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Abstract. One of the main goals of the Open Science movement is to leverage scientific collaboration through, among
others, promoting the sharing and reuse of research outputs, such as publications, data and software. Sharing is enabled
by public and accessible scientific repositories where these outputs are managed throughout their lifecycle. In this
context, finding these digital artifacts has become a key problem. Semantic search mechanisms have risen as a means
to solve this issue. However, implementing and integrating them into scientific repositories presents many challenges.
This article presents a systematic literature review of research efforts on mechanisms for supporting search for scientific
papers, data and processes. Our investigation is based on extracting and analyzing the entire contents of nine digital
libraries using the associated search engines – in alphabetical order: ACM Digital Library, arXiV, Engineering Village,
IEEE Xplore, SBC OpenLib, Springer Link, Scopus, Wiley Online Library and Web of Science. After retrieving a
combined amount of 5012 documents, we identified 2054 unique papers that were used as a basis for our analysis.
Our findings provide, among others, a new categorization of literature on search and discuss unexplored gaps, thereby
contributing to advancing research on semantic search mechanisms to support Open Science.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: Open Science, Semantic Search, Scientific collaboration

1. INTRODUCTION

The sharing of research results has become a key enabler for Open Science [Woelfle et al. 2011],
thereby fostering advancement of science through reuse of research outputs. Though there are many
definitions for Open Science, there is a consensus that it should support at least three mechanisms
for sharing of knowledge: open publications, open data, and open processes and methods, all made
available in public repositories.

A major obstacle for effective reuse is findability of data - and thus the institution of FAIR principles
for data sharing and reuse [Wilkinson et al. 2016], extensible to papers and processes (which include,
among others, software and workflows). We identified that these three factors, together with authors,
constitute the four most important parameters considered by mechanisms that help search for research
outputs. These mechanisms assume that researchers look for data, papers or processes of interest,
and their authors. To avoid constant enumeration of these four parameters, we simply refer to them
as classes – of search parameters.

Search mechanisms are cumbersome, and often require lengthy efforts to identify artifacts of interest.
Several research solutions were proposed to alleviate the search process – such as the use of metadata
standards, consensual vocabularies, or annotations. Semantic search mechanisms have risen as a means
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to improve the quality of search results. Mechanisms vary widely in approaches and purposes. Our
main concern is with semantic search mechanisms that serve Open Science purposes, namely supporting
search for scientific papers, data, and software in public repositories. Besides these purposes, we
discuss the availability of search for authors and their affiliations.

Our research is concerned with investigating search mechanisms that are best suited to ensure
meaningful findability. This has led us to come up with the following research questions: RQ1) What
are the integrated semantic search and semantic mapping approaches in the literature? RQ2) How are
the proposed search systems characterized, and what are their software architectures? RQ3) How can
we further characterize the search platforms? RQ4) What are the platforms’ objectives and the classes
of data handled by the corresponding approach? In this work, we present a systematic literature
review to answer these questions. During our review investigation, we realized that researchers adopt
different meanings for both “integrated semantic search” and “semantic mapping”. As a consequence,
our results also include a discussion of these meanings. To the best of our knowledge, there are
no systematic literature reviews in the context of semantic search and its integration to scientific
repositories; rather, reviews cover associated issues. Our systematic mapping focuses on publications
concerning semantic search mechanisms. These mechanisms are applied to public repositories that
contain publications, data or processes – from now on called scientific repositories.

A systematic mapping is a method that allows to present empirical data from a broad subject
of interest [Oakley et al. 2005], thereby structuring a research area. Our systematic mapping was
conducted using contents from the following repositories: ACM Digital Library1, arXiV2, Engineering
Village3, IEEE Xplore4, SBC OpenLib5, Springer Link6, Scopus7, Wiley Online Library 8 and Web
of Science9. From these repositories, we identified 2054 unique documents, describing a variety of
search mechanisms and approaches. We provide a quantitative summarization, and a qualitative
categorization and descriptions of the objectives and class of objects employed in the corresponding
approaches.

This work presents two major contributions – the systematic review itself, and its discussion; and the
presentation of a few major open problems concerning semantic search mechanisms with open science
in mind. Our results indicate that most semantic search approaches lack several factors to fully meet
findability – e.g., flexibility in search parameters, or support to multiple domains. Our analysis points
out that there are still many research challenges on the use, design and implementation of mechanisms
for semantic search on open scientific repositories. In particular, we discuss how they can be enhanced
to provide a more meaningful range of results. As such, we provide insights into steps towards semantic
search efforts to meet the demands of the open science movement.

A preliminary version of this work was published as a short paper [Gottardi et al. 2020a], subse-
quently extended to a full workshop paper [Gottardi et al. 2020b], which discussed additional analyses.
The two previous versions and the present paper adopt the same methodology for systematic review.
All the rest reported in this paper has not been published before (including most numerical results and
qualitative analysis). Furthermore, they only concentrated on answering RQ4, since we did not have
enough data to satisfactorily answer the other questions. The search engines covered in the previous
papers were IEEE Xplore and Scopus (short paper) and arXiV (full workshop paper), with analysis
performed up to August 2020. Here, we extend the study to six additional engines, with analysis

1http://dl.acm.org
2http://arxiv.org
3http://www.engineeringvillage.com
4http://ieeexplore.ieee.org
5http://sol.sbc.org.br
6http://link.springer.com
7http://www.scopus.com
8http://onlinelibrary.wiley.com
9http://www.webofknowledge.com
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performed up to February 2021 – ACM DL, Engineering Village, SBC OpenLib, Springer Link, Wiley
Online Library, Web of Science. While the previous papers covered analysis of a total of 324 unique
documents, this paper analyzes 2054 unique documents. This numeric difference brought novel in-
sights that are described in this work. A more thorough enumeration of the differences between this
version of our work, and the two previous versions appears in Section 5.

The rest of this article is organized as follows. Section 2 presents the SM (Systematic Mapping)
procedure, describing the stages performed in our literature review. Section 3 reports on the quan-
titative results gathered from the SM process, which are then qualitatively discussed in Section 4.
Section 5 describes key related studies and compares existing results with our contributions. Finally,
Section 6 concludes this article.

2. APPLYING THE SYSTEMATIC MAPPING METHODOLOGY

Our literature review follows the structure of a systematic mapping [Oakley et al. 2005] and was
executed according to guidelines of [Kitchenham and Charters 2007]. These guidelines involve three
sequential phases: (1) Planning; (2) Conducting and (3) Reporting. This section briefly outlines the
Systematic Mapping Methodology, and how we applied it to analyze publications on semantic search
mechanisms. We employed iterative selection techniques to better provide quantitative analyses on
the selected studies, a technique similar to screening, as used in recent mapping studies [Hummel
et al. 2021]. Further documentation on our entire process is available online [Gottardi 2021].

