
Query Answer Reformulation over Knowledge Bases

João Pedro V. Pinheiro1, Marco A. Casanova1, Elisa S. Menendez2

1 Department of Informatics, PUC-Rio
2 Federal Institute of Education, Science and Technology Baiano

{jpinheiro,casanova}@inf.puc-rio.br, elisa.menendez@ifbaiano.edu.br

Abstract. The answer of a query, submitted to a database or a knowledge base, is often long and may contain
redundant data. The user is frequently forced to browse through a long answer or refine and repeat the query until
the answer reaches a manageable size. Without proper treatment, consuming the answer may indeed become a tedious
task. This article then proposes a process that modifies the presentation of a query answer to improve the quality of
the user’s experience in the context of an RDF knowledge base. The process reorganizes the original query answer by
applying heuristics to summarize the results and to select template questions that create a user dialog that guides the
presentation of the results. The article also includes experiments based on RDF versions of MusicBrainz, enriched with
DBpedia data, and IMDb, each with over 200 million RDF triples. The experiments use sample queries from well-known
benchmarks.

Categories and Subject Descriptors: H.2 [Database Management]: Heterogeneous Databases; H.3 [Information
Storage and Retrieval]: Information Search and Retrieval

Keywords: Aggregation, Summarization, Natural Language Query (NLQ), Question Answering (QA), RDF, Semantic
Web

1. INTRODUCTION

Question Answering (QA) systems combine techniques from multiple fields of computer science, in-
cluding Natural Language Processing (NLP), Information Retrieval, Machine Learning (ML), and
Semantic Web. Assuming that the user is interested in querying a database or a knowledge base, a
QA system may be split into two parts: question, which receives a user’s input in natural language,
transforms it into a structured query and searches the data; and answer, which displays consistent
results in a human-readable format to the user. The answer to a query is often long and may contain
redundant data. The user is frequently forced to browse through a long answer or refine and repeat
the query until the answer reaches a manageable size. Without proper treatment, consuming the
answer may indeed become a tedious task.

This article addresses the problem of query answer modification to improve the quality of the
user’s experience, in the context of an RDF knowledge base. For example, imagine yourself as a user
interacting with a virtual voice assistant, and you ask an open-ended question about a specific subject,
e.g., “Which artists were born on May 30th?”. The query answer may have a long list of artists, partly
shown in Table I. Instead of listing the results, the virtual assistant may formulate questions to the
user based on the prior result set, such as: “Do you want to list American or European artists?”; “Do
you prefer Jazz, Pop, or Classical music?”; and “Do you want to filter by active artists?”.

The article proposes a process that reorganizes the original query answer by applying heuristics
to summarize the results and to select template questions that create a user dialog that guides the
presentation of the results. The heuristics allow deciding which properties returned in the query

Copyright©2021 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021, Pages 490–505.

Query Answer Reformulation over Knowledge Bases · 491

Table I. Example of question-answer for an open-ended question.
Artist Genre Birth Date Death Date Gender Nationality

Goodman, Benny Jazz 1909-05-30 1986-06-13 Male American
Leonhardt, Gustav Classical 1928-05-30 2012-01-16 Male Dutch
Green, CeeLo Pop 1974-05-30 Male American
Biosphere Eletronic 1962-05-30 Male Norwegian
Fredriksson, Marie Pop 1958-05-30 2019-12-09 Female Swedish
Banhart, Devendra Folk 1981-05-30 Male American

answer are interesting to apply aggregations (group by operations) and which template questions
best fit each case. The heuristics also help decide if the answer is ready to be displayed to the user, or
if the answer must be improved. The decisions use global statistics about the RDF dataset, obtained
a priori, and local statistics about the query answer, obtained dynamically. The statistics are related
to the frequency of the class instances and the frequency of the predicates.

The article also includes experiments based on the RDF versions of MusicBrainz and IMDb described
in [Menendez et al. 2019], and obtained by enriching a MusicBrainz dump with DBpedia data and
transforming an IMDb relational database to RDF via R2RML, respectively. Each RDF dataset has
over 200 million triples. Our experiments use sample queries from the QALD - Question Answering
over Linked Data1 challenge and from Coffman’s benchmark [Coffman and Weaver 2010].

The rest of the paper is organized as follows. Section 2 summarizes related work. Section 3 discusses
the query answer modification process. Section 4 describes the experiments. Finally, Section 5 presents
the conclusions and directions for future research.

2. RELATED WORK

In a seminal paper, Webber proposed a theoretical framework that divided the communication between
humans and machines into three parts [Webber 1986]. Instead of only considering questions and
answers, Webber proposed a clear distinction between a question, an answer, and a response. A
question is a request by a user that demands information or asks to perform an action. An answer
is the information or performance directly requested. A response embraces multiple elements, such
as a direct answer, information or actions related to the original request instead of an answer, and
additional information or actions when no proper answer can be found (also called “did you mean?”).
Comparing the proposed framework with our work, we consider only open-ended questions. Thus,
we can assume that a question is strictly demanding information. From the point of view of the
answer (called “response” in the framework), our process suggests information related to the original
request instead of a single answer. This information is presented to the user as facets, which allows
constructing a dialog and providing better guidance to the desired answer.

