for topological metrics
LR RF KNN SVM NB

Weighted Precision

Raw data .718 (± .013) .696 (± .012) .681 (± .013) .607 (± .007) .709 (± .009)

Z-Score .713 (± .006) .696 (± .011) .697 (± .010) .726 (± .009) .708 (± .007)

Weighted Recall

Raw data .633 (± .008) .689 (± .012) .674 (± .011) .594 (± .006) .630 (± .003)

Z-Score .659 (± .005) .688 (± .010) .691 (± .009) .663 (± .004) .647 (± .003)

Weighted F1

Raw data .571 (± .009) .687 (± .012) .671 (± .011) .543 (± .009) .562 (± .004)

Z-Score .618 (± .007) .686 (± .010) .688 (± .010) .619 (± .006) .596 (± .003)

FN Precision

Raw data .608 (± .004) .707 (± .009) .696 (± .010) .590 (± .004) .605 (± .002)

Z-Score .631 (± .003) .707 (± .009) .703 (± .009) .631 (± .003) .620 (± .002)

FN Recall

Raw data .951 (± .012) .755 (± .017) .740 (± .012) .881 (± .005) .962 (± .003)

Z-Score .932 (± .003) .756 (± .015) .768 (± .009) .947 (± .002) .944 (± .004)

FN F1

Raw data .739 (± .007) .727 (± .012) .713 (± .009) .704 (± .003) .740 (± .002)

Z-Score .750 (± .004) .726 (± .010) .731 (± .008) .755 (± .002) .746 (± .002)

Table X. p-values of pairwise t-test comparison of models results using raw data and normalized data
Z-Score

LR RF KNN SVM NB

Weighted Precision 0.40 0.34 9.89E-03 8.22E-17 0.95
Weighted Recall 1.60E-07 0.37 1.24E-03 1.48E-16 4.28E-11

Weighted F1 4.12E-10 0.39 2.78E-03 1.88E-14 2.73E-14
FN Precision 7.50E-11 0.32 0.12 2.74E-15 8.27E-12

FN Recall 3.27E-04 0.56 2.68E-05 1.01E-18 9.07E-10

Raw data

FN F1 3.96E-04 0.45 3.57E-04 2.17E-18 1.83E-05
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Table XI. Average results for experiments using all metrics, a custom metrics set and metrics from the baseline
LR RF KNN SVM NB

Weighted Precision

All metrics .711 (± .006) .699 (± .013) .686 (± .010) .727 (± .009) .710 (± .007)

Baseline .709 (± .017) .679 (± .012) .651 (± .010) .721 (± .005) .654 (± .012)

Custom metrics set .715 (± .008) .700 (± .007) .675 (± .011) .725 (± .009) .706 (± .007)

Weighted Recall

All metrics .660 (± .005) .691 (± .013) .680 (± .009) .666 (± .004) .648 (± .003)

Baseline .632 (± .006) .669 (± .011) .641 (± .010) .634 (± .002) .616 (± .003)

Custom metrics set .662 (± .004) .692 (± .007) .668 (± .010) .668 (± .005) .649 (± .002)

Weighted F1

All metrics .619 (± .007) .688 (± .014) .672 (± .010) .621 (± .006) .597 (± .003)

Baseline .568 (± .005) .669 (± .011) .625 (± .010) .565 (± .004) .559 (± .004)

Custom metrics set .620 (± .005) .690 (± .007) .659 (± .011) .626 (± .006) .600 (± .002)

Precision

All metrics .633 (± .003) .711 (± .010) .682 (± .009) .634 (± .003) .621 (± .002)

Baseline .609 (± .003) .715 (± .012) .641 (± .010) .607 (± .002) .601 (± .002)

Custom metrics set .633 (± .002) .712 (± .008) .670 (± .011) .636 (± .003) .622 (± .002)

Recall

All metrics .933 (± .003) .757 (± .017) .800 (± .009) .950 (± .002) .948 (± .004)

