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Abstract. Automatic classification of diagnoses has been a long term challenge for Computer Science and related
disciplines. Textual clinical reports can be used as a great source of data for such diagnoses. However, building
classification models from them is not a trivial task. The problem tackled in this work is the identification of the
medical diagnoses that are indicated in these reports. In the past, several methods have been proposed for addressing
this problem, but a method developed for reports in the cardiology area that are written in Portuguese is still needed.
In this paper we describe a method that is able to handle the peculiarities of clinical reports, including the medical
terminology, and that is implemented to estimate correctly the diagnosis based on raw clinical reports and a list of
the possible diagnoses. Experimental results show that our method has a high degree of accuracy, even for infrequent
classes and complex databases.

Categories and Subject Descriptors: Applied computing [Life and Medical sciences|: ; Computing methodologies
[Natural Language Processing]:

Keywords: cardiology, information extraction, machine learning, natural language processing

1. INTRODUCTION

Descriptive medical reports have been widely used for the development of health-related studies and
technologies, which, for instance, extract information organized as a category taxonomy. A key infor-
mation that is usually present in such medical reports is the set of symptoms and possible diagnoses,
but such information may be still limited w.r.t. diagnoses categories and may not support the ex-
pression of nuances [Stein HD 2000]. As a consequence, free text analysis is commonly chosen as a
strategy when no category precisely describes clinical findings, or when there is a need to give sup-
porting evidence for diagnosis or suspicion [Ford et al. 2013]. In summary, retrieving the diagnoses
from a medical report is not a trivial task.

The problem addressed in this work is the categorization of these reports, according to the diagnoses
described by them. Given that the number of reports available is usually very large, it means that
reviewing them manually is time consuming and cannot be performed in reasonable time for most
applications [Paixao et al. 2018], justifying the need for an automated solution.

This problem may be solved with the use of Natural Language Processing (NLP) methods and
models, a technology that has been used for many years [Hripcsak et al. 1995] and its effectiveness
has been already proven. Most implemented medical NLP systems reach a recall in the range of 80 -
85% and a precision in the range of 95 - 99% [Mamlin et al. 2003]. Even though this is not a perfect
performance, it may be good enough to be used in real-world applications, since humans fall within
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the same range.

While there are several models that make use of NLP to retrieve and use reports’ information [Fried-
man et al. 1995; Dang PA 2008|, the problem relies on the fact that many of them target just the
English language or are not developed for the cardiology area, which makes them far from ideal to be
applied to our problem scenario.

In this paper, we propose a self-supervised classification model that is specifically developed for
clinical reports written in Portuguese. An earlier version of this model, as well as a subset of the
results, was presented at KDMILe 2020 and this paper is an extension of the one that was presented
at the conference [Pedrosa et al. 2020]. Our method estimates a label from each textual report,
indicating what are the diagnoses that are contained in the report. Our strategy does not demand
any manual categorization of textual reports for the method to work. In summary, we have created a
robust and effective method, and applied it to two real cardiology datasets provided by Hospital das
Clinicas de Minas Gerais, one of which comprises more than 2,000,000 reports.

2. PROBLEM DESCRIPTION

The problem we are handling in this paper is a multiclass and multilabel classification task of free-text
for medical reports. Usually, medical reports are written as free-text by physicians and retrieving the
diagnoses in the text is very important, but, on the other hand, is not an easy task since there is a
large amount of data and there are several ways in which the same diagnosis may have been described
in the text. The common approach for such classification is a supervised learning method, in which a
subset of the existing data is labeled by a specialist and used for building a classifier, but manually
labeling the text in this task is too hard. Therefore, we need to build a method that can estimate the
diagnosis expected by the doctors without manually labeling.

Since the same diagnosis can be expressed in several different ways, a first resource for implementing
our proposal is a Diagnoses Dictionary. The Diagnoses Dictionary is elaborated by a specialist and lists
how a given diagnosis can be written. For instance, the diagnosis “Left Atrial Enlargement” may be also
identified as “Left atrial hypertrophy” or even “left atrial abnormality”. Each one of these terms should
be associated with the same entry in the Diagnoses Dictionary. By creating the Diagnoses Dictionary
we expect to have enough information about the target diagnosis without manually labeling the data,
but, since the medical report is free-text, it is not possible that the Diagnoses Dictionary contains
every form that the diagnosis may be found in medical reports. For example, in the diagnosis “Left
Atrial Enlargement”, we also find “L.A. Enlargement”, “left atrial abnorm”, “L.A. abnorm”, among
other variations and potential misspelling.