The following terms are used throughout the rest of this paper, following terminology adopted in
systematic mapping work [Kitchenham and Charters 2007]: (a) a Primary Study is any written study
that investigates a research question; (b) a Secondary study is a work that reviews primary studies –
i.e., ours is a secondary study; (c) a Source is a digital repository that is searched to retrieve studies;
(d) a Search engine refers to dedicated search tools made available by the Sources to retrieve studies.
For brevity sake, we often refer to “a search engine” when we actually mean “an engine to process a
search request on the corresponding Source”.

2.1 The Planning Phase

Planning is the first phase of the systematic mapping process; its output is a document named “Pro-
tocol”. Table I presents an excerpt of the protocol we specified to perform our systematic mapping.
Each row displays a protocol item and corresponding description – objective, questions, intervention,
results, Source selection criteria, and study selection criteria. In more detail, a Source, in the protocol,
is a repository in which documents relevant to our work will be “selected” – e.g., the ACM Digital
Library is an example of a “Source”, and any document retrieved from it that meets our selection cri-
teria is a study. For instance, a conference paper on semantic search mechanisms published in ACM
DL is a study of interest to our analysis.

The protocol defines the criteria for studies to be considered at each Source – Inclusion (I1 to I3)
and excluded – Exclusion (E1 to E4 criteria). I1 was planned to select all papers that involve any kind
of search or query on databases. I2 was planned to include papers discussing any kind of integration
scheme, e.g., integration of different datasets. I3 involves selecting studies that present any kind of
semantic mapping approach, e.g., through use of annotation, metadata or ontologies that are used
to map digital artifacts (data, documents, software) to semantic predicates. We point out that we,
on purpose, used in I1 and I2 terms that have more than one interpretation - namely “integration”
and “mapping”, so that we could select a larger set of studies to analyze: the disambiguation of these
terms is discussed as part of the results.

Exclusion criteria are associated to studies that should not be used in our quantitative and quali-
tative analyses. E2 through E4 are self-explanatory – E2 and E3 concerned unrelated studies, such
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as those that were retrieved because of appropriate keywords, but in unrelated meanings, e.g., the
search for something that is not in a database. E1 (“not a valid document or inaccessible”) involves
results that are not linked to actual documents, e.g., conference calls and references to papers that do
not exist. “Inaccessible” means that we could not access the entire contents of the primary study.

In most cases, we excluded as non-valid all documents that were not scientific studies, e.g., a call for
papers or a report on a conference. We also excluded documents that might not be full-fledged papers
or articles, e.g., posters, or talk summaries. Last but not least, book chapters were also excluded
as non-valid because we have identified that these kinds of documents are often partial, e.g., when
a single study is sliced into several chapters. They also often repeat content of articles and papers
written by the same authors.

Table I. Protocol Definition. Composed by Protocol items and their descriptions.
Protocol Item Item Description

Objective Identify existing approaches to integrating semantic search mechanisms on scientific production.
Research
Question

What are the approaches and techniques that perform semantic search on scientific production?

Intervention Identify and categorize related primary studies.
Results Quantitative data on frequency distribution within categories. Qualitative data on approaches that integrate

semantic search on scientific databases.
Source Selection

Criteria:
Source must include indexed studies on Computer Science, Mathematics, Engineering, Medicine or Biology11.
Extraction of papers from source must allow Boolean operators. Source must be accessible to us.

Study Selection Inclusion I1 - Scientific Database Search approach;
Criteria: Inclusion I2 - Approach involves Integration;

Inclusion I3 - Application of Semantic Mapping;
Exclusion E1 – Not a valid document or inaccessible;
Exclusion E2 – Unrelated to computing/databases;
Exclusion E3 – Does not discuss search issues;
Exclusion E4 – Not primary study.

Data Collection F1 Contains Integrated Search (boolean); if(F1) then: F1.1 Integration Type (nominals)
Form F2 Contains Semantic Mapping (boolean); if(F2) then: F2.1 Semantic Mapping Type (nominals)

F3 Contains Software Architecture (boolean); if(F3) then: F3.1 Identified Software Architecture (nominals)
F4 Contains Class of Scientific Data (boolean); if(F4) then: F4.1 Class of Scientific Data (nominals)
F5 Contains Objectives for Scientific Data (boolean)); if(F5) then: F5.1 Objectives for Scientific Data (nominals)

if(F1∧F2) then: F6 Descriptive Summary for Detailed Study (text)

2.2 The Conduction Phase

The Conduction Phase concerns the actual systematic mapping; it is composed by the “Selection”
and “Extraction” activities, which must be performed according to the protocol. In a nutshell, during
the Conduction phase, all results from the search engines are analyzed; the duplicate documents are
linked; invalid documents are removed; the relevant studies are selected and those most applicable
studies are qualitatively analyzed as part of the Extraction activity. Figure 1 presents this process.

Search & Retrieval

Search Results

Deduplication

Unique Documents

Selection

Selected Studies

Extraction

Extracted Studies2639 2054 399 54

🗏🗏🗏🗏🗏🗏☑🗏🗏🗏🗏🗏🗏 🗏🗏X🗏🗏X🗏🗏 🗏🗏🗏🗏🗏🗏🗏Validity Check

Valid Documents1905

🗏🗏
27

Detailed
Studies

5012
Total
Results

Fig. 1. Overview of the Conduction Phase.

The Conduction phase begins by running queries on the search engines, which return search results.
The combination of all search results is referred to as “Total Results”. Next, we deduplicate these results
to find unique documents – since a given study may appear in more than one Source. Afterwards, we
identify the valid documents – namely, those that correspond to publications (having title, author and
abstract). Deduplication and validity check activities involve both automatic and manual checking.

The Selection and Extraction activities are performed manually. Selection involves selecting the
(already validated) primary studies of interest. To this end, Inclusion and Exclusion criteria are
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applied according to titles and abstracts; the outcome of this activity is the set of selected studies. We
provide quantitative analyses on all selected studies (cf. Section 3). The Extraction activity consists
in reading the studies completely and writing a detailed summary. Here, we add further details to the
information collected during the selection activity.

2.2.1 Search Strategy. The invocation of the search engines was divided into different sessions,
which were conducted to retrieve three different categories of studies. The first category is focused on
approaches that include any type of semantic search aspect, including semantics, ontologies, metadata
or annotations. The second category comprised all types of data retrieval and search approaches,
regardless of whether using semantics or applied to scientific repositories. The third category focused
on synonyms for scientific, research and studies. “Research” was eventually removed as a search
parameter for being far too common. “Study packing” was added since it has been used to refer to
documentation of systematic reviews.

Table II shows the four search strings applied to title, abstract and keywords of each study in the
Sources. Each string was constructed by joining the basic keywords defined in the protocol. After-
wards, each string was used as sessions to retrieve studies from the Sources. Strings were calibrated
by identifying whether a set of previously known papers were present in the results. For instance,
the “research” keyword was removed after calibration, since it is ambiguous and extremely common.
While our focus was on semantic search, our strategy for selecting studies for our systematic review
included other search approaches for completeness’ sake.