Baseline .954 (± .012) .678 (± .011) .812 (± .015) .970 (± .002) .922 (± .004)

Custom metrics set .937 (± .005) .757 (± .007) .797 (± .012) .946 (± .003) .942 (± .003)

F1

All metrics .752 (± .004) .729 (± .013) .734 (± .008) .758 (± .002) .748 (± .002)

Baseline .741 (± .005) .692 (± .010) .713 (± .011) .745 (± .002) .726 (± .003)

Custom metrics set .753 (± .003) .730 (± .006) .725 (± .009) .758 (± .003) .747 (± .002)

Table XII. p-values of pairwise t-test comparison of models using All metrics and Baseline metrics
All metrics

LR RF KNN SVM NB

Weighted Precision 0.25 3.83E-02 4.05E-06 0.31 3.79E-10

Weighted Recall 4.22E-10 1.38E-02 9.99E-07 1.25E-13 6.08E-15Baseline
W F1 3.44E-13 4.47E-02 6.82E-06 4.78E-15 1.07E-14

Table XIII. p-values of pairwise t-test comparison of models using different sets of topological metrics
Custom metrics

LR RF KNN SVM NB

Weighted Precision

Baseline 0.05 3.09E-03 3.22E-04 0.35 6.60E-10

All metrics 0.11 0.64 0.09 0.94 0.48

Weighted Recall

Baseline 4.61E-11 5.29E-04 2.14E-04 6.37E-13 3.06E-16

All metrics 0.47 0.62 4.18E-02 0.41 0.22

Weighted F1

Baseline 5.18E-15 2.69E-03 1.57E-03 8.35E-15 3.89E-16

All metrics 0.84 0.58 4.41E-02 0.30 7.70E-03

Precision

Baseline 1.47E-14 0.07 0.70 3.15E-14 9.46E-14

All metrics 0.83 0.60 3.30E-02 0.26 4.20E-02

Recall

Baseline 6.18E-03 3.54E-13 6.81E-09 4.37E-13 7.24E-09

All metrics 3.53E-02 0.66 0.92 0.11 4.70E-03

F1

Baseline 5.42E-07 5.34E-08 3.20E-06 4.53E-09 7.04E-13

All metrics 0.30 0.56 0.13 0.70 0.67
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Table XIV. Average results for baseline and leave-one-out experiments
LR RF KNN SVM NB

Weighted Precision

Baseline .709 (± .017) .679 (± .012) .651 (± .010) .721 (± .005) .654 (± .012)

without nodes .711 (± .006) .713 (± .007) .682 (± .010) .724 (± .008) .698 (± .008)

without edges .711 (± .006) .699 (± .011) .679 (± .010) .722 (± .009) .700 (± .009)

without diameter .715 (± .008) .701 (± .012) .680 (± .013) .730 (± .009) .712 (± .007)

without density .696 (± .007) .697 (± .011) .665 (± .007) .718 (± .011) .685 (± .010)

without scc .711 (± .006) .698 (± .009) .686 (± .010) .726 (± .010) .710 (± .007)

without lscc .713 (± .008) .701 (± .012) .669 (± .006) .727 (± .009) .704 (± .006)

without wcc .711 (± .006) .698 (± .008) .686 (± .010) .726 (± .010) .710 (± .007)

without lwcc .709 (± .006) .694 (± .008) .676 (± .010) .724 (± .008) .698 (± .009)

without dwcc .712 (± .008) .690 (± .012) .669 (± .014) .727 (± .009) .712 (± .006)

without cc .716 (± .008) .698 (± .009) .691 (± .012) .727 (± .008) .720 (± .008)

without kc .716 (± .010) .680 (± .012) .656 (± .010) .729 (± .010) .715 (± .010)