In this work we evaluate our approach using two different cardiology-related datasets, which are
described in the next subsections. In both cases, the only manually labeled exams are those that
compose the test dataset.

2.1 Electrocardiogram Records Database

The first dataset we used, named as Electrocardiogram (ECG) Records Database, consists of 2,322,513
clinical reports from ECG records of 1,676,384 different patients from 811 counties in the state of
Minas Gerais/Brazil. This dataset was acquired through the Telehealth Network of Minas Gerais
(TNMG) [Alkmim et al. 2012] and is composed of 68 ECG diagnoses together with a Diagnoses
Dictionary, containing common terms used for each diagnosis, which was developed along with a
cardiologist.

For the sake of a better understanding of how the dataset looks like, we show next a record sample
that illustrates a record containing multiple diagnoses:
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QRS axis shift to the left. QRS: LBBB morphology and increased ST and T wave duration: se-
condary changes to QTcLBBB: impaired Conclusion: 1- Tachycardia suggestive of marked sinus.
2-Left bundle branch block with left anterosuperior divisional block morphology. 3-Secondary
alterations of ventricular repolarization. 4-Isolated Ventricular Extrasystoles with conduction
aberration. |[...]

This record indicates the diagnoses Left Bundle Branch Block, Ventricular Extrasystoles,
Left Anterior Fascicular Block, Left Axis Deviation, Secondary Changes in Ventricular
Repolarization and Sinus Tachycardia.

To exemplify how diverse each diagnosis may be, the "Ventricular extrasystoles" can be referred
in the text as "Ventricular extrasystoles", "EEVV", "Ventricular Ectopy", but it is not limited to
these keywords, since this is a free text dataset. It is worth mentioning that, in this scenario, keyword
searching is not enough for retrieving the diagnosis, as we discuss later when evaluating the "regular
expression" baseline.

2.2 Pacemaker Patients Database

The Second Dataset, named as Pacemaker Patients Database, contains records from pacemaker pa-
tients. This dataset was acquired through the Telehealth Network of Minas Gerais (TNMG) and is
composed of 70,312 records from 2,899 patients from Hospital das Clinicas de Minas Gerais. This
dataset is composed of 10 electrocardiography diagnoses and a Diagnoses Dictionary, containing com-
mon terms used for each cardiovascular diagnosis, which was developed along with a cardiologist.

3. RELATED WORKS

Several works emerged recently aiming to automatically classify medical textual data. Despite the
large volume of data associated with healthcare applications, a significant portion of their data is free
text, and does not contain clear patterns that maybe exploited by an automated method. The usage
of NLP for such problems was proposed by several works [Spyns 1996; Friedman 1997; Souza et al.
2014; Hassanpour and Langlotz 2016] in recent years, but it is still a big challenge.

There are previous works that have used classic text extraction and model building to classify
health related data in the fields of radiology and cardiology [Xu and Sharma 2019; Jagannatha and
Yu 2016]. These works employed Recurrent Neural Networks, based on Long Short Term Memory
cells, and Word Embedding, achieved good results, and have showed that these are effective tools in
the realization of this task. On the other hand, they require manual labeling of a large amount of
data to support some supervised learning algorithm to classify the reports, and, as it is not always
possible to build a training database by manually labeling records, this approach is not applicable to
most applications.

Along with that, there are works that use a semantic approach. Some works explore information
retrieval models and techniques and use language characteristics to improve the result [Friedman et al.
1995; Spyns 1996], while others explore statistical parsing models [Collins 1997; Klein and Manning
2003]. Statistical parsing models are generative models of lexicalized context-free grammars and it
has been shown that these models may be expanded to handle sub-categorization and wh-movement!.
Results show that this approach can achieve good performance, reaching more than 85% for both
accuracy and recall. However, despite the good results, these models are designed for the English

1Wh-movement is the formation of syntactic dependencies that make some words, in the English language, change
position in a phrase, depending whether the phrase is interrogative or affirmative. Interrogative forms are known within
English linguistics as wh-words, such as what, when, where, who and why.
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language and, since the information retrieval and statistical parsing are based on characteristics of
the language, it is very hard to apply them directly to other languages.

There are three other methods that can be used to address the same problem and that we will
use as baselines for comparative assessment to our proposal: Regular Expressions, Latent Dirichlet
Allocation (LDA), and Transformer Models [Vaswani et al. 2017].