Selection was executed through the end on the following sources, listed by order of session execution:
Elsevier Scopus; IEEE Xplore; Cornell University arXiV; Wiley Online Library; ACM Digital Library;
Elsevier Engineering Village; Clarivate Web of Science; Springer Link; SBC OpenLib. The initial
search sessions were executed on February 17, 2020 (Scopus only) and updated throughout February
1st, 2021 (comprising all sources).

SBC Open Lib and arXiV were repeatedly searched using the indicated search strings, but many of
the search attempts returned no results. It is possible that these sources require custom calibration of
search strings. Calibrating the string for specific search engines may also cause a search bias. Search
on Springer Link excluded text previews, because these would add several unrelated results that were
not accessible by us. We point out that in arXiV authors are able to revoke access to their pre-prints,
which can decrease the number of search results throughout search history. We initially planned to
include Google Scholar12 as one of our Sources. However, the results of selecting studies from it was
canceled after a few search sessions, since it was not possible to calibrate or complete the selection.
Google Scholar often duplicates studies, presents an imprecise total number of search results and
mixes non studies with studies. Though Google Scholar was considered by Gusenbauer [Gusenbauer
2019] as the most comprehensive academic search engine, in a more recent article, Gusenbauer et al.
[Gusenbauer and Haddaway 2020] argued against using this source to conduct systematic reviews. We
also discarded using the University of Trier/Schloss Dagstuhl DBLP13 as a source, because it does
not provide abstracts. Subsection 4.1 presents further discussions on possible bias and limitations.

2.2.2 Study Selection. After deduplication, the review was conducted manually by exhaustively
analyzing studies returned by each Source according to the inclusion and exclusion criteria. Data
was collected on the selected studies for quantitative analyses by using a Data collection form (c.f.
Table I); This form was manually filled for each study.

2.2.3 Study Extraction. During the Extraction phase, all studies were qualitatively summarized by
manually evaluating their full texts completely. Studies that are accepted for the extraction activity

12http://scholar.google.com
13https://dblp.uni-trier.de

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.



474 · T. Gottardi, C. B. Medeiros and J. C. Dos Reis

Table II. Definition of search strings. The Name column identifies each string: I for Semantic Integration, Q for
Semantic Query, R for Semantic Retrieval and S for Semantic Search. String column contains the resulting string.

Name String
I ( ( “semantic information retrieval” OR “ontology information retrieval” OR “metadata information re-

trieval” OR “meta data information retrieval” ) AND ( “scientific” OR “study pack” OR “study packing” )
)

Q ( ( “semantic query” OR “ontology query” OR “metadata query” OR “meta data query” ) AND ( “scientific”
OR “study pack” OR “study packing” ) )

R ( ( “semantic retrieval” OR “ontology retrieval” OR “metadata retrieval” OR “meta data retrieval” ) AND
( “scientific” OR “study pack” OR “study packing” ) )

S ( ( “semantic search” OR “ontology search” OR “metadata search” OR “meta data search” ) AND ( “scien-
tific” OR “study pack” OR “study packing” ) )

must have all fields of the Data collection form (c.f. Table I) completely filled in this process. Table III
presents an example of a filled Data collection form (see [Gottardi 2021] for all the forms). Extracted
Studies were summarized by writing a descriptive text, as further discussed in Subsection 3.3.

Table III. Example of a Data Collection Form created for a reviewed study
Reference: [Sengloiluean and Khuntong 2020] – Journal Article

Activity Inclusion Value Exclusion Value

Selection

I1 True E1 False
I2 True E2 False

I3 True E3 False
E4 False

Field Value Dependent Value
F1 True Multiple Data Source Integration

Selection F2 True Automatic Semantic Mapping
and F3 True Presents Prototype / Multiple Database

Extraction F4 True Documents (teaching)
F5 True Access/Search

Extraction F6 An approach for integration of learning resources stored in
heterogeneous databases by using mapping ontologies.

2.3 Reporting Phase

Reporting consists on writing the results of the analysis conducted during the extraction phase. This
involved both quantitative and qualitative summarization of the studies. The quantitative analysis
took the form of a descriptive statistical analysis. The qualitative analysis was performed by writing
textual descriptions for each study and clustering them according to their form data. Both analyses
are described in Section 3.

3. RESULTS OF THE SYSTEMATIC MAPPING

First we show the sets of studies retrieved by the search strings, followed by an analysis of the results.
The distinct kinds of results (e.g., valid results, extracted results) are those described in Figure 1
that provides an overview of the Conduction Phase (cf. Section 2). We point out that our analysis
considered studies that approached semantic search mechanisms from multiple angles – either by
directly proposing such mechanisms or by proposing architectures or infrastructure to enable search.

3.1 Results from Invoking Search Engines

Table IV presents the number of “Results” returned by each search session grouped by their “Search
String” (cf. Table II) and “Source”. Sources are indicated in alphabetical order, respectively in
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Table IV. Number of Results from each Source. Row Acc. Sum indicates the accumulated sum of all search result
numbers; Max. contains the maximum search result numbers; Unique indicates the number of documents after their
duplicates were discarded at the Deduplication phase; Valid is the number of valid documents from the Validity Check.

Search String ACM DL arXiV EV Xplore Scopus Springer L SBC OL Wiley OL WoS Total

A
cc

.
Su

m I 44 0 39 15 31 15 0 22 10

5012Q 406 3 163 90 218 213 0 136 32
R 74 0 145 42 135 61 0 214 40
S 361 0 396 119 571 707 0 518 192

M
ax

.

I 44 0 20 5 11 15 0 11 5

2639Q 204 3 83 31 76 213 0 69 16
R 74 0 73 14 45 61 0 114 20
S 361 0 199 42 196 354 0 184 96

U
ni

qu
e I 39 0 9 4 6 10 0 9 1

2054Q 195 3 44 25 67 207 0 63 2
R 63 0 34 5 35 56 0 117 2
S 299 0 41 17 189 301 0 197 14

V
al

id

I 39 0 9 4 6 10 0 7 1

1905Q 187 3 41 25 58 206 0 49 2
R 62 0 34 5 33 54 0 80 2
S 294 0 41 17 174 298 0 150 14

columns: ACM Digital Library, arXiV, Engineering Village, IEEEXplore, Scopus, SBC OpenLib,
Springer Link, Wiley Online Library and Web of Science. The number of unique documents per
Source is affected by the search execution order (cf. Subsubsection 2.2.1). Since uniqueness requires
eliminating duplicate documents – e.g., that were retrieved from another source – if a document from
source A is also subsequently retrieved from source B, it is eliminated from B’s results.