Weighted Recall

Baseline .632 (± .006) .669 (± .011) .641 (± .010) .634 (± .002) .616 (± .003)

without nodes .659 (± .006) .705 (± .007) .674 (± .009) .664 (± .004) .643 (± .004)

without edges .660 (± .005) .691 (± .011) .673 (± .008) .663 (± .004) .646 (± .004)

without diameter .662 (± .005) .693 (± .013) .674 (± .011) .668 (± .004) .648 (± .003)

without density .629 (± .005) .690 (± .011) .659 (± .008) .633 (± .005) .625 (± .003)

without scc .660 (± .005) .690 (± .009) .680 (± .009) .666 (± .004) .648 (± .003)

without lscc .662 (± .006) .694 (± .011) .664 (± .005) .667 (± .004) .646 (± .002)

without wcc .660 (± .005) .691 (± .007) .680 (± .009) .666 (± .004) .648 (± .003)

without lwcc .659 (± .004) .687 (± .008) .670 (± .008) .663 (± .004) .644 (± .004)

without dwcc .660 (± .005) .683 (± .011) .664 (± .011) .667 (± .005) .648 (± .002)

without cc .665 (± .004) .691 (± .009) .685 (± .011) .668 (± .004) .649 (± .003)

without kc .656 (± .005) .673 (± .012) .651 (± .008) .665 (± .004) .645 (± .003)

Weighted F1

Baseline .568 (± .005) .669 (± .011) .625 (± .010) .565 (± .004) .559 (± .004)

without nodes .618 (± .008) .704 (± .007) .664 (± .010) .619 (± .005) .593 (± .006)

without edges .619 (± .006) .689 (± .011) .664 (± .009) .619 (± .005) .598 (± .005)

without diameter .620 (± .005) .690 (± .013) .666 (± .012) .624 (± .006) .596 (± .004)

without density .570 (± .005) .687 (± .011) .651 (± .008) .567 (± .005) .562 (± .004)

without scc .619 (± .007) .688 (± .009) .672 (± .010) .623 (± .006) .597 (± .003)

without lscc .621 (± .008) .692 (± .011) .657 (± .006) .624 (± .006) .594 (± .002)

without wcc .619 (± .007) .688 (± .007) .672 (± .010) .623 (± .006) .597 (± .003)

without lwcc .618 (± .006) .685 (± .008) .662 (± .009) .618 (± .006) .595 (± .006)

without dwcc .619 (± .006) .680 (± .011) .658 (± .012) .623 (± .006) .596 (± .003)

without cc .624 (± .005) .689 (± .009) .678 (± .011) .625 (± .006) .593 (± .005)

without kc .610 (± .005) .670 (± .013) .639 (± .008) .620 (± .005) .589 (± .003)
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APPENDIX A.3 Experiments with combinations of features

Tables XV and XVI present the p-values of the t-tests performed to compare pair of models according
to the features combined and algorithms. Table XVII present the p-values of the t-tests performed to
compare them.

Table XV. p-values of pairwise t-test comparison of models with different combinations of features
Title and Topological Text and Topological Title ,Text and Topological

LR RF KNN SVM NB LR RF KNN SVM NB LR RF KNN SVM NB

Weighted Precision

Title 0.34 0.82 0.06 9.28E-03 1.12E-04

Text 0.81 0.66 0.92 0.09 2.98E-02
Title and Text 0.43 0.39 0.30 4.67E-03 2.37E-03

Title and Top. 9.40E-07 6.95E-11 1.07E-06 2.24E-08 1.55E-17
Text and Top. 2.07E-08 1.10E-07 1.12E-06 6.86E-10 1.32E-12

Weighted Recall

Title 0.27 0.91 2.45E-02 5.25E-03 3.71E-04
Text 0.82 0.88 0.62 0.42 1.63E-03

Title and Text 0.52 0.27 0.20 8.00E-03 2.72E-04

Title and Top. 1.29E-07 9.86E-12 1.29E-06 1.97E-10 1.24E-18
Text and Top. 7.25E-08 3.17E-08 3.35E-08 3.32E-12 1.99E-15

Weighted F1

Title 0.28 0.94 2.78E-02 1.14E-02 5.70E-04
Text 0.86 0.93 0.41 0.65 1.55E-03

Title and Text 0.53 0.29 0.21 1.19E-02 1.11E-03

Title and Top. 1.62E-07 1.98E-11 2.12E-06 2.61E-10 4.73E-18
Text and Top. 7.17E-08 4.13E-08 1.56E-08 4.62E-12 4.41E-15

Table XVI. p-values of pairwise t-test comparison of LR and RF models performances against the other algorithms
LR RF

Title Text Title and Text Title and Top. Text and Top. Title, Text and Top. Title Text Title and Text Title and Top. Text and Top. Title, Text and Top.