The classical version of the LDA provides topic modeling in a non-supervised context, since LDA
works by connecting each document to each word through a thread, based on their location in the
document, and then use this information to learn which documents discuss the same topic. Some
works [Yadav 2017; Allahyari et al. 2017] have used a modified version of the Latent Dirichlet Allo-
cation to achieve the task of retrieving information from medical reports. They have used semantic
terms in order to achieve good results, and there are works that extended it towards a self-supervised
version.

Transformer models were originally developed to address the problem of sequence transduction, or
neural machine translation, and are based solely on attention mechanisms [Bahdanau et al. 2014], a
procedure that searches for parts of a given relevant sentence to predict a target word in an encoder-
decoder model. Thus, they can be applied to practically any task that transforms an input sequence
to an output sequence, including speech recognition, text-to-speech transformation and other labeling
tasks, and have shown high effectiveness in all of these tasks in previous works [Hu and Singh 2021;
Karita et al. 2019; Gulati et al. 2020].

The main difference from our approach to existing ones is that, through the Diagnoses Dictionary,
we are able to use the medical knowledge already known from literature, instead of using a completely
unsupervised method, while, at the same time, not having to perform a laborious manual classification
of the textual reports.

4. METHODOLOGY

In this section we describe our method and discuss each of its components. As mentioned, it is
a self-supervised method, since it learns classification patterns from the medical reports using the
Diagnoses Dictionary. In particular, each diagnosis from the Dictionary is a class and we will refer to
them as classes from now on. We also adopt the premise that our proposed method must use only the
database with the textual clinical reports and the Diagnoses Dictionary(Sec. 2), which contains the
most common terms for each class, meaning that no manual labeling of the data is necessary. Our
method is illustrated in Figure 1. In order to accomplish the classification task, our method stacks
three different steps, described in the next subsections.

Automated
Class Dictionary Scoring Definition of
Training Base

Label Indicating
Present Diagnoses

Medical Report Classifier

Fig. 1. Illustration of each step in the proposed method. Here, the red rectangles represent the information that is used
as input to the method, the blue rectangles represent the method steps and the green rectangles represent the method’s
outcome.
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4.1 Scoring

Scoring aims to quantify the strength of the relation between each textual report and each class. We use
the Diagnoses Dictionary that contains the common terms for each diagnosis and the medical report
as input for scoring. The entries of the Diagnoses Dictionary may contain either Normal sentences or
Acronyms, we estimate the score for each entry for each class. The score is a real number between
0 and 1. The higher the value of the score is, the higher is the probability that the text belongs to
the desired class. For determining the score for acronyms we employ a binary function, that is, if the
acronym is a substring of the text report, then the score is 1, otherwise, it is 0.

For normal sentences, the score is defined as a similarity between the sentence and each substring
of the medical report. A common similarity measure for text is the Levenshtein distance [Pradhan
et al. 2015] and it was used in our method to measure the score for normal sentences as follows:

We denote lev(A, B) as the Levenshtein string distance between two strings A and B. Also, lets
define a score function f between two strings as:

_ z(length(A),length(B))—lev(A,B)
f(A’ B) = =22 ;;g(lengthe(zlg),length(ég)

Denoting A as a term of our dictionary and S as the set that contains all substrings of the clinical
report that has the same length of A, the score between this clinical report and the class associated
with A is:

max{f(A,B): B € S}.

In summary, the score between a report and a class is the maximum score for all terms of the class
present in the Diagnoses Dictionary .

4.2 Automated Definition of Training Base

Using the scores calculated, we generate a training dataset for a classifier. This training dataset is
automatically generated by our method and is a subset of the complete database. Another information
that we know from medical literature is the prevalence for each class, i.e., the proportion of exams in
which each class usually appears. Thus, the dataset consists of the records associated with the highest
scores, which should also satisfy a threshold x, chosen so that the number of records that score higher
than z is as close as possible to the number of records indicated by the class prevalence. For example,
suppose that our dataset has n records and there is a class ¢ with a defined prevalence of 0.01. We
would sort the records in descending order of score and the threshold for class ¢ would be the score of
the record ranked |0.01-n]. This threshold is depicted in Figure 2.

We can now use the training dataset to build the machine learning model, as described next.

4.3 Classifier

We implemented our classifier using a recurrent neural network to learn the patterns. Our hypothesis
is that the training dataset contains latent features so that a supervised learning method can learn
from them and then classify the entire dataset.

First, we need to preprocess the medical reports, transforming them into vectors that can be used
as input for a classifier. For that, we used a text vectorization model based on frequency in the text
inspired by term frequency — inverse document frequency (tf-idf) [Ramos et al. 2003].