Following the search sessions, cf. Figure 1, we retrieved an overall 5012 documents (accumulated
sum, first row of Table IV), with a maximum number of 2639 results in a search session – cf. second
row. We ended up with a total of 2054 unique documents (remaining documents after excluding
duplicates), of which 1905 are valid documents, i.e. those that have author and title. All unique
documents were processed during the selection activity.

3.2 Results of the Selection Phase

After performing the selection activity, we obtained the number of studies according to each inclusion
or exclusion criterion. Table V presents the results for the first and second selection phases. This
table includes numbers of input and output study and columns for the number of studies as processed
by the inclusion and exclusion criteria. We highlight that many of the documents were excluded by
more than one exclusion criterion, which explains why the result of subtracting the exclusions from
the inputs does not match the output numbers. Since there were different meanings for integration
and semantic mapping, all of the meanings were accepted as part of selection. Subsection 3.3 discusses
the different meanings we observed.

Table V. Results of the First and Second Phases of the Selection Activity. The last row shows between parentheses the
number of studies that passed without any exclusion criteria.

Step Input E1 (Not Article/Paper) E2 (Unrelated) E3 (No Search) Output
First 2054 504 118 307 1029
Phase Input I2 I3 I2 ∩ I3 I2 ∪ I3 E4 Output

(Integration) (Semantic Mapping) (Non Primary)
Second 1029 363 (209) 91 (50) 54 (27) 399 (273) 69 (0) 27

During the selection phase, we selected studies that contain search approaches and excluded those
that matched any exclusion criterion. This phase included studies with either integration or semantic
mapping (I2 ∪ I3), by providing grouped analyses on the set of studies that present integration, as
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well as another analyses on those that involve semantic mapping. For full description presented as
the extracted studies, we present the studies that include both criteria (I2 ∩ I3).

3.3 Results of the Extraction Phase

Table VI and VII present the results of the Extraction phase, which includes both semantic map-
ping and integration. There were 54 studies in this phase. As some studies were excluded for being
non primary, 27 studies remained (one per row). Tables VI and VII cite each study by its reference
(“Ref”) column, with a short “Descriptive Summary”, and their categorization, as follows: “Integra-
tion” refers to the different ways through which each search approach integrated data: “Layer” stands
for a semantic layer built on top of another database; “Multi” stands for the integration of multiple
databases; “Existing” refers to annotating existing data to be enriched with semantics, “Tools” refers
to a set of tools provided by the authors concerning the domain and/or search, i.e., integration of
data search results may be performed by an external semantic layer, or by integrating underlying
databases, or indirectly via semantic annotations or by using integrated tools. “Semantic Map-
ping” includes the process executed to map semantics to data: either by “Manual” definitions or by
“Auto” (automatic) definitions. We identified if the approach is “Strict” or “Fuzzy” where applicable.
“Software Architecture” cites the referenced software architectures. “Class” indicates the type
of the data handled by the approach according to the three main axes of Open Science: “Data” for
scientific data; “Document” for Papers, articles and other documents; Methods, workflows, software
and other processes for data handling are listed as “Process”; “Citation” for citation of authors and
documents; “CFP” for call for papers announcements (any call for contributions is included); “Confer-
ence” involves data generated from conferences, including information, slides, reports, recordings and
videos; “Funding” includes funding calls and reports generated from projects that receive funding; “In-
stitution” combines information and reports from institutions that produce scientific data or papers.
“Objective” involves data usage intent of each approach. “Access” refers to data access, including
search and retrieval; “Discover” refers to the discovery of new conclusions based on existing data;
“Review” is the activity of surveying and aggregating data from other studies. “Generate” includes
automatic or manual synthetic data generation used to test database systems. Subsection 3.7 provides
further analyses on these categories.

The subsections that follow show results grouped according to the research questions. The numbers
of total studies are based on the selected studies. The charts show how these number of studies vary
from 1984 to 2021 – the publication years of the oldest and newest selected study, respectively.

3.4 RQ1: Integrated Semantic Search and Semantic Mapping Approaches

Semantic search has been applied to different scientific fields. As shown in Section 3, we identified
209 selected studies that involve some sort of “integration”. We identified four different meanings for
this term in the context of semantic search. The first meaning was how to connect multiple databases
that include semantics with the intent to search them jointly – identified in 131 selected studies. The
second meaning was to take existing data and study how to add semantics to these data, identified in 84
selected studies. The third meaning relates to how adding a semantic layer to existing search engines,
identified in another 35 selected studies. This semantic layer is closely related to semantic mapping.
The fourth meaning refers to the definition of integrated tools to be used for search, as identified in
another 38 selected studies. These integration concerns are related to the software architecture of the
approaches (further discussed in Subsection 3.5).

We were unable to find a generic proposal that was tested on multiple scientific fields – namely, an
integrated approach to semantic search combining arbitrary domains. Rather, studies are motivated
by or solely tested on a specific knowledge domain, usually life sciences. This simplifies semantics
issues, since there is no need for, e.g., checking context-sensitiveness, as different contexts may involve
different meanings for a single word. In this sense, a related question appears: “how generic are
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Table VI. Detailed Studies of Extraction Phase. Columns 3 to 7 correspond to data on our research questions
Ref. Descriptive Summary Integra-

tion
Semantic
Mapping

Software
Architecture

Class Objective

[Budak Arpinar et al. 2006] A framework for exploiting analytics
from geospatial data. Automatic
capability for extracting information
from metadata.

Existing Auto Prototype
& Web

Data Discovery

[Xiaoming et al. 2007] A semantic model for annotating
scientific data (material research)
scattered over several databases.

Existing
& Layer

Manual Grid Data Access

[Zhizhin et al. 2007] Search engine for enviromental data
discovery. Includes fuzzy mapping for
natural languages that facilitates
queries.

Multi Loose Desktop &
Grid

Data Discovery
& Access

[Pirrò et al. 2008] Peer to Peer architecture for
collaborative research.

Multi Auto &
Loose

P2P & Web Doc-
u-
ment

Review &
Access

[Kraines 2008] A framework and web application for
sharing scientific production with
semantic reasoning capability for new
knowledge discovery.

Existing
& Layer

Strict Web Doc-
u-
ment

Discovery
& Access

[Neri 2009] Query rewriting based on formal
ontologies that map different
schemas.

Multi Auto &
Strict

Prototype Data Access

[Kumazawa et al. 2009] Ontology proposal for the discovery
of problems and solutions in
sustainability science.

Layer Manual Prototype Data Discovery
& Access

[Adams and Janowicz 2011] An approach to create mapping
ontologies to integrate geospatial
databases using machine learning.

Multi &
Tools

Loose Prototype Data Access

[Adamusiak et al. 2011] API for programming ontology
search and integration.

Multi &
Tools

Manual API Data Access

[Deus et al. 2012] API for integrating biological data.
Programmatic rules to map to
existing ontology.

Multi &
Layer

Auto &
Strict

API & Web Data Discovery
& Access

[de la Villa et al. 2012] A tool that automatically builds
concept maps from medical
knowledge bases.