Knowledge Base systems are usually constructed from multiple sources, leading to the generation
of duplicated data. By contrast, humans avoid redundancy in the act of writing or speaking. Indeed,
reducing duplicated data in the communication between humans and machines is a challenging task.
Aggregation and summarization are important techniques that help to solve this issue.

The problem of redundancy is addressed, for example, in [Dalianis and Hovy 1996]. The authors
suggested aggregation strategies to remove redundancy from the text - usually retrieved answers from
databases. An interesting example, used in the paper, to illustrate the problem goes as follows.
Consider the question:

‘‘Who is currently at ISI?’’

1http://qald.aksw.org, (accessed 7 July 2020).

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

492 · J. P. V. Pinheiro, M. A. Casanova and E. S. Menendez

Suppose that the answer to this question is:

‘‘Yigal is an employee at ISI. Hercules is a visitor at ISI.
Eduard is an employee at ISI. Kevin is an employee at ISI.
Vibhu is a student at ISI.’’

Note that the answer is too long and repetitive. After applying the aggregation rules suggested in
the paper, the modified answer is shortened and easier to understand:

‘‘At ISI, Yigal, Eduard, and Kevin are all employees;
Vibhu is a student; and Hercules is a visitor.’’

The authors developed a questionnaire and applied it to computer scientists. The questionnaire
was composed of five example sets of input data, and each example contained between 11 and 18
propositions. After analyzing the answers, four classes or types of aggregation rules became obvious:
grouping and collapsing rules, ordering rules, casting rules, and parsimony rules. Furthermore, the
paper listed eight aggregation strategies, each related to one aggregation class. As future work, the
authors suggested a follow-up study involving a larger group of people, not all of whom being computer
scientists, for more general results. Also, in the last section of the paper, the authors presented some
scenarios that lead to unsatisfactory results and listed future improvements.

Deutch et al. (2017) described an approach to present query results as sentences in Natural Lan-
guage (NL) with provenance information. The authors argued that the answers in the query result
lack justification and suggested the notion of provenance, which corresponds to including additional
information to the query results. Also, provenance information helps validate answers. The paper used
the MAS (Microsoft Academic Research) publication database to validate the results. The proposed
solution had the following key contributions: provenance tracking based on the NL query structure,
factorization, summarization, and implementation and experiments.

An important step was provenance tracking based on the query structure. Deutch et al. (2017) used
two external tools in this process. The modified NaLIR (Natural Language Interface for Relational
databases) tool was used to store exactly which parts of an NL query translate to which parts of the
formal query. The evaluation of the formal query used the provenance-aware engine SelP - Selective
tracking and presentation of data provenance. It stored which parts of the query “contributed” to which
parts of the provenance. Thus, two mappings were available for the next steps: text-to-query-parts
and query-parts-to-provenance.

This study was the first one to address provenance for the NL queries problem. After implementation
and experiments, the authors listed two main limitations of their work. The sentence generation
module was specifically designed for NaLIR and will need to be replaced if a different NL query
engine is used. Second, the solution is limited to conjunctive queries, not supporting unions and
aggregations.

In a similar direction, faceted browsing [Petzka et al. 2017] (also called “faceted search” [Wei et al.
2013]) is a complement to keyword search, which provides an iterative way to refine search results.
Facets are usually displayed to the user as rectangles right next to the main list of results provided by
keyword search. These facets contain relevant grouped information which guides users to the desired
answer.

In [Moreno-Vega and Hogan 2018] and [Franz et al. 2009], faceted browsing was used to simplify
the user’s interaction with data. Moreno-Vega and Hogan (2018) allowed search by keyword or type.
A type would be an IRI from the RDF graph. While there are facets available, the user can navigate
interacting only with them. Facets with zero results are never offered. Franz et. al. (2009) used
faceted browsing for user evaluation purposes. With fixed subject and predicate, the user receives a

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

Query Answer Reformulation over Knowledge Bases · 493

list of objects sorted by the so-called TripleRank and decides if each of the objects “is related”, “does
not know”, or “is not related”.

Finally, several studies addressed the problem of creating a Natural Language interface to databases,
such as [Novello and Casanova 2020]. Usually, the proposed process has four steps: Question Analysis,
Phrase Mapping, Disambiguation, and Query Construction - not necessarily in this order [Diefenbach
et al. 2018]. In this article, we assume that the Natural Language interface is constructed over an
RDF knowledge base and accessed through a SPARQL endpoint.

3. THE QUERY ANSWER MODIFICATION PROCESS

This section is organized as follows. Section 3.1 provides some basic definitions required for our
discussion. Section 3.2 describes the process of transforming a single-column into a three-column
result set. Section 3.3 addresses the use of frequency analysis based on RDF metadata. Section 3.4
briefly discusses how to construct the user dialog.

3.1 Basic Definitions

The Resource Description Framework - RDF [Cyganiak et al. 2014] is a standard model for data
interchange on the Web. A key characteristic of RDF is the ability to model data and metadata
without distinction, which facilitates the evolution of schemes over time without impairing the way
data are consumed. An RDF triple is of the form (s, p, o), where s is the subject, p is the predicate, and
o is the object of the triple. An RDF triple set (also called an RDF dataset) is a set of RDF triples,
which induces a directed, labeled graph, whose nodes are the subjects and objects of the triples and
there is an edge labeled with p iff there is a triple (s, p, o) in the triple set.