With the texts now transformed into vectors, we can use these vectors and the training dataset
generated in 4.2 as the input for training the classifier. After the learning process, the classifier should
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Fig. 2. Visual explanation of how the threshold is chosen. Axis Y represents number of registers that have a score
greater or equal to the score defined in Axis X. The red line shows where the threshold must be placed for the number
of registers to be as close as possible to the amount defined by the class prevalence.
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Memory Layer

Fig. 3. Structure of the Neural Network.

be able to take a textual report as input and output a label that represents the classes contained in
the report.

As mentioned, our classifier is a Recurrent Neural Network model, consisting of two main layers.

The first layer is a word embedding layer. Word embedding is a technique that consists of denoting
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semantically similar words [Mikolov et al. 2013]. Relying on the hypothesis that linguistic items with
similar distributions have similar meanings [Harris 1954], the technique defines similarity based on the
context where the words appear. As a consequence, we can set the word embedding as a parameter
in our model, and let it be updated during training.

The second layer is a Long Short Term Memory layer. Long Short Term Memory layers define
a special kind of recurrent neural network, capable of learning long-term dependencies. They were
introduced in 1997 [Hochreiter and Schmidhuber 1997] and work tremendously well on a large variety
of problems.

After the network has been built, the information gathered in the process described in the last two
steps is used to train it.

During the training step, the loss function used was the Binary Cross Entropy Loss. The binary
cross entropy loss is defined as:

N
Loss = = > i - log(p(y:) + (1 — i) - log(1 = p(v:))))

i=1

where N is the number of records, y is the label (1 if belonging to class and 0 if not) and p(y) is the
predicted probability that the record belongs to the class, for all N records. Along with that, we used
a learning rate of 0.0005.

5. RESULTS

We evaluated our approach using the two datasets described in section 2.

5.1 First Dataset: ECG records

For the first dataset, ECG records, we will show the result for the 35 most relevant classes. Their
results and the acronym by which they are referred in this paper can be seen in Tables I, II and III.
Through this dataset we want to show how our method is able to output the correct result, and we
compare our proposal to three baselines, described next.

Our first baseline is a regular expression (regex) classifier. Regular Expressions are a very simple
technique. Some pattern is written in a formal language and given as input to the regex engine, which
labels the text depending on the pattern being found in the text or not. This technique is used here
to demonstrate the dataset complexity. We can see through Table II, in the Regex columns, that,
even though the recall is equal to 1, which is expected in this baseline for this dataset, the precision is
below 0.25 for all classes. This is also expected, since the input data is free text, with no clear pattern
to be recovered using only regex.

The second baseline is a state-of-the-art topic modeling method, LDA [Yadav 2017; Allahyari et al.
2017]. LDA can be used as a classifier, in a non-supervised context, and works by connecting each
document to each word by a thread, based on their appearance in the document and use this informa-
tion to identify which documents discuss the same topic. Basically, it defines a relation between words
and topics and determines the topics of a document, based on its words. This model was fine-tuned
to our database to get the best results, although, at the end, our proposed method achieves the best
result in all cases.

The third baseline is a model implemented with a transformer network architecture, based solely on
attention mechanisms [Yang et al. 2016], dispensing recurrence and convolutions entirely. Experiments
show these models to be superior in quality while being more parallelizable and requiring significantly
less time to train [Vaswani et al. 2017]. Some tests have been conducted in order to define what would
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Table I. Precision rates for four methods applied in the first test dataset. The best result amongst all classes is
highlighted.

