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Abstract. Spatiotemporal data has always been big data. In these days, big data analytics for spatiotemporal data is
receiving considerable attention to allow users to analyze huge amounts of data. Traditional big data platforms cannot
handle all the challenges of processing spatio-temporal data. Although some big data platforms have been proposed to
process a massive volume of spatiotemporal data, neither is considered a clear winner for all possible scenarios. This
paper presents the SmarT query engine, a machine learning-based solution that chooses the best big data platform
for processing spatiotemporal queries on the fly. In a detailed experimental evaluation, considering the Apache Spark,
Elasticsearch, and SciDB big data platforms, the response time decreased up to 22% when using SmarT.

Categories and Subject Descriptors: H.2.4 [Database Management]: Miscellaneous; C.2.4 [Computer-communication
networks]: Distributed Systems—Distributed databases; Distributed applications

Keywords: Big Data, Machine Learning, Time Series Analysis

1. INTRODUCTION

Over the past few decades, time series processing has been considered one of the most challenging
problems in data mining [Fawaz et al. 2019]. A time series is a collection of observations made
sequentially over time. Time series arise in many domains such as finance, agronomy, health, earth
monitoring, weather forecasting, to name a few. Because of advances in sensor technology, such
domains may produce millions to trillions of time series, requiring fast analytical and summarizing
techniques.

It all starts with the explosion in the amount of spatiotemporal data we have generated since the
dawn of the digital age. Researchers want to reveal the information existing in these datasets through
effective methods or techniques. Process spatiotemporal queries in a large volume of spatiotemporal
data are one of the biggest challenges in the big data area [Wang et al. 2020]. However, we do not
have a standardized set of big data platforms for accessing, manipulating, and performing analyses
on large datasets [Wang et al. 2020; Comber and Wulder 2019].

Detailed experiments were performed in [Zhang et al. 2018] comparing big data platforms and test
their effectiveness on various time series datasets. The evaluation revealed that no big data platform
performs better than the others in all scenarios with spatial and temporal filters. It is up to the
solution developer to choose in advance which platform to use for each query scenario. This choice is
a complicated task to be made dynamically because each big data platform has characteristics that
allow the best performance for certain spatial and temporal filtering scenarios.

This work presents a new query engine for big data, called SmarT(smart Spatial-Temporal query
engine), for filtering and retrieving spatiotemporal data efficiently. SmarT chooses, in real time,
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the best Big Data platform to process the spatiotemporal queries using a regression-based machine
learning solution to support the selection of the appropriate big data platform. This work evaluated
three big data platforms: Apache Spark, Elasticsearch, and SciDB. SmarT was able to decrease almost
22% of the response time compared to any of the three platforms.

The main contributions of this work are:

—A new query engine for big data, called SmarT, that chooses among multiple platforms the one
most efficient to process spatiotemporal data according to the spatial and temporal query scenario.

—A new machine learning model to choose the best big data platform for spatiotemporal data pro-
cessing.

—Evaluation of the solution proposed in this work with a large volume of real and synthetic data (up
to 19 billion spatiotemporal objects).

—Comparison between Spark, Elasticsearch, and SciDB for spatiotemporal processing.

This paper is an extended version of [Oliveira et al. 2020], presented in the XXXV Brazilian Sym-
posium on Databases (SBBD 2020). In particular, the present work introduces new experiments and
analyses of the SmarT query engine, an updated list of related works, and a different formalization of
the problem.

This paper is organized as follows. Section 2 describes the strategies found in the literature to
process large volumes of spatiotemporal data. Section 3 presents the SmarT query engine and Section 4
describes the methodology and results of the tests performed. Section 5 presents the conclusions of
this work and a brief description of future work.

2. RELATED WORK

There are many attempts to store spatiotemporal data in a database system. Recent studies that
involve using big data frameworks like Apache Hadoop [Vavilapalli et al. 2013] and Apache Spark [Za-
haria et al. 2016] platforms to store and retrieve spatiotemporal data sets have some excellent per-
formance results on temporal and spatial analysis queries. However, most of the solutions proposed
customized solutions for specific data formats or data sets and could not be applied to arbitrary
multidimensional arrays. The related works in this section focus on the big data solutions for spa-
tiotemporal storage and retrieval, and efforts done by researchers to enhance temporal and spatial
data queries.