SPARQL is the standard query language for RDF [Prud’hommeaux and Seaborne 2008]. A simple
example of a SPARQL query, which retrieves the URIs of all movies performed by “Denzel Washington”,
is:

prefix imdb: <http://www.imdb.com/>

select distinct ?movie
where {

?movie a imdb:Movie .
?movie imdb:actor ?actor .
?actor imdb:name "Denzel Washington" .

}

The query form select followed by the solution modifier distinct guarantees that only unique
URIs will be presented in the result set. The where clause restricts the result by applying a graph
pattern matching over the RDF graph. Also the term ‘a’ is the syntactical sugar form of the predicate
rdf:type.

SPARQL also supports aggregation and subqueries, which are the main topics of this article, ad-
dressed in Section 3.2.

3.2 Transforming single-column into three-column result sets

The query answer modification process we propose starts after the query is executed. The expected
inputs are the SPARQL query and the result set, as illustrated in Figure 1. There are two possible
scenarios: the result set has a single column, or the result set has multiple columns. Our study focuses
on the first case.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

494 · J. P. V. Pinheiro, M. A. Casanova and E. S. Menendez

Fig. 1. Query answer modification process.

We base our discussion on a series of question-answering challenges over Linked Data, referred to
as QALD - Question Answering over Linked Data2. Several papers use QALD to measure quality
metrics of the system’s answers [Diefenbach et al. 2017]. We noticed that most queries listed in the
QALD challenges had single-column answers, which calls for enriching the answers for the purposes
of this paper. A simple approach is to add to the instances returned their property values. Indeed,
frequently, the answers represent sets of instances of the same rdf:type. So, it is straightforward to
modify the original SPARQL query to also retrieve the desired property values.

As an example, consider again the question “Which artists were born on May 30th?”. The result set
of the corresponding SPARQL query has instances of type mo:MusicArtist, as in Figure 2(c). Then,
modifying the original SPARQL query also enables to retrieve property values, as shown in Figure 2(d).
Note that, in Figure 2(d), the column artist has repeated values. However, instead of normalizing the
returned table, we decided to keep this three-column format to simplify data manipulation.

3.3 Frequency analysis based on computed metadata

In the process we propose, a set of SPARQL queries is used to generate graph statistics, which help
decide what to do next. These statistics are related to the frequency of the instances by class and the
frequency of the predicates.

There are two types of frequencies used. A global frequency is defined over the full graph and is
computed only once before any query is executed. On the other hand, a local frequency is defined
over the sub-graph generated as in Section 3.2 and is computed at run time. Both global and local
frequencies are computed over predicates pointing to literals only.

Entity ranking is based on InfoRank, a family of importance measures proposed in [Menendez
et al. 2019]. The proposed importance measures are combinations of three intuitions: (I) “important
things have lots of information about them”; (II) “important things are surrounded by other important
things”; (III) “few important relations (e.g., friends) are better than many unimportant relations (e.g.
acquaintances)”. Hence, the strategy is based on the level of informativeness of an entity, represented
as literals in RDF graphs. They use a PageRank-inspired approach to propagate the importance scores
from entity to entity. The InfoRank metric helps our process prioritize the most relevant triples of
the result set.

As an example, Figure 3 shows an instance A1. The initial state (Figure 3(a)) has predicates
pointing to literals and other instances. Notice that the final state (Figure 3(b)) only has predicates
pointing to literals and an extra predicate called InfoRank.

2http://qald.aksw.org, (accessed 7 July 2020).

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

Query Answer Reformulation over Knowledge Bases · 495

(a) Single-column query (b) Three-column query

(c) Single-column result set (d) Three-column result set

Fig. 2. Transformation with SPARQL queries.

Parameterized thresholds are used to filter predicates that are candidates to be used in a group_by
operation. By default, these threshold values (δ) are set between 0.4 and 2.0, which means the
predicate must appear in at least 40% and not more than 200% of the unique subjects. For clarity,
consider again the question “Which artists were born on May 30th?”. Analyzing the three-column
result set, the predicate rdfs:comment appears 497 times and there are 123 unique artists. This
means the predicate appears 4.04/artist on average. Thus, the predicate rdfs:comment is removed
by the process because it exceeds the maximum threshold.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

496 · J. P. V. Pinheiro, M. A. Casanova and E. S. Menendez

(a) All predicates (b) Filtered predicates

Fig. 3. Filtered predicates by literal and highlighted InfoRank.

3.4 Computing the user dialog

As mentioned in the previous section, an aggregation process is applied over the filtered predicates.
These predicates are evaluated and sorted by their local frequency. Another threshold is related to
the number of aggregated values (α), which has 10 as the default value. After this filter, the process
chooses which template question must be used and returns a single new question to the user.

For example, consider once again the question “Which artists were born on May 30th?”. Analyzing
the previous filtered candidates, the predicate dbo:activeYearsStartYear has 35 unique values.
Although it might be a promising candidate, the predicate dbo:activeYearsStartYear is removed
by the process because it exceeds the α threshold.

Template questions are choice questions, formulated in natural language, that offer aggregated pred-
icates as alternatives to the user. Using the same example, the filtered predicates are: foaf:gender,
with two aggregated values - female and male; and dbo:background, with three aggregated values
- non_performing_personnel, non_vocal_instrumentalist, and solo_singer. Thus, the process may
generate the following questions:

(1) Between {non_performing_personnel}, {non_vocal_instrumentalist},
and {solo_singer}, which artists do you prefer?