Precision
Acronym Class PM TF LDA Regex #
Al Analysis Impossible due to Absence of Electrocardiographic Signal | 1.000 1.000 0.090 0.023 30
LPFB Left Posterior Fascicular Block 0.967 0.941 0.604 0.037 49
WPW Wolff Parkinson White 0.967 0.909  0.857 0.023 31
LAFB Left Anterior Fascicular Block 0.964 0.925  0.242 0.176 230
PMKR Pacemaker 0.937  0.967 0.125 0.049 64
CDRB Conduction Disorder of the Right Branch 0.920 0.921 0.871 0.047 61
PRWP Poor R-wave Progression 0.893 0.853  0.809 0.046 61
RAD Right Axis Deviation 0.891 0.969  0.305 0.053 69
PQTI Prolonged QT Interval 1.000 0.893 1.000 0.026 34
SA Sinus Arrhythmia 0.871  0.872  0.059 0.027 35
EAR Ectopic Atrial Rhythm 0.903 0.879  0.040 0.023 30
CDLB Conduction Desorder of the Left Branch 0.897 0.892  0.057 0.029 38
RBBB Right Bundle Branch Block 0.861 0.817  0.158 0.151 196
PIE Possible Inversion of Electrodes 0.900 0.750  0.041 0.023 30
LBBB Left Bundle Branch Block 0.914 0.844 0.105 0.077 100
AFL Atrial Flutter 0.909 0.939 0.944 0.027 35
AF Atrial Fibrillation 0.807 0.842 0.846 0.054 71
LAE Left Atrial Enlargement 0.893 0.878  0.701 0.077 100
STA Supraventricular Tachycardia 0.914 0.833  0.044 0.030 39
SPRI Short PR Interval 0.775 0.738  0.059 0.024 32
SCVR Secondary Changes in Ventricular Repolarization 0.847 0.814  0.617 0.156 204
MAT Multifocal Atrial Tachycardia 0.867 0.667  0.750 0.012 16
AVB1 First-Degree Atrioventricular Block 0.756  0.824  0.477 0.094 123
PCVR Primary Changes in Ventricular Repolarization 0.920 0.732  0.644 0.046 60
LAD Left Axis Deviation 0.900 0.836  0.834 0.233 303
NCVR Nonspecific Changes in Ventricular Repolarization 0.796 0.851 0.185 0.179 233
NECG Normal ECG 0.804 0.725  0.613 0.060 79
VES Ventricular Extrasystoles 0.732 0.764  0.552 0.102 133
EIA Electrically Inactive Area 0.793 0.779  0.393 0.046 60
SB Sinus Bradycardia 0.778 0.867 0.467 0.045 59
SI Subendocardial Ischemia 0.727 0.364  0.019 0.013 18
AVB2M1 2nd Degree Atrioventricular Block Mobitz 1 0.884 0.862  0.750 0.025 33
LVH Left Ventricular Hypertrophy 0.740 0.707  0.504 0.051 67
SVES Supraventricular Extrasystoles 0.649 0.635  0.059 0.049 64
ST Sinus Tachycardia 0.571 0.415  0.019 0.018 24
Average Values 0.856 0.814 0.424 0.062 | 80.31

be the best configuration for a transformer based model in our task. After these tests, the model that
showed the best result among all was chosen and is displayed in Table III. Although transformers
present all these advantages over other architectures and even though the best possible version of the
technique for our case is manually chosen, our proposed model still performs better in most cases,
outperforming the baseline techniques in most classes. These results show the efficiency of our method
when compared to other models.

In the tables, we refer to PM as the Proposed Model, LDA as Latent Dirichlet Allocation, REG as
the application of a simple Regex in order to find the terms of the Diagnoses Dictionary in the reports
and TF as the TransFormer based model.

We also present some Receiver Operator Characteristic (ROC) curves to help in the analysis of the
technique performance. A ROC curve is a graph showing the performance of a classification model at
different classification thresholds. This curve plots two parameters: the True Positive Rate and the
False Positive Rate.

True Positive Rate (TPR) = TP::—%
.y _ FP
False Positive Rate (FPR) = TNTFP
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Table II. Recall rates for four methods applied in the first test dataset, ordered by F1. Here, although the best result
is the Regex for all classes, we decided to highlight the best result amongst the three other classes. Regex always has a
recall equal to 1 due to the form of the dataset and the nature of the method.