Big data is usually related to a large or complex collection of data that is difficult to handle using
the present database management tools or the traditional data-processing applications. Relational
database management systems and visualization packages cannot deal with big data. The limit of big
data depends on the capabilities of the managing organization and in the applications used for data
analysis. The relevant challenges include extraction, storage, search, sharing, transfer, analysis, and
visualization of data [Tahmassebpour and Otaghvari 2016].

Due to the high computational cost and the large volume of spatiotemporal data available, some
works in Big Data [de Oliveira et al. 2019; Chi et al. 2016; Comber and Wulder 2019] introduced
parallel and distributed solutions for processing spatiotemporal data, particularly to support the
demand for real-time processing [Ma et al. 2015]. Some researchers describe the use of Big Data
in several domains of temporal and spatial data processing, such as Smart Farming [Wolfert et al.
2017; Braga et al. 2019], monitoring of water resources [Wagner et al. 2014], remote sensing image
analysis [Rathore et al. 2015], IoT [Wang et al. 2015], recommendation systems [Benabderrahmane
et al. 2017] and time series data mining [Fawaz et al. 2019; Amaral and de Sousa 2020; Romani et al.
2010].
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With the emergence of cloud computing, users can now access data anytime, anywhere to conduct
analysis on spatiotemporal data. Therefore, many distributed computing systems were built for the
storage and processing of large volumes of spatiotemporal data [Almeer 2012]. The Google Earth
Engine [Gorelick et al. 2017], for example, is one of the most used platforms in the processing of
spatiotemporal objects, aiming to serve a wide range of scientists who do not have access to computer
clusters.

The use of the MapReduce [Dean and Ghemawat 2008] programming model caused a revolution in
the processing and management of spatiotemporal data [Guo et al. 2017]. MapReduce has facilitated
the development of works for data mining of spatiotemporal data [Lin et al. 2013; de Assis et al. 2017;
Song et al. 2015; Patterson 2011] and 3D objects [Van Den Bergh et al. 2012].

The Apache Hadoop platform 1 rapidly gained popularity among the scientific community as it
successfully implemented the MapReduce paradigm, like SpatialHadoop [Eldawy and Mokbel 2015].
However, Hadoop has shown several issues when processing spatiotemporal data, and consequently,
other proposals have emerged. Among them, Apache Spark 2 has been proved to be one of the most
powerful big data platform. Since all the computation is done in memory in Spark, the execution of
a program will be significantly faster than Hadoop (up to 100 times faster than Hadoop, according to
Spark’s official web page). Spark uses its fault-tolerant variables to automatically work in a distributed
way, the Resilient Distributed Dataset (RDD). The optimization of in-memory processing makes
Spark faster than Hadoop because disk input/output is minimized. SpatialSpark [You et al. 2015], for
example, aims to provide efficient spatial operations using Apache Spark to process large scale spatial
join operations.

Hadoop MapReduce and Spark are dominant Big Data processing platforms. These platforms do
not provide native support for processing temporal and spatial data. Most of the solutions using
big data frameworks like Hadoop and Spark were developed as customized solutions for specific data
formats or spatiotemporal data sets and could not be applied to arbitrary multidimensional arrays.
The array databases offer the lowest computational complexity for spatiotemporal data access. It
is perfect for spatiotemporal data retrieval if indexes could be presented as integers. Popular array
databases like Rasdaman [Baumann et al. 1997] and SciDB [Brown 2010; Stonebraker et al. 2011] are
widely used in many practical projects, showing promising performance gain comparing to traditional
methods [Xu et al. 2020]. Some works proposed new methods to index [da Silva et al. 2020] and to
evaluates indexing and querying [Guedes et al. 2018] array databases.

SciDB is an open-source multi-dimensional array database. Its development was spurred by the
concept that many scientific datasets have array-like structures, and there are costs to restructuring
the datasets to persist as arrays within a relational database. SciDB’s massively parallel processing
(shared-nothing parallel database) architecture allows it to process multi-dimensional arrays on a
petabytes scale. SciDB is not the only array database platform. RasdaMan is specifically designed to
work with raster datasets. We have chosen SciDB in this paper because SciDB’s community edition
can be extended to multiple instances or nodes, whereas only the enterprise version of RasdaMan
supports this. These databases have been used in several works [Lu et al. 2016; Camara et al. 2016]
for efficient processing of spatiotemporal data.