(2) Do you prefer {female}, or {male} artists?

Since dbo:backgroud precedes foaf:gender in the computed frequencies, only question (1) is
returned to the user. If the user keeps interacting with the system, the whole process restarts. Also,
there is a final threshold (β) responsible for limiting the number of elements returned to the user,
which has 15 as the default value.

4. EXPERIMENTS

4.1 Setup

We performed initial experiments using the RDF versions of MusicBrainz and IMDb3 described in
[Menendez et al. 2019], obtained by enriching a MusicBrainz dump with DBpedia data and transform-
ing an IMDb relational database to RDF via R2RML, respectively. These datasets also contain the
InfoRank scores of instances, properties and classes. Figure 4 shows the resulting MusicBrainz and
IMDb schemas, respectively. Each RDF dataset has over 200 million triples. We used sample queries
from the QALD challenge and Coffman’s benchmark [Coffman and Weaver 2010].

3https://sites.google.com/view/quira/, (accessed 7 July 2020).

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

Query Answer Reformulation over Knowledge Bases · 497

Fig. 4. IMDb and MusicBrainz schemas.

To store and manage the RDF datasets, we used the component TDB2 of Apache Jena for RDF4.
Apache Jena Fuseki (a SPARQL server) ran on a server machine with OS GNU/Linux Ubuntu 16.04.6
LTS, a quad-core processor Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz, 64 GB of RAM and SSD
1TB.

In the following sections, we discuss the effect of the proposed query reformulation process - referred
to as the process, for brevity - over both datasets on the query result. The thresholds used for these
experiments were: α = 10, β = 15 and δ = (δmin, δmax) = (0.4, 2.0).

4.2 MusicBrainz Results

In this section, we detail the experiments with the QALD query for MusicBrainz presented earlier:
“Which artists were born on May 30th?”. The initial process generated the following SPARQL query,
with results ranked by the InfoRank score.

prefix mo: <http://purl.org/ontology/mo/>
prefix dbo: <http://dbpedia.org/ontology/>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix quira: <http://www.quira.org/>

select distinct ?artist ?label ?inforank
where {

?artist a mo:MusicArtist .
?artist dbo:birthDate ?date .
?artist rdfs:label ?label .
?artist quira:inforank ?inforank .
filter (regex(?date, "5-30\$", "i")) .

}
order by desc(?inforank)

Table II shows a preview of the original result. Note that the SPARQL query returned 122 artists
that were born on May 30th, which the user might consider to be a long list to interact with. We defined
a threshold to indicate when the (reformulation) process should be applied. For these experiments,
we chose a maximum of β = 15 lines, that is, a list with only β artists in this example. Hence, the

4https://jena.apache.org, (accessed 12 August 2020).

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

498 · J. P. V. Pinheiro, M. A. Casanova and E. S. Menendez

process reformulated the SPARQL query to capture the predicates that are candidates to be used for
aggregation.

prefix mo: <http://purl.org/ontology/mo/>
prefix dbo: <http://dbpedia.org/ontology/>

select distinct ?artist ?predicate ?object
where {

?artist a mo:MusicArtist .
?artist dbo:birthDate ?date .
filter (regex(?date, "5-30\$", "i")) .
?artist ?predicate ?object .
filter(isLiteral(?objetct)) .

}

The result was stored in memory to facilitate manipulation and to avoid further access to the
database. Then, the process grouped the results by predicate and counted the distinct object values.
Table III presents these results.

We defined a threshold of α as the maximum number of distinct values for the predicates, so the
questions formulated to the user are not too long. A heuristic is to choose the predicate with the
highest number of distinct values from the set of predicates with less distinct values than the maximum.
Following this heuristic, the process chose the predicate dbo:background, which refers to the type of
music artists. Hence, the process formulated the query “Which of the above artist background do you
prefer?” and presented a few options for the user to choose from, as shown in Table IV.

Note that Table IV provides five options to the user: the first three options correspond to the
three distinct values of the predicate dbo:background; the fourth option to artists that have some
background defined (not all artists have the background defined in the database); and the last option
to all artists (artists, without any filter). Suppose the user chose option “1. Solo singer”, which has
one of the highest artist counts. The final result decreased to 27 artists, as shown in Table V.

Since this result was still higher than our threshold of β = 15 lines, the process was reapplied.
Again, the process grouped the results by predicate and counted the distinct object values. Table VI
presents this result.

Continuing with the proposed heuristic, the process chose the predicate dbp:occupation and for-
mulated a new question to the user “Which of the above artist occupation do you prefer?” and presented
a few options for the user to choose from, as shown in Table VII.

Suppose the user chose option “1. Singer-songwriter, musician” as the artist occupation. The process
finally stopped since it achieved our threshold of β lines. Hence, the final result was presented to the
user in a decreased order of InfoRank score, as shown in Table VIII.