Recall
Acronym Class PM TF LDA Regex +#
Al Analysis Impossible due to Absence of Electrocardiographic Signal | 0.966  1.000 1.0 1.000 30
LPFB Left Posterior Fascicular Block 0.979 0.980 0.591 1.000 49
WPW Wolff Parkinson White 0.967 0.968 0.967 1.000 31
LAFB Left Anterior Fascicular Block 0.939 0.965 0.995 1.000 230
PMKR Pacemaker 0.937 0.906  1.000 1.000 64
CDRB Conduction Disorder of the Right Branch 0.950 0.951  0.557 1.000 61
PRWP Poor R-wave Progression 0.967 0.951  0.557 1.000 61
RAD Right Axis Deviation 0.956 0.913  0.782 1.000 69
PQTI Prolonged QT Interval 0.852 0.735  0.558 1.000 34
SA Sinus Arrhythmia 0.971 0.971 1.000 1.000 35
EAR Ectopic Atrial Rhythm 0.933 0.967 1.000 1.000 30
CDLB Conduction Desorder of the Left Branch 0.921 0.868 0.973 1.000 38
RBBB Right Bundle Branch Block 0.954 0.980 0.994 1.000 196
PIE Possible Inversion of Electrodes 0.900 0.900 1.000 1.000 30
LBBB Left Bundle Branch Block 0.860 0.920 0.980 1.000 100
AFL Atrial Flutter 0.857 0.886 0.971 1.000 35
AF Atrial Fibrillation 0.943 0.901 0.929 1.000 71
LAE Left Atrial Enlargement 0.800 0.860  0.940 1.000 100
STA Supraventricular Tachycardia 0.820 0.897 1.000 1.000 39
SPRI Short PR Interval 0.968 0.969 1.000 1.000 32
SCVR Secondary Changes in Ventricular Repolarization 0.843 0.858 0.887 1.000 204
MAT Multifocal Atrial Tachycardia 0.812 0.625  0.750 1.000 16
AVB1 First-Degree Atrioventricular Block 0.935 0.700  0.260 1.000 123
PCVR Primary Changes in Ventricular Repolarization 0.766  0.935 0.816 1.000 60
LAD Left Axis Deviation 0.778 0.838 0.429 1.000 303
NCVR Nonspecific Changes in Ventricular Repolarization 0.875 0.906 0.995 1.000 233
NECG Normal ECG 0.835 0.835 0.822 1.000 79
VES Ventricular Extrasystoles 0.924 0.902  0.759 1.000 133
EIA Electrically Inactive Area 0.833 0.883 0.950 1.000 60
SB Sinus Bradycardia 0.830 0.881 0.830 1.000 59
SI Subendocardial Ischemia 0.888 0.667 1.000 1.000 18
AVB2M1 2nd Degree Atrioventricular Block Mobitz I 0.696 0.758  0.545 1.000 33
LVH Left Ventricular Hypertrophy 0.814 0.829 0.895 1.000 67
SVES Supraventricular Extrasystoles 0.781 0.953 1.000 1.000 64
ST Sinus Tachycardia 0.833 0.708 1.000 1.000 24
Average Values 0.884 0.879  0.850 1.000 80.31

Each point on the ROC curve represents a TPR vs. FPR pair corresponding to a particular decision
threshold. Lowering the classification threshold classifies more items as positive, thus increasing both
False Positives and True Positives. The area under the ROC curve (AUC) is a measure of how well
a parameter can distinguish between two diagnostic groups [Fan et al. 2006]. An excellent model has
AUC near to 1 which means it has a good measure of separability and when AUC is near 0.5, it means
that the model has no class separation capacity whatsoever.

These graphs show very good results, e.g., among all curves, the one with the smallest AUC has an
area of 0.94 and the best one has an area of 1.00. Two of the best curves can be seen in Figure 4 and
Figure 5 and two of the worst curves can be seen in Figures 6 and 7. In the first example it can be
seen that the model is able to achieve a perfect Sensitivity with a very small False Positive Rate. In
the second example, it is possible to see how the worst curve is still a good result, showing an AUC
of 0.94.

5.2 Second Dataset: Pacemaker patients

For the data set Pacemaker patients we display, in the Table IV, a subset of the results, showing the
10 classes of etiology for heart diseases, along with our method results. We display the same baselines
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Table III. F1 rates for four methods applied in the first test dataset, ordered by F1. The last row indicates how many
times the method has achieved the best F1 rate amongst all. In the case of a tie between models, all models with the
top rate are considered best.