ElasticSearch is also recommended for spatiotemporal queries processing because of its way of scaling
and integration of spatiotemporal search queries [Shrivastava 2020]. Elasticsearch 3 is a searching
and analyze engine RESTful distributed and open source. It provides a distributed, full-text search
engine suitable for enterprise workloads. While not a spatiotemporal database by itself, Elasticsearch
employs Lucene’s column indexes, which are used to aggregate numeric values. Combined with query-

1hadoop.apache.org (visited on 22/05/2021)
2spark.apache.org (visited on 15/05/2021)
3https://www.elastic.co (visited on 20/05/2021)
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time aggregations and the ability to index on timestamp fields, Elasticsearch provides the primitives
for storing and querying spatiotemporal data. It also supports two Geo data types, including a Geo-
point datatype (latitude and longitude pairs) and a Geo-shape datatype, which withstand Points,
Lines, Circles, Polygons, MultiPolygons, etc. The prefix tree and geohash spatial indexing techniques
support efficient spatial search.

[Zhang et al. 2018] proposed a new benchmark, named ArrayBench, used for benchmarking both
Spark and SciDB. The paper also proposed the application of ArrayBench to comprehensively study
the in-memory data analytics platforms (e.g., Spark), compared to the disk-oriented platforms (e.g.,
SciDB). In addition, ArrayBench is also used to study how the performance of scientific data analytic is
correlated to various OS components, e.g., virtual memory, page cache, and distributed file systems,
among others. They found that Spark does not consistently outperform SciDB in all spatial and
temporal query scenarios. Unlike the proposed benchmark in [Zhang et al. 2018], our work introduces
a new search engine that chooses, in real time, the best big data platform, according to the spatial
and temporal query.

The most fundamental challenge for the big data platform is how to explore the large volumes and
analyze the spatiotemporal data to get useful information or knowledge for future actions [Rajaraman
and Ullman 2011]. The traditional big data platforms are not sufficient in dealing with these chal-
lenges [Ji et al. 2016]. Several platform solutions have been proposed in the literature containing a
variety of Big Data systems for batch or real-time processing, such as Hadoop, Spark, Elasticsearch,
and SciDB. The experiments carried out in some works citedoan2016evaluating,zhang2018making
show that no system is more efficient than the others in all scenarios with spatial and temporal filters.
Our work proposes a new query engine, called SmarT, which aims to apply the spatial and temporal
filters choosing among several real-time systems the most efficient one.

3. SMART: QUERY ENGINE FOR FILTERING AND RETRIEVING SPATIAL AND TEMPO-
RAL DATA

There are many big data platforms out created to process spatiotemporal data. Choosing one of them
is a complicated task, as each system has characteristics that allow the best performance for certain
spatial and temporal filtering scenarios. Moreover, the platforms are being constantly improved and
each new version of them can change their ranking. This paper presents, in this section, a new query
engine for filtering and retrieving spatiotemporal data, called SmarT, which chooses, in real time, the
best big data platform to process a large volume of spatiotemporal data.

SmarT predicts the execution time in each big data platform and chooses the one with the lowest
estimated response time, taking as input: i) the spatial and temporal query constraints; ii) the
cluster metrics retrieved from the monitoring system and iii) the approximate amount of query results
obtained from the indexing system. Figure 1 presents the architecture of SmarT query engine. The
client sends spatiotemporal queries to SmarT using an API. This API is then responsible for sending
the request to SmarT and get the query results. SmarT looks for cluster metrics like network usage,
swap space, memory, and CPU in the monitoring system. The monitoring system is constantly
collecting metrics from the cluster and the big data platforms. SmarT also has an indexing system for
creating spatial and temporal indexes on the spatiotemporal data inserted in the big data platforms.
For each query, SmarT requests cluster metrics to the monitoring system and queries the indexing
system to estimate the number of results, that is, the number of observations returned to the user as
a response to the query.