Table II. Preview of the original SPARQL result.
Artist partial URI Artist name
1 /artist/b09ae88f-4156-4caa-b129-1cacb5e1632e Benny Goodman
2 /artist/27b0750a-7318-4075-9470-43b82d454ea0 Gustav Leonhardt
3 /artist/2c69465c-0f76-45ce-90a2-1ed0fdacc997 CeeLo Green

...
120 /artist/e00871b0-f6b5-41cf-b758-f2f1ea467818 Frank St. Leger
121 /artist/09ffe9f4-d54e-4943-8297-4456963f0def Josephine Preston Peabody
122 /artist/22b95e86-0749-4df1-ae29-cd5acfe5a285 Jim Murray

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

Query Answer Reformulation over Knowledge Bases · 499

Table III. Available predicates in the first reformulation process.
Predicate Distinct Values
1 http://xmlns.com/foaf/0.1/name 144
2 http://dbpedia.org/property/birthDate 131
3 http://xmlns.com/foaf/0.1/givenName 129
4 http://www.w3.org/2000/01/rdf-schema#label 123
5 http://dbpedia.org/ontology/wikiPageID 120
6 http://dbpedia.org/ontology/wikiPageRevisionID 120
7 http://purl.org/dc/terms/description 91
8 http://xmlns.com/foaf/0.1/surname 87
9 http://dbpedia.org/ontology/deathDate 53
10 http://dbpedia.org/ontology/activeYearsStartYear 35
11 http://dbpedia.org/ontology/background 3
12 http://xmlns.com/foaf/0.1/gender 2

Table IV. Options for "Which of the above artist background do you prefer?".
Options Counts
1 Solo singer 27
2 Non vocal instrumentalist 25
3 Non-performing personnel 5
4 Show me all artists with some background 57
5 Show me all artists 123

Table V. Preview of the SPARQL result filtered by "Solo singer" background.
Artist partial URI Artist name
1 /artist/2c69465c-0f76-45ce-90a2-1ed0fdacc997 CeeLo Green
2 /artist/0110e63e-0a9b-4818-af8e-41e180c20b9a Devendra Banhart
3 /artist/3a0373c0-f9c1-4eb3-9c10-53cc18193b07 Marie Fredriksson
...
25 /artist/0de740a2-a651-4d76-9cd5-54912a64070f Gladys Horton
26 /artist/be0c5489-92e2-4149-b094-48293606f34b Brian Fair
27 /artist/ae148627-23cc-48d3-a1a7-804f2af6b7dc Rick DePiro (Ricky Dee)

4.3 IMDb Results

In this section, we use a query adapted from Coffman’s benchmark over IMDb: “Which movies did
Denzel Washington starred?”. The initial process generated the SPARQL query below, ranking the
results by the InfoRank score.

prefix imdb: <http://www.imdb.com/>
prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix quira: <http://www.quira.org/>

select distinct ?movie ?label ?inforank
where {

?movie a imdb:Movie .
?movie imdb:actor ?actor .
?movie rdfs:label ?label .
?movie quira:inforank ?inforank .
?actor imdb:name "Denzel Washington" .

}
order by desc(?inforank)

Table IX shows a preview of the original result. Note that this SPARQL query returned 49 movies
starred by Denzel Washington. Again, we used the maximum of β = 15 lines as the threshold to

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

500 · J. P. V. Pinheiro, M. A. Casanova and E. S. Menendez

Table VI. Available predicates in the second reformulation process.
Predicate Distinct Values
1 http://dbpedia.org/ontology/birthDate 40
2 http://xmlns.com/foaf/0.1/givenName 35
3 http://xmlns.com/foaf/0.1/name 31
4 http://www.w3.org/2000/01/rdf-schema#label 27
5 http://dbpedia.org/ontology/wikiPageID 26
6 http://dbpedia.org/ontology/wikiPageRevisionID 26
7 http://purl.org/dc/terms/description 20
8 http://dbpedia.org/ontology/activeYearsStartYear 18
9 http://xmlns.com/foaf/0.1/surname 16
10 http://dbpedia.org/property/caption 13
11 http://dbpedia.org/property/occupation 10
12 http://xmlns.com/foaf/0.1/gender 2

Table VII. Options for "Which of the above artist occupation do you prefer?".
Options Counts
1 Singer-songwriter, musician 5
2 Singer 2
3 Musician 1
4 Singer, actor 1
5 Musician, songwriter 1
6 Singer-songwriter 1
7 Singer, author, philanthropist, actress 1
8 Musician, singer-songwriter, record label owner 1
9 Singer-songwriter, musician, visual artist 1
10 Singer, rapper, songwriter, record producer, actor, businessman 1
11 Show me all artists with some occupation 15
12 Show me all artists 27

Table VIII. The final result presented to the user.
Artist partial URI Artist name
1 /artist/a0580131-73f3-49c8-aac5-2c478f64a363 Stephen Duffy
2 /artist/19e07fd0-5642-47a0-a2b9-b8176e6b06e5 Brooke Waggoner
3 /artist/23c738ed-5dc4-4ff7-8c00-3c1c54e8eb89 Kevin Barnes
4 /artist/1d566a14-4094-4f96-abb7-969b4f439728 Geva Alon
5 /artist/4e0e884d-099b-4ca9-bf4d-bcb31e739540 Duffy

indicate when the process should be applied. In this example, it would be a list with a maximum
of β movies. Hence, the process reformulated the SPARQL query to capture the predicates used for
aggregation.

prefix imdb: <http://www.imdb.com/>

select distinct ?movie ?predicate ?object
where {

?movie a imdb:Movie .
?movie imdb:actor ?actor .
?actor imdb:name "Denzel Washington" .
?movie ?predicate ?object .
filter(isLiteral(?object)) .