Weighted Precision

RF 5.41E-04 0.35 0.41 3.34E-05 0.22 0.44

KNN 2.15E-12 3.02E-14 1.22E-13 2.42E-13 1.03E-12 3.75E-13 4.68E-10 1.25E-13 2.51E-11 9.39E-10 1.09E-13 4.12E-13

SVM 7.47E-13 1.41E-15 3.16E-16 5.71E-12 1.13E-12 6.33E-17 2.11E-10 5.55E-15 4.13E-13 3.42E-08 1.83E-13 2.92E-17

NB 9.01E-13 1.17E-24 1.41E-22 6.50E-12 1.06E-20 3.31E-22 2.87E-10 1.30E-23 2.80E-20 9.13E-08 3.20E-21 2.10E-22

Weighted Recall

RF 3.56E-05 0.44 0.40 9.22E-06 0.39 0.64

KNN 3.76E-13 8.66E-15 4.99E-14 1.66E-13 3.92E-14 2.02E-13 2.70E-10 3.34E-14 1.55E-12 2.46E-09 1.69E-15 1.10E-13

SVM 2.93E-16 3.49E-17 5.13E-17 8.76E-15 1.65E-15 1.30E-17 6.19E-14 1.25E-16 2.15E-15 1.55E-11 1.75E-16 1.68E-18

NB 3.73E-13 4.96E-27 3.42E-23 4.83E-12 2.46E-22 6.28E-23 4.45E-10 1.10E-25 8.43E-22 2.69E-07 3.18E-23 1.35E-23

Weighted F1

RF 2.58E-05 0.46 0.35 7.67E-06 0.45 0.55

KNN 6.78E-13 3.95E-15 5.76E-14 1.44E-13 1.43E-14 2.12E-13 8.14E-10 1.56E-14 1.62E-12 7.30E-09 7.77E-16 1.40E-13

SVM 1.25E-16 4.21E-17 2.96E-17 3.90E-15 8.64E-16 4.74E-18 2.68E-14 1.19E-16 1.01E-15 8.98E-12 1.37E-16 8.34E-19

NB 6.94E-13 7.51E-28 9.86E-23 5.02E-12 3.04E-22 3.26E-22 1.58E-09 1.66E-26 1.47E-21 9.40E-07 6.61E-23 1.20E-22
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Table XVII. p-values from T-Test pairwise comparison of the inclusion of topological metrics
Title and Topological metrics Text and Topological metrics Title, Text and Topological metrics

Prob LR RF KNN Voting LR RF KNN Prob LR RF KNN Voting LR RF KNN Prob LR RF KNN Voting LR RF KNN

Weighted Precision

Title 0.90 0.56
Text 8.61E-04 1.82E-02

Title and Text 1.08E-03 0.09

Weighted Recall

Title 0.82 0.30

Text 6.92E-04 1.48E-02
Title and Text 1.73E-03 0.09

Weighted F1

Title 0.80 0.26
Text 7.15E-04 1.44E-02

Title and Text 1.78E-03 0.08

FN Precision

Title 0.37 0.08

Text 0.06 0.15

Title and Text 5.47E-03 0.10

FN Recall

Title 0.77 0.23
Text 9.89E-04 3.10E-02

Title and Text 0.17 0.59

FN F1

Title 0.84 0.58

Text 7.34E-04 2.06E-02

Title and Text 5.92E-03 0.17
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