The data collected from the monitoring system and indexing system is the input for the machine
learning algorithm that tries to predict the query processing time of each big data platform. The
platform with the shortest time predicted by the algorithm process the query, filtering, and retrieving
the spatiotemporal data set that satisfies the spatial and temporal constraints of the query. SmarT is
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trained to minimize the response time in filtering and retrieving data by choosing the most efficient
big data platform. The training data of SmarT is stored in tabular format, in which each row contains
the input data and the response time of a query. Section 3.2 describes carefully the machine learning
algorithm.

Fig. 1. SmarT architecture includes an API that interacts with users, and a central module (SmarT) responsible for
choosing one of the big data platforms to run the query. SmarT makes this choice using, as input, data coming from
the monitoring and indexing system, which are also part of the architecture.

3.1 Ingest and Indexing

This section provides an overview of the ingestion and indexing of objects (more details in [Oliveira
2019]). Each big data platform stores a copy of the incoming data. SmarT combines many big data
platforms that together can provide the characteristics of a system that can satisfy requirements for
performance, availability, and fault tolerance. SmarT is responsible for exploring the potential of these
big data platforms at query time.

Many big data platforms duplicate the input data to include some or all of the following components:
batch processing, online processing, stream processing, analytical data processing, and reporting [Ki-
ran et al. 2015]. These platforms allow users to optimize the data pipeline by understanding which
parts of the data need online or batch processing. However, these platforms require more skills from
the developers to choose the best big data platform to run the queries and produce results [Kiran
et al. 2015]. At query time, SmarT automatically tries to choose the best Big Data platform to run
the query.

Each observation is composed of the following attributes: geographical point associated with the
observation and its timestamp. 4 and it contains the following attributes: the geographical point asso-
ciated with the observation and the timestamp of it. Therefore, the platform indexes each observation
as an object with three dimensions: a) latitude, b) longitude, and c) timestamp. Observations are in-
dexed in a distributed way to allow multiple machines or threads to index at the same time. To index
the spatial objects, the spatial index Kd-Tree [Bentley 1975] is used, which is built on each server in
the cluster from the spatial objects stored on the server. The k-d tree variant we implemented is the

4Each Big Data platform may also have its indexing system to optimize data filtering and retrieval
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block k-d tree [Procopiuc et al. 2003] which is specifically designed for efficient IO, such that most of
the data structure resides in on-disk blocks, with a small in-heap binary tree index structure to locate
the blocks at search time. Block k-d trees are a simple yet powerful data structure. At index time,
they are built by recursively partitioning the full space of N-dimensional points to be indexed into
smaller and smaller rectangular cells, splitting equally along the widest ranging dimension at each
step of the recursion. The block k-d tree stops recursing once there are fewer than a pre-specified
(1024 in our case, by default) number of points in the cell.

A server in the indexing cluster is randomly chosen to store a new observation. This server receives
the three dimensions of the observation to index it locally in the Kd-Tree. K-d trees are fast because
they naturally adapt to each data set’s specific distribution, using small leaf blocks where the indexed
values are dense. K-d trees also naturally find the suitable trade-off how deeply to recurse by splitting
up the dimensional space versus simply scanning the full-precision values in one cell is appropriate.
Therefore, the result returned by Kd-Tree, in this work, is not always accurate.

The indexing system estimates the approximate number of query results. SmarT chooses any server
to be the query coordinator. The coordinator routes the query to all workers holding the source indexes
data. Each server returns the number of local results that meet the query constraints. The coordinator
will then sum these results to get the approximate number of query results, which it then returns to
the SmarT.

3.2 Using Machine Learning for Real-Time Selection of Big Data Platform for Spatio-Temporal
Queries

This section presents our solution to reduce the response time when executing queries with spatial and
temporal filters in a distributed environment trying to choose, in real time, the best big data platform
for query processing. Since the response time is a continuous variable, the predictive regression
modeling tries to solve the problem of minimizing the response time, aiming to approximate the
mapping function to the continuous output variable that represents the response time. The regression
algorithm tries to predict the response time of each platform and chooses the one with the least
expected time. Even if the best platform is not chosen, it increases the possibility of choosing one of
the best ones when the problem is modelled as a regression task.