Multi Auto Prototype Data Discovery
& Access

[Chua and Kim 2012] A system that annotates text to
allow cross-ontology integration.

Multi Auto Prototype Doc-
u-
ment

Access

[Thomas et al. 2013] A search engine for genetics that
automatically analyzes documents
and maps their relationships.

Existing Auto Web Doc-
u-
ment

Access

[Luo et al. 2013] Dynamic semantic mapping between
ontologies for Grid computing.

Multi &
Layer

Auto Grid Data Access

[Khattak et al. 2013] A (semi)automatic crawler to build
an ontology from document
repositories that allows semantic
search.

Existing
& Layer

Auto &
Loose

Grid Doc-
u-
ment

Access

[Brinkley et al. 2013] A mapping ontology that links
specific phenotypes to genotypes for
two different species. Allows to
discover cause and effect of
mutation/malformations.

Existing Manual Web Data Discovery
& Access

[Muresan and Klavans 2013] An approach for automatically
building terminologies from health
care text.

Multi Auto Web Doc-
u-
ment

Discovery

the proposed mechanisms?”. Several studies argued that, since their proposal was based on specific
ontologies, changing the ontology would provide appropriate support to other domains. However,
domain specificity hinders generality. The challenge here is to find an adequate compromise between
domain-specific (and thus more limited) mechanisms, and generic (and thus potentially less effective)
semantic search. There is thus an open challenge concerning the balance between a domain-specific
and a generic semantic search.

Similar to “integration”, there are different meanings for “Semantic Mapping”. Figure 2 presents
plots showing the evolution of these different meanings in the amount of selected studies over time.
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Table VII. Detailed Studies of Extraction Phase (Cont. of Table VI)
Ref. Descriptive Summary Integra-

tion
Semantic
Mapping

Software
Architecture

Class Objective

[Zheng et al. 2014] A Middleware that adds
semantic query capability for
biomedical scientific data.
Rules are written by the user.

Layer Manual Middleware Data Access

[Annane et al. 2016] Proposes mapping between
ontologies of different
languages to allow
multilingual queries.

Existing Manual Prototype Data Access

[Gil et al. 2017] A distributed architecture for
software artifact catalog with
semantic search capability.
Mapping is crowdsourced.

Multi &
Layer

Manual Web Software Access

[Portilla Herrera et al. 2017] An architecture proposal (not
functional) for semantic
annotation of existing
scientific documents to allow
semantic search.

Layer Auto Prototype
& Web

Document Access

[Djokic-Petrovic et al. 2017] A platform that allows
integrated search in different
bioinformatics data sources.

Multi Manual Web Data Access

[Jonquet et al. 2018] Combines metadata
annotations from 805
ontologies and 23 vocabularies
to create an unified
vocabulary for agronomy.

Multi Manual Web Data Access

[Omar et al. 2019] Semantic mapping for
Semantic web on top of
relational databases.

Layer Manual Prototype
& Web

Data Access

[Seifer et al. 2019] A semantic reasoning layer
extension for Scala, which
allows to integrate ontology
search into programming.

Existing
& Layer

Manual API Data &
Software

Access

[Ahmed and Afzal 2020] An approach to map sections
from scientific articles to
metadata, which is used by
search engines.

Existing Auto Prototype Citation &
Document

Discovery
& Access

[Sengloiluean and Khuntong 2020] An approach for integration
of learning resources stored in
heterogeneous databases by
using mapping ontologies.

Multi Auto Prototype Document Access

In general, “semantic mapping” refers to metadata fields added to the actual data with the purpose
of enriching data with semantic information. Our work identified 50 selected studies concerning
semantic mapping, and identified three categories of this mapping. The first category, corresponding
to 24 selected studies, is the “Manual Definition”, in which metadata is manually specified by authors
or curators. Since manual definition is time consuming, new approaches to automate these efforts
were reported. A second category, which we named “Automatic Definition”, in which metadata is
automatically added by software, presented in 23 selected studies. Automatic definitions present
challenges – e.g., when algorithms add incorrect metadata. As part of efforts to address this issue,
researchers proposed what we name here “Loose Mechanisms”, which are variations of automatic
metadata definitions. We identified in eight selected studies. Loose mechanisms include the usage
of fuzzy logic to include loosely related results based on their metadata, which are often ordered by
relevance; in another category, the “automatic definitions” are automatically linked to related results
by matching equal metadata attributes. We highlight that fuzzy definitions may lack precision, i.e.,
they may not follow a strict formal definition. It is interesting that in this context, 3 studies have
been identified advocating “Strict Definitions”. For example, the application of formal definitions to
avoid ambiguity within the semantic search.

Journal of Information and Data Management, Vol. 12, No. 5, November 2021.



Semantic Search to Foster Scientific Findability · 479

Integration Semantic Mapping

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

2
0

1
8

2
0

2
0

Year

0

2

4

6

8

10

S
tu

d
y
 C

o
u
n
t

Multi-DB
Existing
Tools
Layer

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2
0

1
4

2
0

1
6

2
0

1
8

2
0

2
0

Year

0

1

2

3

S
tu

d
y
 C

o
u
n
t

Auto
Manual
Loose
Strict

Fig. 2. Distribution of Integration and Semantic Mapping Meanings.

3.5 RQ2: Proposed Search Systems Characterization and Software Architectures

Different software architectures have been adopted while designing integrated semantic search en-
gines. Figure 3 shows the evolution of software architectures, grouping whether the studies involve
integration or semantic mapping. We identified 211 selected studies that propose an integrated imple-
mentation. Most of the studies (55 within selected) are based on multiple database composition, i.e.,
the authors integrate several databases by implementing a single query system. We point out that
multiple database systems are used interchangeably with integration concerns throughout these stud-
ies. This category of system appears in many situations, including large scale computing systems, e.g.
clusters and grids, being slowly replaced by the emergence of services and cloud computing, which is
represented by 37 and 13 selected studies, respectively. A total of 79 selected studies indicate the use
of web-based systems, often advocating that this implementation is adequate for the mainstream com-
munity. We found several prototype proposals (reported by 40 papers) although we could not check
the actual architectures of these prototypes because they were not described. Semantic integration
can be added as a layer to existing databases. Therefore, we expected studies suggesting middleware
software solutions to support this kind of integration. However, only seven studies reported this ap-
proach, which may indicate that this presents an implementation challenge to be followed up. We
identified sensor network systems, represented by 12 selected studies. This category includes things
from the Internet of Things, an increasing trend, as portrayed at the integration plot. This indicates
a need for platforms that can cope with the rate of data capture provided by these sensors. Another
recent trend, while only represented by 6 selected studies, is the emergence of artificial intelligence for
both semantic mapping and integrated semantic search during the past year.