}

Once again, the process grouped the results by predicate and counted the distinct object values.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

Query Answer Reformulation over Knowledge Bases · 501

Table IX. Preview of the original SPARQL result.
Movie URI Movie title
1 http://www.imdb.com/work/1996688 Malcolm X
2 http://www.imdb.com/work/1592464 American Gangster
3 http://www.imdb.com/work/2354723 Unstoppable
...
47 http://www.imdb.com/work/1675254 Champs
48 http://www.imdb.com/work/2255730 The Equalizer
49 http://www.imdb.com/work/2356601 Uptown Saturday Night

Table X presents part of the available predicates. Following the proposed heuristic, the process chose
the predicate imdb:label, which refers to the production company of the film. Hence, the process
formulated the query “Which of the above movie label do you prefer?” and presented a few options for
the user to choose from, as shown in Table XI.

Note that Table XI provides 12 options to the user: the first ten options refer to the movie label; the
11th option to all movies with some label defined (not all movies have the label information defined in
the database); and the last option to all movies (movies, without any filter). Suppose the user chose
option “1. Columbia/Tristar” film label, which has one of the highest movie counts. The final result
had only five movies, and the process stopped at this point since it achieved a reasonably compact
result to present to the user. The final result was presented to the user in decreasing order of InfoRank
score, as shown in Table XII.

Table X. Available predicates.
Predicate Distinct Values
1 http://www.imdb.com/tag 2408
2 http://www.imdb.com/release_dates 1211
3 http://www.imdb.com/quotes 936
...
36 http://www.imdb.com/novel 14
37 http://www.imdb.com/label 10
38 http://www.imdb.com/number_of_chapter_stops 8
...
66 http://www.imdb.com/interviews 1
67 http://www.imdb.com/master_format 1
68 http://www.imdb.com/quality_program 1

Table XI. Options for "Which of the above movie label do you prefer?".
Options Counts
1 Columbia/Tristar 5
2 Encore 5
3 Warner Home Video 3
4 MCA/Universal Home Video 2
5 Paramount 2
6 20th Century Fox Home Entertainment 1
7 Hollywood Pictures 1
8 Philips 1
9 Pioneer 1
10 RCA/Columbia 1
11 Show me all movies with some label 23
12 Show me all movies 47

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

502 · J. P. V. Pinheiro, M. A. Casanova and E. S. Menendez

Table XII. Final result presented to the user.
Movie URI Movie title
1 http://www.imdb.com/work/2095826 Philadelphia
2 http://www.imdb.com/work/1824613 Glory
3 http://www.imdb.com/work/2031102 Much Ado About Nothing
4 http://www.imdb.com/work/2020598 Mississippi Masala
5 http://www.imdb.com/work/1731607 Devil in a Blue Dress

4.4 Qualitative Discussion

In this section, we discuss the results obtained for MusicBrainz and IMDb, from a qualitative point
of view. We adopted a metric, called compression rate, to help compare the results obtained. The
metric is denoted γ and defined as follows:

γ = 1 - κ / η

where η is the number of lines of the initial result set and κ is the number of lines of the final result
set.

Note that, when κ ∼ η, the compression is very low. On the other hand, when κ << η, the
compression is very high. It is important to recall that β guarantees that the final result set will not
exceed a maximum number of lines. The analysis that follows will reflect this fact when the selected
facet does not significantly reduce the result set.

Positioned at the end of this section, Tables XIV and XV have the same headers. Column IRS
means Initial Result Set and is related to the number of lines from the original result set. Column FRS
means Final Result Set and is related to the number of lines from the compressed result set. Column
Facets has the selected predicate and facet separated by the pipe symbol “|”. Note that the number
between parenthesis is the number of unique subjects or, in other words, the number of lines of the
result set filtered by facet. Also, this column may have multiple facets displayed in multi-lines. The
number of lines reflects the number of Steps the process took.

Table XIV presents the results for MusicBrainz and lists seven questions. Recall that ten ques-
tions were originally tested over MusicBrainz, but only 3 of them had no predicate selected. This
happened because the process could not find a predicate that respects the thresholds α = 10 and
δ = (0.4, 2.0) defined for the experiments. For instance, the question “What are the songs performed
by Aretha Franklin?” has the following predicates: mo:track_number (54), rdfs:label (1,120), and
mo:duration (1,881). In these cases, all three numbers in parenthesis are higher than α = 10. The
original result set had 2,945 lines, and the final result set had β = 15 lines. Finally, we recall that,
even when the process does not perform any steps, it ranks the results using the InfoRank metric and
returns the first β lines to the user.

In the music context, it might be interesting to group songs by minutes. Based on the Music
Ontology Specification5, the predicate mo:duration represents the duration of a track or a signal in
ms. Analyzing the songs by Aretha Franklin, her longest song is “Amazing Grace” with 10min and 48s
(∼11min). So, we can guarantee that the heuristic would apply one of the ten possible length-facets
(2min - 11min).

Continuing the analysis, the third question “Which artists played on the same groups that David
Bowie was a member of?” had the original result set with length 17, which is very close to β =
15. Thus, the compression rate obtained by applying the heuristic was surprisingly large. But the
predicate dbo:wikiPageID does not seem very interesting, considering a non-technical user. Hence,

5http://musicontology.com/specification/#term-duration, (accessed 12 August 2020).