The training of the machine learning model is done for each big data platform, where the dependent
variable is the response time of the respective platform and the independent variables are the query
constraints, monitoring metrics, and the estimated number of query results. We will denote the
dependent variable by y and the set of independent variables by x1, x2, ..., xp, where p indicates the
number of independent variables. The relationship between y and x1, x2, ..., xp is approximated by
the regression model of equation 1:

y = f(x1, x2, ..., xp) + ε (1)

where f(x1, x2, ..., xp) provides an acceptable approximation to the true relation between y and
x1, x2, ..., xp, and ε measures the discrepancy in the approximation.

There are many regression models [Chatterjee and Hadi 2015] used to estimate the response time of
each system. Ensemble learning methods are the best technique when the performance on a predictive
modeling project is the most important outcome [Zhou 2012; Polikar 2006]. Ensemble learning helps to
improve machine learning results by combining several models. This approach allows the production
of better predictive performance compared to a single model [Opitz and Maclin 1999].

Our solution explores the ensemble XGBoost (Extreme Gradient Boosting) [Chen and Guestrin
2016] method. Since its introduction in 2014, XGBoost has quickly become among the most popular
methods used on Kaggle. It has accumulated an impressive track remind of winning contest [Nielsen
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2016], most of them with tabular input data (which is precisely our input format). Uncovering some
possible reasons why tree boosting is so effective is interesting for many reasons. First, it might
improve understanding of the inner workings of tree boosting methods. Second, it can aid in further
development and improvement of the current tree boosting methodology. Third, by understanding
the core principles of tree boosting which makes it so versatile, we might be able to construct whole
new learning methods which incorporate the same core principles [Nielsen 2016].

XGBoost is one of the most popular and efficient implementations of the Gradient Boosted Trees al-
gorithm, a supervised learning method that is based on function approximation by optimizing specific
loss functions as well as applying several regularization techniques. The following pairs of training
examples are input for the algorithm: (~x1, y1), (~x2, y2), (~xp, yp), where ~x is a vector of characteristics
containing the independent variables and y is the response time of the query. XGBoost includes a reg-
ularization term that controls the complexity of the model, which helps to avoid overfitting [Hawkins
2004] and to support arbitrary cost functions. The objective function presented in equation 2 is
built with two parts, the first being a training loss over the training set and the second part the
regularization term that penalizes the model’s complexity:

Obj =
∑
i

L(yi, ŷi) +
∑
k

Ω(fk) (2)

where L(yi, ŷi) is the training loss function, and Ω(fk) is the regularization term. The training loss
measures how predictive our model is regarding the training data. Ω(fk) describes the complexity of
the tree fk and is defined in the XGBoost algorithm by equation 3:

Ω(fk) = γT +
1

2
λw2 (3)

where T is the number of leaves in the tree fk and w the weights of the leaves (i.e., the predicted
values stored in the leaf nodes). When Ω(fk) is included in the objective function, there is a need to
optimize the model to build less complex trees while minimizing L(yi, ŷi). This helps to reduce the
overfitting. A penalty is applied, with γT , for each additional new leaf in the tree. Leaf weights with
values too high or too low are penalized with λw2. Both γ and λ are user-configurable values.

Given that the boosting method runs iteratively, it is possible to define the objective function for
the current iteration m in terms of the prediction from previous iterations, ŷi(m−1), fitted by the
decision tree fk, as can be seen in equation 4:

Objm =
∑
i

L(yi, ŷi
(m−1) + fk(xi)) +

∑
k

Ω(fk) (4)

The input data for XGBoost can be described as a matrix where each row represents an instance
and each column a feature. In our work, the following features are used:

(1) area: spatial filter area;
(2) time_interval: filter time interval in days;
(3) count: estimated number of query results;
(4) swap_free: the average of available swap area on servers in the cluster;
(5) mem_free: the average of available physical memory on servers in the cluster;
(6) load_one: system load average over the last 1 minutes on servers in the cluster;
(7) load_five: system load average over the last 5 minutes on servers in the cluster;
(8) load_fifteen: system load average over the last 15 minutes on servers in the cluster;
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(9) cpu_user: CPU usage average by user processes on servers in the cluster;
(10) cpu_system: CPU usage average by kernel processes on servers in the cluster;
(11) bytes_in: incoming network traffic average on servers in the cluster;
(12) bytes_out: outgoing network traffic average on servers in the cluster.