3.6 RQ3: Further Characterization of the Search Platforms

As part of the software architecture identification, we collected further details on how software was
defined, including the metadata format and whether this format is standardized. We noted down the
research field because it could affect its software domain. Metadata formats were summarized into
seven categories, as presented in Figure 4. Ontology is the most referenced category (108 selected
studies), which is not surprising because it is part of the search string. Knowledge models were
mentioned in many of the selected studies (99), often surpassing the number of ontology studies
in the analyzed publication years. This suggests these models were used for searching separately
from ontologies. Linked data (including Linked Open Data) (20 selected studies) reached a peak in
selected studies in 2013, but has been fading since then. Text corpora (31 selected studies) have been
referenced in a broad range of years. Studies in this context often describe searches based on synonyms
and natural language processing. Formal methods (18 selected studies) were explored since the oldest
selected study from our analysis and continue being explored steadily through recent years. Besides
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Fig. 3. Distribution of Employed Software Architecture Categories.
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Fig. 4. Distribution of Scientific Metadata types.

these well defined categories, we found the use of annotations (45 selected studies) and metadata (68
selected studies), where the studies declared to use some kind of annotation or metadata, but they
did not clarify how these metadata were formed.

Besides focusing on search systems, 166 selected studies mentioned scientific data tool proposals
(cf. Figure 5). Most of these studies (107 selected studies) declare these proposals as analysis tools,
while a considerable portion mentions creating tools to construct a semantic layer for existing data
(35 selected studies). Crawler systems were reported, which focus on extracting data from external
sources (34 selected studies). 43 selected studies proposed metric or ranking systems to compare data
similarities. These studies are often related to recommender systems (16 selected studies).

We collected data domains of the reported software tools and platforms as areas, represented in
Figure 6. We point out that it is not simple to categorize research topics (areas) because many
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Fig. 5. Distribution of Scientific Data Tool Types.
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Fig. 6. Distribution of Publication Areas of the Selected Studies.

fields are closely related. For instance, it was not possible to completely separate general physics
from engineering. “Software” involved studies reporting software repositories (18 selected studies),
but the repositories could also store software for different domains. We identified that the majority
of the selected studies was related to biology and medicine (122 selected studies). Geological and
geographical data was also a common domain, with 26 selected studies. We noticed the increasing
trend of selected studies (14 in total) that focus on government and legal domain.

3.7 RQ4: Objectives and Class Distributions

Figure 7 presents four dominant classes of search parameters declared in 254 selected studies, as follows:
(a) Science Data: including text notes, spreadsheets, images, videos, recordings (195 selected studies);
(b) Documents: including articles and theses (54 selected studies); (c) Processes: involving workflows;
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methods, hypotheses, comparison metrics, software (56 selected studies); and Author names and their
affiliations (11 selected studies). Though the latter is not directly included in the three Open Science
axes, it is a frequent parameter of search mechanisms. Additional classes appear in a few selected
studies, namely Citation (10), CFP (1), Conference (5) and Funding (1). Although not considered as
part of Open Science axes, these classes were made available for specific search purposes. In particular,
“Citation” goes through citation bases; “CFP” denotes that the mechanism was proposed to search
for “call for papers”; “Conference” looks for data from conferences that have been held; “Funding” is
interested in discovering funding agencies/organizations and “Institution” is concerned with finding
specific institutions. Considering the total number of processes and software repositories, we identified
that a subset is not for scientific software (18 selected studies). Our results indicate that most studies
only focus on a single object class. Indeed, out of 254 studies, only 52 deal with more than one
class and only three selected study involved more than two classes. In this sense, another research
challenge is the design of (semantic) search mechanisms that allow combining distinct kinds of search
parameters - documents, data, processes and authors.

Integration Semantic Mapping
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Fig. 7. Distribution of Scientific Data Classes.

There were 260 selected studies that declared explicit objectives for using the scientific data. Figure 8
presents these objectives. The most common reported objective is to access the stored data in addition
to retrieving search results; and to notify users when new results appear (184 selected studies). The
second most common objective is discovery of new conclusions that are not part of the original data
submissions, including how to identify existing discovery aggregate data to identify and infer new
conclusions (123 selected studies). A slightly less frequent objective is data management, where
existing data, documents and authors are registered to foster report creation (54 selected studies). A
still less common objective found – 9 selected studies focused on simulations. They may be used, for
instance, to generate data for experiments and observations, validate data or extrapolate findings.

Another selected study focused on using search mechanism for auditing data and conclusions; by
using the collected data it is possible to identify the authors responsible for each claim, verify data,
ensure correctness and detect frauds or corruption. 3 selected studies discussed reproduction or
replication, where experiments returned by the search should be reproduced or replicated to verify
the findings. Finally, there were studies where the search was employed for supporting review efforts.
Study reviews summarize existing documents, aggregating their quantitative data and qualitative
descriptions and comments into into a new (non-primary) study.

Table VIII shows the distinct objectives we identified for the mechanisms (rows), and the eight
object classes (columns) - four of which are the most common, resulting in combinations that employ
the class (subject) with the action for an objective (verb) – e.g., cell (1,1) indicates that there were
139 studies that were concerned with some sort of access to scientific data. Cells present the numbers
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Fig. 8. Distribution of Scientific Data Objectives

grouped by integration and semantic mapping: e.g., this total of 139 studies is the result of the union
of sets that contain 130 and 25 studies, which were selected for integration and semantic mapping,
respectively. The table includes their frequency and descriptions.; Each cell contains the number of
studies followed by its description. The descriptions are colored according to the number of identified
studies. Different combinations may indicate new opportunities for the usage of the given data, though
some may not be feasible.

4. DISCUSSION AND OPEN CHALLENGES

This section discusses our results addressing open opportunities and study limitations. Our analysis
shows that some objectives have been relatively unexplored (cf. the numeric values in the cells of
Table VIII). This indicates lines for open research on situations that would benefit from semantic
search. Additional objectives were identified that are unrelated to semantic search – e.g., those that
mention issues s with “prediction” or means to export data. Prediction is considered part of “Discovery”
studies (Row 2 of Table VIII), which were focused on prediction. In these cases, they “Predict” or
estimate new data from existing data. Data export is an issue treated within the “Access” objective:
a)retrieve workflow objects within packages; or b) access results of experiments; or c) take data results
and explore them using software tools. “Teaching” is an objective associated with search and includes
support to prepare learning material for students at all levels (for findability), and to help them
find the material. “Visualization” combined to semantic search could lead to better comprehension
for both the semantic queries as well as the results from the semantic search. Our literature analysis
showed promising directions that can be further explored. For instance, our analysis of studies on data
management tools, shows that they do not address the opportunity to include strategic decisions, using
past scientific data to help researchers to plan future research efforts. Another gap in the reviewed
investigations in our view is how to support the design of public “Policies” based on evidence to
effectively aid in the creation of new edicts and bills that are backed by scientific production. We
could not find any study on semantic search to extract specific data and metadata from “Internal”
content available in documents and data, e.g., article sections or images.