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

Query Answer Reformulation over Knowledge Bases · 503

the compression rate metric by itself does not capture all aspects. We still need to analyze the path
explored by the process.

Table XV presents the results for IMDb and also lists seven questions. In this case, the most
interesting predicates chosen and the facets selected were for the first question “Which movies did
Denzel Washington starred?”. Although the compression rates were good, when compared to the other
questions, the compression rates were the worst (together with the sixth question). This happened
because all other questions had no restrict facet and the original result set was very long. Thus,
κ << η since κ = β = 15.

In this specific scenario, the use of a ranked list of results is important, as otherwise the process
would randomly choose β results and return them to the user. Our process uses InfoRank to guarantee
meaningful results. In Table XIII, the intersection between the results randomly sorted and the results
sorted by InfoRank represents only ∼ 27% of β = 15 movies. For instance, the multi-award-winning
movie “Gladiator” would be missing in the result set.

Table XIII. Results comparison for “Which movies were released in 2000?”.
Results randomly sorted Results sorted by InfoRank

Movie partial URI Movie title Movie partial URI Movie title
1 /work/1637423 Big Momma’s House /work/2007705 Me, Myself & Irene
2 /work/2393883 X-Men /work/1823621 Gladiator
3 /work/1625822 Battle Royale /work/2289533 The Patriot
4 /work/1592761 American Psycho /work/2393883 X-Men
5 /work/1551278 2001: A Space Travesty /work/1625822 Battle Royale
6 /work/1790475 Faust: Love of the Damned /work/2333414 Traffic
7 /work/2363075 Versus /work/1592761 American Psycho
8 /work/1812463 Före stormen /work/1676655 Charlie’s Angels
9 /work/2234180 The Adventures of Rocky & Bullwinkle /work/2389882 Crouching Tiger, Hidden Dragon
10 /work/2016980 Militia /work/2133745 Requiem for a Dream
11 /work/2350711 Unbreakable /work/1685528 Citizen Toxie: The Toxic Avenger IV
12 /work/1976757 Little Nicky /work/2061093 O Brother, Where Art Thou?
13 /work/2333414 Traffic /work/2158237 Scary Movie
14 /work/1807398 Frequency /work/2019684 Miss Congeniality
15 /work/2008819 Meet the Parents /work/2139796 Road Trip

Finally, we investigated the lack of predicates with restrictive facets. Since the questions were
related to imdb:Actor and imdb:Actress, we combined the sets of resources from imdb:Actor and
imdb:Actress and called then Artists.

Analyzing the unique predicates related to instances of imdb:Movie, from 68 predicates, only 15
satisfy the α threshold. Also, considering the δ threshold, the set of selectable predicates is small,
and their expressiveness is also low. Except for imdb:category, all selectable predicates were related
to technical information about the movies. A similar scenario was observed for predicates related to
instances of Artists. From the 26 available predicates, only one was selectable, regarding the defined
thresholds.

5. CONCLUSIONS

The main contribution of this study was the definition of a process, called the Query Answer Mod-
ification Process, based on simple heuristics and parameterized thresholds, that analyses the query
answer and improves the quality of the user’s experience. This study addressed open-ended questions
since specific questions do not generate long result sets, and would therefore not benefit from the
summarization process.

To validate the proposed process, sample queries from the QALD challenge and Coffman’s bench-
mark were used. These queries were applied over RDF versions of MusicBrainz and IMDb, respectively.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

504 · J. P. V. Pinheiro, M. A. Casanova and E. S. Menendez

Table XIV. Compression Rate comparison over Music Brainz.
MusicBrainz

Question 1 Which artists were born on May 30th?
Steps Facets IRS FRS Compression Rate

2 dbo:background | solo_singer (27);
dbp:occupation | Singer-songwriter (5); 123 5 95,93%

Question 2 Which songs by Miles Davis are longer than 20 minutes?
Steps Facets IRS FRS Compression Rate
1 mo:track_number | 1 (48) 89 15 83,15%
Question 3 Which artists played on the same groups that David Bowie was member of?
Steps Facets IRS FRS Compression Rate
1 dbo:wikiPageID | 1515176 (1); 17 1 94,12%
Question 4 What are the albums from Michael Jackson?
Steps Facets IRS FRS Compression Rate
1 dbp:years | –05-24 (1) 23 1 95,65%
Question 5 What are the albums from Kraftwerk?
Steps Facets IRS FRS Compression Rate
1 dbp:writer | Hütter (2) 13 2 84,62%
Question 6 Which artists were born on September, 1964?
Steps Facets IRS FRS Compression Rate

2 dbo:background | solo_singer (18);
foaf:surname | Anastasio (1); 66 1 98,48%

Question 7 Which bands broke up in 2010?
Steps Facets IRS FRS Compression Rate

2 dbo:background | group_or_band (236);
dbo:activeYearsEndYear | 2010 (236); 238 15 93,70%

Table XV. Compression Rate comparison over IMDb.
IMDb

Question 1 Which movies did Denzel Washington starred?
Steps Facets IRS FRS Compression Rate
1 imdb:label | Columbia/Tristar (5); 49 5 89,80%
Question 2 Which movies are available in spanish language?
Steps Facets IRS FRS Compression Rate
1 imdb:color_info | Color (67933); 77670 15 99,98%
Question 3 Which actors or actresses were born on May 30th?
Steps Facets IRS FRS Compression Rate
1 imdb:gender | Male (409); 595 15 97,48%
Question 4 Which movies were released in 2000?
Steps Facets IRS FRS Compression Rate