Since the response time is the dependent variable y, then for each training input pair (~xi, yi), the
dependent variable yi follows the equation 5 and the feature vector ~xi by equation 6:

yi = response_timei (5)

~xi = (areai, time_intervali, counti, swap_freei,mem_freei,
load_onei, load_fivei, load_fifteeni,

cpu_useri, cpu_systemi, bytes_ini, bytes_outi)
(6)

The independent variables area and time_interval are obtained from the spatial and temporal filters
set in the query by the user. These variables are important because they have a significant impact
on the computational cost of queries. They directly influence the number of returned results since,
usually, the higher the spatial and temporal constraint, the higher the number of results returned.
However, this statement may not be true when there is no data in the dataset that meets the query
constraint. For example, for a database of Brazil, queries covering the entire African continent will
return no results. Small spatial filtering within Brazil, on the other hand, in this database, may return
some set of results.

The variable count is the estimated number of results given the spatial and temporal restrictions of
the query returned by the indexing system. By combining the area, time_interval and count variables,
it is possible to more accurately estimate the computational cost of the query. This information is
important for SmarT’s decision of which system to run the query, since each system may perform
differently according to the volume of data to be retrieved.

The cluster metrics get from the monitoring system are important because they impact the perfor-
mance of a big data platform in a distributed environment. The average of each monitoring metric
shows the cluster state at query run time. Although the area, time_interval, and count variables
allow us to estimate the impact of the cost of filtering and retrieving query data, the cluster metrics
like memory, disk, CPU, and network usage can also impact the choice made by SmarT. Each system
may have internal optimizations in which one or more cluster usage metrics can influence system
performance. Apache Spark, for example, is an in-memory query processing platform, so the metrics
memory-free and swap-free directly affect its performance.

4. EVALUATION

This section evaluates SmarT’s ability to choose the best Big Data platform for each query scenario.
Three platforms will be evaluated: i) Elasticsearch version 7.0.1, ii) SciDB version 18.3, and iii) Apache
Spark version 2.3.2. The hypothesis is that none of these three platforms can be the most efficient in
all query scenarios with spatial and temporal filters.

4.1 Experimental Setup

The tests were performed on a cluster with 8 servers in the Amazon EC2 5 Cloud Computing en-
vironment. The three platforms (Elasticsearch, Spark, and SciDB) were configured in the 8 servers.

5https://aws.amazon.com/pt/ec2/ (visited on 10/01/2021)

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.



SmarT: Machine Learning Approach for Efficient Filtering and Retrieval of Spatial and Temporal Data in Big Data · 281

The computing nodes hold the following characteristics: Intel® Xeon® Platinum 8175M, 16 vcores,
3.1 GHz, 128 GB RAM, and 600 GB SSD. The servers were connected by a 10 Gbit/second Ethernet
network with dedicated bandwidth of 3500 Mbps. The monitoring and indexing system was also
deployed on these 8 machines.

The experiments aimed to measure the response time of each platform to filter and retrieve the
query results. This analysis is important to verify if SmarT can reduce the query response time. To
perform this measurement, a server sent requests to the cluster and collects the metrics. This node
holds the following characteristics: 2.4 GHz Intel Xeon E5-2676 v3 processor, 8 cores, 32 GB of RAM,
and 1 TB SSD.

More than 7.2 billion observations related to 16.7 million pixels of an area of 800.824 km2 covering
a piece of the Midwest and Southeast of Brazil, as can be seen in Figure 2, have been stored on
every big data platform. Each pixel has a time series with 435 observations between 2000 and 2019
extracted from NASA’s MOD13Q1 product 6 (National Aeronautics and Space Administration), with
a periodicity of 16 days between observations and a spatial resolution of 250 meters.

Fig. 2. This input dataset has an area of 800.824 square kilometers covering a piece of the Midwest and Southeast of
Brazil.