New infrastructures should be planned to support future requirements on semantic search. Regard-
less of how complex are those unexplored opportunities and data classes, open challenges could foster
the design and implementation of new infrastructures. This can help novel research methodologies
providing faster responses to open scientific questions as required by emerging topics.

We stress that all documents and raw data collected during this study are openly available, thereby
supporting reproducibility, auditing, and extensions to our study [Gottardi 2021].
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Table VIII. Objectives and Classes. Provided with Frequency, Descriptions and Resulting Combinations.
Class

Scientific Data Document Process Authors Citation CFP Conference Funding
Access 139= (130 ∪ 25):

Search, query,
access,
recommend
and/or
retrieve
science data.

39= (33 ∪ 13):
Search, query,
access,
recommend
and/or
retrieve
papers,
articles,
journals,
reports,
magazines, etc.

36=
(34 ∪ 4):
Search,
access,
recom-
mend
and/or
retrieve
scientific
work-
flows.

10= (9 ∪ 1):
Search and
find or
recommend
authors and
related
authors.

7= (7∪ 1):
Search
for cited
refer-
ences
and their
counts.

0= (0 ∪ 0):
Search for
calls for
papers.

2= (2 ∪ 0):
Search or
access
past con-
ference
data, doc-
uments,
and
videos.

1= (1 ∪ 0):
Search
for
funding
calls.

Discover 93= (84 ∪ 15):
Discover
conclusions
using
aggregated
science data.

25= (21 ∪ 7):
Discover
conclusions
and related
documents
using existing
documents.

28=
(27 ∪ 1):
Discover
combined
work-
flows.

4= (4 ∪ 0):
Discover
what
authors
collaborate
on research
efforts.

6= (5∪ 2):
Discover
or
suggest
relevant
citations
for a
given
topic.

1= (1 ∪ 0):
Discover
or suggest
relevant
call for
papers for
a given
topic.

1= (1 ∪ 0):
Discover
or suggest
relevant
confer-
ences;
suggest
confer-
ence
events.

1= (1 ∪ 0):
Discover
or
suggest
relevant
funding
calls on a
given
topic.

Manage 42= (36 ∪ 6):
Manage known
science data,
also their
sources and
bases.

8= (6 ∪ 2):
Manage known
document
refer-
ences/citations.
Manage
documents
being written.

17=
(14 ∪ 3):
Manage
known
workflows
and assess
their
usage.

3= (2 ∪ 1):
Manage
known
authors, re-
lationships,
contribu-
tions and
their roles.

1= (1∪ 0):
Manage
citations
of docu-
ments
and their
rele-
vance.

0= (0 ∪ 0):
Manage
calls for
existing
and future
confer-
ences.

1= (1 ∪ 0):
Manage
confer-
ence
partici-
pants and
schedule
events.

0= (0 ∪ 0):
Manage
funding
requests
and
finances.

O
b
je

ct
iv

e

Simulate 8= (8 ∪ 0):
Simulate
experiments
and compare
against
existing data
for validation.

0= (0 ∪ 0):
Simulate
document
publications
and
acceptance.

3= (3 ∪ 0):
Simulate
workflow
usage and
outcomes.

0= (0 ∪ 0):
Simulate
author con-
tributions
and
outcomes.

0= (0∪ 0):
Simulate
citation
biblio-
metrics
based on
models.

0= (0 ∪ 0):
Simulate
call for
papers
and its
impact on
paper sub-
missions.

0= (0 ∪ 0):
Simulate
confer-
ences and
the atten-
dance of
partici-
pants.

0= (0 ∪ 0):
Simulate
funding
calls and
the
outcome
of its in-
vestment.

Generate 4= (4 ∪ 0):
Generate
[synthetic]
scientific data
for using or
testing
software and
workflows.

0= (0 ∪ 0):
Generate
scientific
documents
from data.

0= (0 ∪ 0):
Generate
custom
scientific
work-
flows.

0= (0 ∪ 0):
Generate
authors or
pseudonyms.

0= (0∪ 0):
Generate
[syn-
thetic]
citation
biblio-
metrics.

0= (0 ∪ 0):
Generate
call for
papers for
confer-
ences.

0= (0 ∪ 0):
Generate
confer-
ence
schedule
and infor-
mation

0= (0 ∪ 0):
Generate
funding
calls and
requests.

Replicate 3= (3 ∪ 0):
Replicate
studies based
on existing
science data
and compare
the outcomes.

0= (0 ∪ 0):
Replicate (or
plagiate)
existing
documents and
their
structures.

0= (0 ∪ 0):
Replicate
existing
work-
flows and
compare
their
outcomes.

1= (1 ∪ 0):
Imitate
author roles.

0= (0∪ 0):
Copy
citations
from
similar
studies.

0= (0 ∪ 0):
Copy call
for papers
from past
confer-
ences.

0= (0 ∪ 0):
Imitate
similar
successful
confer-
ences

0= (0 ∪ 0):
Copy
funding
calls from
similar
requests.

Audit 1= (1 ∪ 0):
Audit data for
validation and
verification;
protect from
corruption and
false data;
blame
manipulators.

0= (0 ∪ 0):
Audit
documents to
verify
authorship and
protect
documents
from
corruption.

0= (0 ∪ 0):
Audit
execution
of work-
flows.
Audit
who can
edit the
workflow.

0= (0 ∪ 0):
Audit roles
and
authorship
to protect
authors’
curricula
from
corruption
and false
data.

0= (0∪ 0):
Audit
paper
citations
for legit
citations
and valid
refer-
ences.

0= (0 ∪ 0):
Audit
CFP from
past con-
ferences to
compare
the call
versus
outcome.

0= (0 ∪ 0):
Audit
review
processes
and
schedules
of confer-
ences.

0= (0 ∪ 0):
Audit
funding
reports
and
requests
to verify
accom-
plish-
ments.

Review 0= (0 ∪ 0):
Review and
compare data
sets of science
data to
aggregate
results.

2= (2 ∪ 1):
Support for
literature
reviews,
secondary
studies.

1= (1 ∪ 0):
Review
workflows
and
methods
and
compare
their
efficiency.

0= (0 ∪ 0):
Review
existing
author roles
and contri-
butions.

1= (1∪ 0):
Review
paper
citations
(snow-
balling)

0= (0 ∪ 0):
Review
call for
papers
and
aggregate
their
requests.

0= (0 ∪ 0):
Review
confer-
ences to
write
reports.