F1
Acronym Class PM TF LDA  Regex #
Al Analysis Impossible due to Absence of Electrocardiographic Signal | 0.938 1.000 0.165 0.045 30
LPFB Left Posterior Fascicular Block 0.969 0.960  0.597 0.072 49
WPW Wolff Parkinson White 0.967 0.938  0.909 0.046 31
LAFB Left Anterior Fascicular Block 0.951 0.945  0.390 0.300 230
PMKR Pacemaker 0.937 0.935  0.222 0.094 64
CDRB Conduction Disorder of the Right Branch 0.935 0.935 0.680 0.089 61
PRWP Poor R-wave Progression 0.929 0.899  0.660 0.089 61
RAD Right Axis Deviation 0.923 0.940 0.439 0.100 69
PQTI Prolonged QT Interval 0.920 0.806  0.716 0.050 34
SA Sinus Arrhythmia 0.918 0.919 0.111 0.052 35
EAR Ectopic Atrial Rhythm 0.918 0.921 0.076 0.045 30
CDLB Conduction Desorder of the Left Branch 0.909 0.880  0.107 0.056 38
RBBB Right Bundle Branch Block 0.905 0.891 0.274 0.262 196
PIE Possible Inversion of Electrodes 0.900 0.818  0.079 0.045 30
LBBB Left Bundle Branch Block 0.886 0.880  0.190 0.143 100
AFL Atrial Flutter 0.882 0.912 0.957 0.052 35
AF Atrial Fibrillation 0.870 0.871 0.885 0.103 71
LAE Left Atrial Enlargement 0.865 0.869  0.803 0.143 100
STA Supraventricular Tachycardia 0.864 0.864 0.085 0.058 39
SPRI Short PR Interval 0.861 0.838  0.113 0.048 32
SCVR Secondary Changes in Ventricular Repolarization 0.845 0.835  0.728 0.27 204
MAT Multifocal Atrial Tachycardia 0.838 0.645  0.750 0.024 16
AVB1 First-Degree Atrioventricular Block 0.836 0.757  0.336 0.172 123
PCVR Primary Changes in Ventricular Repolarization 0.836 0.821  0.720 0.088 60
LAD Left Axis Deviation 0.835 0.837 0.566 0.378 303
NCVR Nonspecific Changes in Ventricular Repolarization 0.834 0.877 0.312 0.303 233
NECG Normal ECG 0.819 0.776  0.702 0.114 79
VES Ventricular Extrasystoles 0.817 0.828 0.639 0.185 133
EIA Electrically Inactive Area 0.813 0.828 0.556 0.088 60
SB Sinus Bradycardia 0.803 0.874  0.597 0.087 59
SI Subendocardial Ischemia 0.799 0.471  0.037 0.027 18
AVB2M1 2nd Degree Atrioventricular Block Mobitz 1 0.779  0.806 0.631 0.049 33
LVH Left Ventricular Hypertrophy 0.775 0.763  0.645 0.098 67
SVES Supraventricular Extrasystoles 0.709 0.763 0.112 0.093 64
ST Sinus Tachycardia 0.677 0.523  0.038 0.036 24
Average Values 0.866 0.841  0.453 0.112 80.31
Best Models (count) 21 14 2 0 #

ROC - Atrial Flutter
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Fig. 4. ROC curve graph for the class "Atrial Flutter", an example of a very good result.
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ROC - Ectopic Atrial Rhythm
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Fig. 5. ROC curve graph for the class "Ectopic Atrial Rhythm", another example of a good result.

ROC - Left Ventricular Hypertrophy
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Fig. 6. ROC curve graph for the class "Left Ventricular Hypertrophy". One of the worst results.

ROC - Secondary Repolarization Changes
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Fig. 7. ROC curve graph for the class "Secondary Repolarization Changes". The worst result amongst all curves.
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Table IV. Precision, recall and F1 rates for the second application.

Class Precision Recall F1

PM TF LDA REG | PM TF LDA REG | PM TF LDA REG
Chagas 1.000 0.867 0.157 1.000 | 0.762 0.620 1.000 0.904 | 0.865 0.722 0.271  0.950
Schemic Cardiomyopathy 1.000 0.236 0.194 0.944 | 0.423 0.500 1.000 0.654 | 0.594 0.321 0.325 0.773
Valvular Heart Disease 1.000 0.244 0.185  1.000 | 0.600 0.880 1.000  0.400 | 0.750 0.383 0.312  0.571
Hypertrophic Cardiomyopathy 1.000 0.154 0.081 0.000 | 1.000 0.182 1.000 0.000 | 1.000 0.167 0.151  0.000
Congenic Cardiopatics 1.000 0.429 0.111  0.000 | 1.000 0.600 1.000 0.000 | 1.000 0.500 0.200  0.000
Long QT Syndrome 1.000 0.271 0.163 1.000 | 0.682 0.727 1.000 0.591 | 0.811 0.396 0.280  0.743
Brugada Syndrome 1.000 0.211 0.148 1.000 | 0.700 0.950 1.000 0.650 | 0.824 0.345 0.258  0.787
Idiopathic Ventricular Fibrillation | 1.000 0.429 0.096  0.000 | 1.000 0.461 1.000 0.000 | 1.000 0.444 0.176  0.000
Arrhytthmogenic Dysplasia of VD | 1.000 0.450 0.115 0.000 | 1.000 0.600 1.000 0.000 | 1.000 0.514 0.205 0.000
Idiopathic Cardiomyopathy 1.000 0.385 0.082 0.000 | 1.000 0.909 1.000 0.000 | 1.000 0.541 0.151  0.000
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Fig. 8. Boxplot with F'1 rates of each method on the Bootstrap samples. Here we show the classes in which the Proposed
Method has achieved a statistically better performance.

used for the first application as comparison.