Queries were executed with spatial and temporal constraints to evaluate the performance of each of
the three platforms and the SmarT to choose the best one according to the query. The spatial filter
was taken from the MBR (Minimum Bounding Rectangle) of the geometry that delimits the State of
Goiás in Brazil, as can be seen in Figure 3(a). The MBR of a geometry is the bounding geometry
formed by the minimum and maximum (X, Y) coordinates [Casanova et al. 2005]. These geographic
areas allow evaluating many spatial restriction scenarios (Figure 3(b)), filtering from areas that have
no results in the query as well as areas that return more than 2 billion of results, as in the case of the
MBR of the State of Goiás.

The temporal restrictions allow for an evaluation of the performance of the big data platforms in
applying the temporal filter on the data. Table I shows the time ranges defined as temporal restrictions
in the database queries and the number of objects returned when filtering the database using only the
temporal axis. Using the spatial and temporal filters at the same time, queries return from 0 to 333
million results.

In all, 1983 query constraints were generated from 247 spatial filters, 7 temporal filters, and 1729
(247 × 7) spatiotemporal filters. For each of the 1983 constraints, we ran two queries. An example of

6This dataset is available by LAPIG (Image Processing and Geoprocessing Laboratory)
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(a) MBRs for each city and for the entire State of
Goiás in Brazil that are used in the spatial filtering.

(b) MBRs filter out a chunk of the evalu-
ation area allowing them to evaluate many
test scenarios concerning to the number of
query results.

Fig. 3. Map with the MBRs of the cities of the State of Goiás used in the queries.

a spatial query could be to find the objects that match the spatial filter at any time. The temporal
filter tries to find the objects of the temporal filter in any geographical place. To return the objects
that match a spatiotemporal filter, we try to find those that satisfy the spatial and temporal filter.

The first query aims to analyze the performance of each platform to filter without retrieving the
results. The second query aims to analyze the performance of each platform to filter and retrieve the
query results. We executed each query 10 times, collecting response times and measurements of CPU,
network, memory, and disk. These measurements were collected and used to train SmarT to choose
the best platform according to the query filters. In total, 118980 queries were executed, built from
1983 constraints, with two queries for each constraint, being executed 10 times on each of the three
platforms (1983 × 2 × 10 × 3).

Table I. Time filter constraints and the approximated number of query results just with temporal filtering.
Time filtering range Approximate number of query results
2016-01-01 to 2016-05-24 167 million
2016-01-01 to 2016-10-31 335 million
2016-01-01 to 2017-04-07 503 million
2016-01-01 to 2017-09-14 671 million
2016-01-01 to 2018-02-18 839 million
2016-01-01 to 2018-07-28 1 billion
2016-01-01 to 2019-01-01 1.17 billion

SciDB and Apache Spark were installed on the cluster with the default configuration, without any
optimization or customization. As for the Elasticsearch, the default value of 1 GB for JVM heap
memory was changed 7 to 48 GB, as queries were causing the heap memory to overflow during testing.
Evaluation of Spark was performed using the Hadoop ecosystem version 3.1.1, with Apache Yarn
scheduling the queries and managing the cluster resources required by Spark jobs, and HDFS as the
storage system. The data were stored in HDFS in Parquet format with Snappy 8 compression, which,

7Elasticsearch was developed in Java.
8https://github.com/google/snappy (visited on 22/02/2021)
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compared to CSV format, reduces query response time up to 34 times and uses up to 87% less disk
space 9. Spark, SciDB, and Elasticsearch have their storage layer, replicating the spatiotemporal data
on each platform.

4.2 Evaluation of the Big Data platforms: Apache Spark, SciDB and Elasticsearch

This section evaluates the performance of Elasticsearch, Apache Spark, and SciDB in spatial and
temporal filtering over the remote sensing time series. In Section 4.3, we will compare the perfor-
mance of SmarT against the platforms to define if there was any positive impact on response time.
Table II shows the query response time of each platform for filtering without retrieving query results.
Elasticsearch had the lowest average response time due to its efficient temporal and spatial indexing
framework. Apache Spark averaged better response time than SciDB, but with a higher standard
deviation, as Spark is better for queries returning between 100.000 and 500.000 results, but worse for
queries with more than 500.000 results.