0= (0 ∪ 0):
Review
funding
requests
and
scholar-
ships to
write
reports.
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4.1 Search Limitations

Number of search engines. Nine search engines were selected and invoked. To the best of our knowl-
edge, this number is higher than usual for secondary studies in Computer Science. We point out that
we left Google Scholar and DBLP out for the reasons described in Section 4. The first is not trust-
worthy for quantitative analyzes whereas the second does not make publication abstracts available.
Exclusion of partial documents. Partial documents, e.g., book chapters, were excluded because they
cannot simply be counted as complete studies. One could argue some chapters might also be consid-
ered complete studies. However, this would require specific metrics and duplicated verification that
would create new issues with the review method. Calibration of search strings. Search strings were
the same for all engines, and defined so as to collect a large number of studies. Our explored search
strings were not changed per search engine to avoid biased results. It is possible that if slightly differ-
ent strings were used per search engine, we could collect more relevant studies, but this modification
would potentially cause search bias.

4.2 Study Selection and Data Extraction

Study selection and data extraction were performed by the first author, and all authors of this paper
agreed on the method and protocol, which were strictly enforced. Data extraction was carefully
executed considering all selected studies. Additional parameters might be used in the future to
potentially aggregate more data from existing studies.

4.3 Threats to Validity

We describe some of the threats identified to the validity of our work, and describe the strategies
employed to mitigate them. Validity is categorized in internal, external, construction and conclusion,
with subtopics for each identified risk.

Internal Validity: This concerns “the extent to which the design and conduction of the study
are likely to prevent systematic error” [Kitchenham and Charters 2007]. – Incomplete analysis. To
mitigate this threat, all studies were verified three times according to the protocol. We recorded and
made available all timings involving the review process for each document to support future audits,
as part of the individual data collection Forms - cf. [Gottardi 2021]. – Errors in tools used for study
selection and extraction. To mitigate this threat, we used tools and methods reported as reliable by
related secondary studies (cf. Section 5). – Duplication of studies affecting quantitative analyses.
To mitigate this threat, plagiarized (including self-plagiarized) studies were carefully linked to ensure
that studies were only counted once during quantitative analyses regardless of whether they were
repeatedly published. We excluded partial documents, e.g. chapters, because they do not represent
a complete study and often represent small portions of a single study scattered in different small
publications, which could affect our results. External Validity: This concerns the applicability of the
results of the study outside the study itself [Kitchenham and Charters 2007]. – Representativeness of
the set of collected studies and the search engines used. To mitigate the threat of missing relevant
studies, nine search engines were searched completely, involving hundreds of thousands of documents.

Construction Validity - concerning the quality of the methodology adopted: – Suitability of protocol
and method to perform a systematic review. To ensure the appropriateness of our review, we followed
protocols and methods duly documented by literature specialized on systematic reviews.

Conclusions Validity: – Measure reliability (system and metrics used to count studies per cate-
gory). The only metrics adopted was counting instances, common in meta-analysis studies. All results
were produced automatically using a database system and a spreadsheet tool. – Insufficient sample
size. First, all engines were invoked exhaustively to mitigate this risk. We recall that we excluded
book chapters from our analysis to avoid considering non self-contained studies. Nevertheless, we
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provide the number of chapters and partial documents discarded for reference and auditing.

5. RELATED WORK

Related work concerns secondary studies on semantic search mechanisms. We identified a total of 107
secondary studies as part of our search results, of which 69 were selected during the selection phase.
Within the latter, 24 were related to the context of semantic search. However, none of these related
studies were conducted to answer the same questions as our secondary study.

From all secondary studies, those presenting some common elements to ours are the following. Xu
et al. [Xu et al. 2013] presented a study on semantic search by providing a survey on schemas for
metadata associated to scientific publishing; Zhang et al. [Zhang et al. 2019] studied approaches to
identify requirements for metadata search in the context of scientific data management. Additionally,
Gustafsson et al. performed a secondary study to identify how Semantic Web Technologies have been
employed to share knowledge among medical clinicians [Gustafsson et al. 2006]. Mulwad [Mulwad
2011] reviewed best practices for inferring meaning associated to data tables. The author argumented
how these practices can be employed to be used in Semantic Web and Linked Open Data scenarios.

Karimi et al. [Karimi et al. 2019] analysed different approaches that employ thesauri and ontologies
for semantic search. Additional examples of loosely related systematic reviews include Nguyen and
Chowdhury [Nguyen and Chowdhury 2013], who performed a systematic review to create a knowledge
map of digital libraries. Figueroa et al. [Figueroa et al. 2015] presented a review on the progress
of linked data technology, while Havukkala [Havukkala 2009] wrote a discussion regarding solutions
of semantic web retrieval for bio-technology, chemistry and related patents. In a similar context,
Urdidiales, et al. [Urdidiales-Nieto et al. 2017] wrote a survey on the search of web services for the
integration of biological databases. Gacitua et al. [Gacitua et al. 2019] provided a systematic review
on semantic web technologies and discussed application to data warehouses or other industrial uses.

Comparison to previous versions. We compare this version of our paper with two previous
publications of ours on the same issue – a preliminary study published as a short paper [Gottardi
et al. 2020a], subsequently extended to a full workshop paper [Gottardi et al. 2020b]. These past
versions followed the same methodology; also, they were focused on RQ4 because they were based
upon a smaller amount of documents. The major differences are the following: 1) the present study
thoroughly analyzes results concerning RQ1 through RQ4, whereas the previous papers concentrated
on RQ4. 2) Our systematic mapping was updated throughout February 2021, including six new search
engines. The present version analyzes 2054 unique studies as compared to 324 reported in the two
previous versions. 3) There is now qualitative information on 27 extracted studies, as opposed to the 11
found in the previous versions. 4) It includes more data classes for the identified primary studies, e.g.
article citations, conferences and funding. 5) It includes more data usage objectives for the identified
primary studies, e.g. synthetic data generation. 6) We now include completely new analyses on the
research field of the selected primary studies; in this work, we analyze the usage of scientific data
in Legal, Government and Patent definition. 7) We now analyze software architectures and related
techniques in our systematic review. 8) Another alternative meaning was added in the discussion of
the word “integration” in studies (tool integration). 9) We further provided a differentiation between
semantic mapping and integration in the quantitative analysis.

6. CONCLUSIONS

Open Science relies on collaboration through sharing research outcomes, usually grouped into three
classes - articles, data and processes. Effective sharing presupposes findability, which requires under-
standing research efforts on search mechanisms – their goals, approaches and underlying mechanisms.
We presented a systematic literature review on semantic search mechanisms applicable to scientific
repositories. Our study analyzed and synthesized 2054 documents as a result of processing the entire
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contents of ACM Digital Library, arXiV, Engineering Village, IEEE Xplore, SBC OpenLib, Springer
Link, Scopus, Wiley Online Library and Web of Science. We presented both quantitative and quali-
tative results, providing insights and pointing out open research issues to be addressed. The full set
of results, detailed methodology, graphic plots and analysis datasets are provided in [Gottardi 2021].
Our analysis effectively confirms that most search mechanisms for open science results are based on
finding publications, data or processes. There is also considerable research on author findability, and
a few studies on other parameters, e.g. funding agencies or institutions. Our study can contribute to
research in refining semantic search mechanisms to improve findability in the Open Science context.
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