In this application, it can be seen that the baselines did not perform well, as a consequence of
the database being much more complex and having a very wide range of terms for each class, many
of which absent in our dictionary. Regex doesn’t always achieve the maximum Recall (1) because
sometimes the physicians specify that a report doesn’t belong to a given class. Also, the fact that
Regex obtained F1 equal to 0 in some classes, shows that, in these cases, none of the terms were
written exactly like the terms in the Diagnoses Dictionary. However, even with these obstacles, our
method was able to accomplish what none of the baselines could and achieved a very good performance
in this database, achieving an F1 score above 0.8 in most classes.

5.3 Statistical Analysis

In order to improve the robustness of our results, we analyzed their statistical significance. We used
bootstrapping to generate 5.000 samples of the test datasets, each with the same size of the original
dataset, i.e., 1301 records for the First Dataset and 137 records for the Second Dataset. We performed
the proposed method, as well as the three baselines, on all samples. The same metrics presented in
the previous tables have been calculated for each class in each one of these samples.
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Fig. 9. Boxplot with F1 rates of each method on the Bootstrap samples. Here we show the classes in which the Proposed
Method has achieved a statistically worse performance than some other method.
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Fig. 10. Boxplot with F1 rates of each method on the Bootstrap samples. Here we show the classes in which the
Proposed Method has achieved a performance that is at least statistically similar than any other method.

In Figures 8, 9 and 10, boxplots representing the performance of each method in each class for
the first dataset can be seen. We divide the results into three graphs for a better visualization of the
results. In Figure 8, we present the 9 classes in which the Proposed Method has achieved a statistically
better performance than any other method, while in Figure 9 we present the 4 classes in which the
Proposed Method has achieved a statistically worse performance than some other method, and, in
Figure 10 we present the classes in which the Proposed Method has achieved a performance that is at
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Fig. 11. Boxplot representing how well each method performed on each class on the bootstrap samples from the Second
Dataset.

least statistically similar to any other method. In all cases of Figure 9, the method that has achieved
the best performance is TF. It is important to point that Transformers are not a trivial baseline, as
explained in section 3. They are the state of the art in text classification tasks and, even so, they only
managed to overcome our method in 4 of the 35 classes. The fact that our method is superior to this
baseline in 9 classes, while still managing to achieve a similar performance in the vast majority of the
other classes, demonstrates its effectiveness.

In Figure 11, it is possible to see a boxplot representing the performance of each method in each
class in the Bootstrap samples of the second test dataset. In this dataset, our method achieved a
statistically superior performance in 6 cases. In 2 classes, the best method was the Regex and in 2
other classes there was no method that is statistically superior to its counterparts. The performance
of the Regex is related to the fact that the classes on this dataset behave very differently. In the
6 cases where regex is better, it is because the classes are very well behaved, i.e., in these classes,
it is common for physicians to write the diagnosis exactly as presented in the Diagnoses Dictionary,
so a simple regular expression is enough to classify most records. In the other 6 cases, the opposite
happens, as these are not well behaved classes and have their descriptions written in different ways by
physicians in the reports. A possible reason why TF do not perform well on this dataset is because
the amount of training data is much smaller, and this method requires a large database to be able to
achieve a good performance. The fact that our method achieves good performance, even on a database
with less amount of data for training, shows its robustness.

6. CONCLUSION

In this work we proposed and evaluated a method to map medical reports written in free text into
labels that automated classifiers may use as input. Our method was applied to two real cardiology-
related datasets and achieved good results in both, even when other techniques were not able to
handle the complexity of the reports. We believe that even better results may be achieved using a
more detailed Diagnoses Dictionary.
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Several works support the development of techniques like ours as relevant [Prince and Roche 2009;
Gabrieli and Speth 1990; Baud et al. 1992] and studies have demonstrated the need to apply techniques
such as the one employed in this paper so that data can be used in an effective way [Ribeiro et al.
2020; Paixao et al. 2018; Hughes et al. 2004]. The results achieved demonstrate not only that our
work is relevant, but also that it is applicable to a wide range of scenarios.

Finally, for future work, we intend to apply this technique in other scenarios and contexts to
demonstrate the generality and assess the robustness of our method even further.
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