2 imdb:color_info | Color (5815);
imdb:year | 2000 (5815); 7206 15 99,79%

Question 5 Which movies were produced in Brazil?
Steps Facets IRS FRS Compression Rate
1 imdb:color_info | Color (4432); 7016 15 99,79%
Question 6 Which movies were produced in Brazil in 2010?
Steps Facets IRS FRS Compression Rate

2 imdb:color_info | Color (74);
imdb:year | 2000 (74); 91 15 83,52%

Question 7 Which Brazilian artists starred foreign movies?
Steps Facets IRS FRS Compression Rate
1 imdb:gender | Male (733); 1261 15 98,81%

Also, a compression rate metric was defined, enabling a comparison and discussion over the compiled
results.

The first suggestion for future work would be to allow users to provide a list of predicates to ignore
or to enable them to dynamically exclude undesired predicates from the available list in each step
of the process. Thus, it would be possible to exclude predicates without a clear contribution, from
the user’s point of view, and the results would possibly improve. Also, in this context, registering
users’ feedback after each query answer modification would provide a strategy to construct this list
automatically.

A second suggestion would be to develop and apply a questionnaire to users interested in using the
system. As a result, we would be able to segment users by preferences and create user profiles. These
profiles would enrich the qualitative discussion in Section 4 and could be used to adapt the heuristics
to the users’ preferences.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

Query Answer Reformulation over Knowledge Bases · 505

Another interesting suggestion would be to allow users to indicate that specific predicates would
actually define a taxonomy so that the system would be able to aggregate over each level of the
taxonomy. In a second version, together with the initial exploration of the RDF Knowledge Base to
calculate frequencies, the system would automatically infer the related taxonomy.

Finally, it would be profitable to develop a user interface similar to GraFa [Moreno-Vega and Hogan
2018] which would allow navigation through predicates and facets. An extra feature that would impact
the user’s navigation is the possibility to select more than one option at each interaction. Hence,
disjunctive filtering would be possible, together with conjunctive filtering, as defined in this article.

ACKNOWLEDGMENT

This work was partly funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -
Brasil (CAPES) - Finance Code 001, and grants CAPES 88881.134081/2016-01, CNPq 302303/2017-0
and FAPERJ E-26-202.818/2017.

REFERENCES

Coffman, J. and Weaver, A. C. A framework for evaluating database keyword search strategies. In Proceedings of
the 19th ACM international conference on Information and knowledge management. pp. 729–738, 2010.

Cyganiak, R., Wood, D., and Lanthaler, M. RDF 1.1 Concepts and Abstract Syntax, 2014. W3C Recommendation
25 February 2014.

Dalianis, H. and Hovy, E. Aggregation in natural language generation. In Trends in Natural Language Generation
An Artificial Intelligence Perspective, J. G. Carbonell, J. Siekmann, G. Goos, J. Hartmanis, J. Leeuwen, G. Adorni,
and M. Zock (Eds.). Vol. 1036. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 88–105, 1996.

Diefenbach, D., Lopez, V., Singh, K., and Maret, P. Core techniques of question answering systems over knowl-
edge bases: a survey. Knowledge and Information Systems 55 (3): 529–569, June, 2018.

Diefenbach, D., Tanon, T. P., Singh, K., and Maret, P. Question Answering Benchmarks for Wikidata. In
ISWC 2017. Vienne, Austria, 2017.

Franz, T., Schultz, A., Sizov, S., and Staab, S. TripleRank: Ranking semantic web data by tensor decomposition.
In Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, pp. 213–228, 2009.

Menendez, E. S., Casanova, M. A., Leme, L. A. P., and Boughanem, M. Novel node importance measures to
improve keyword search over rdf graphs. In International Conference on Database and Expert Systems Applications.
Springer, pp. 143–158, 2019.

Moreno-Vega, J. and Hogan, A. Grafa: Faceted search & browsing for the wikidata knowledge graph. In Interna-
tional Semantic Web Conference. Springer, Cham, 2018.

Novello, A. and Casanova, M. A. A novel solution for the aggregation problem in natural language interface to
databases (nlidb). In Anais do XXXV Simpósio Brasileiro de Bancos de Dados. SBC, Porto Alegre, RS, Brasil, pp.
217–222, 2020.

Petzka, H., Stadler, C., Katsimpras, G., Haarmann, B., and Lehmann, J. Benchmarking faceted browsing
capabilities of triplestores. In Proceedings of the 13th International Conference on Semantic Systems. Semantics2017.
Association for Computing Machinery, New York, NY, USA, pp. 128–135, 2017.

Prud’hommeaux, E. and Seaborne, A. SPARQL Query Language for RDF, 2008. W3C Recommendation 15 January
2008.

Webber, B. L. Questions, answers and responses: Interacting with knowledge-base systems. In Topics in Information
Systems. Springer New York, pp. 365–402, 1986.

Wei, B., Liu, J., Zheng, Q., Zhang, W., Fu, X., and Feng, B. A survey of faceted search. Journal of Web
Engineering vol. 12, pp. 41–64, 02, 2013.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.