Table II. Queries response time, in milliseconds, to filter without retrieving the results on the three big data platforms.
Apache Spark Elasticsearch SciDB

Average response time (ms) 321 4 398
Standard deviation of response time (ms) 697 12 332

Table III shows the average response time to filter and retrieve the query result. Elasticsearch
had the worst performance among the three platforms, being more than ten times worse than SciDB
and more than seven times worse than Spark. This difference in performance, seen in Tables II and
III, is explained by the fact that Elasticsearch has a very efficient internal indexing mechanism, but
its performance depends on the size of the dataset returned from the database 10. When the result
retrieved gets larger than a certain threshold 11, the response time increases considerably [Thacker
et al. 2016], so Elasticsearch starts to perform worse than the other two platforms.

Table III. Analysis of the queries response time (ms) in the platforms.
Apache Spark Elasticsearch SciDB

Average response time (ms) 822 6291 605
Standard deviation of response time (ms) 1842 9295 430
Maximum response time (ms) 49986 78574 2946

Table IV compares the percentage of times that each of the three platforms was the best choice
using three ranges of query results: i) up to 100.000, ii) between 100.000 and 500.000, and iii) more
than 500.000. For few results (less than 100.000), Elasticsearch is the best choice among the three
platforms, but above 100.000 returned results, SciDB and Spark become better options. This can be
explained by the Elasticsearch average time in Table III, as it has a worse response time for queries
that return larger amounts of data, and as they have longer response time, it impacts the average
response time of the three platforms.

Spark performs better than SciDB when it is not necessary to return a high volume of data. This
is because Spark has to go through all the Parquet files to filter the results, and when the database
is larger than the memory, the intermediate results need to be serialized as Java objects and stored
on secondary storage devices (disk or SSD) or recomputed. This serialization and deserialization
overhead is critical for Spark for large volumes of data retrieved from disk and returned in the query

9https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and (visited on 01/03/2021)
10https://www.elastic.co/guide/en/elasticsearch/reference/current/general-recommendations.html (visited on
10/01/2021)
11This threshold depends heavily on the Elasticsearch configuration and the hardware infrastructure of the cluster.
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result. SciDB, on the other hand, has an optimization for I/O accesses, minimizing file access overhead
that allows it, for large volumes of data returned, to perform better than Spark and Elasticsearch.
SciDB is a platform designed to handle time series data, unlike Spark, which is a general processing
engine for large volumes of data. For a large volume of multidimensional data, SciDB can outperform
Spark [Zhang et al. 2016] taking advantage of its efficient storage, indexing, and retrieval system.

Table IV. Percentage of times that each of the three platforms was the best choice using three ranges for evaluating
result retrieval: i) up to 100.000 results, ii) between 100.000 and 500.000 results, and iii) more than 500.000 results.

Up to 100.000 Between 100.000 and 500.000 Over 500.000
Elasticsearch 90% 0% 0%
SciDB 1% 22% 64%
Apache Spark 9% 78% 36%

Tables II and III show that the difference between SciDB and Spark response time for filtering and
retrieving time series data were not as significant as Elasticsearch. SciDB has an optimized internal
structure that can maintain a low standard deviation in response time with a maximum response time
of 2946 milliseconds. Spark, on the other hand, with its Parquet format data, is more optimized than
Elasticsearch but has a longer maximum response time (49986 milliseconds).

Comparing the three platforms, Elasticsearch is recommended for a smaller query result size, Spark
for a medium query result size, and SciDB for a larger query result size. The challenge, however,
is the choice of the big data platform, as the definition of a smaller, medium, or larger result set is
subjective and depends on the hardware configuration of the cluster, the available platforms, and the
spatial and temporal filtering scenarios.

4.3 Evalutation of SmarT

This section presents the results and discussion regarding SmarT in choosing the platform for query
execution in each scenario. It is possible to see in Table IV, that no platform completely dominates
the others by analyzing the percentage of times each had the shortest response time in each range of
query result size. This leads to the elaboration of a hypothesis that other features also impact the
response time of the platforms. This paper proposes a query engine, SmarT, that uses machine learn-
ing to automatically choose the best platform using some machine learning features available: area,
time_interval, count, swap_free, mem_free, load_one, load_five, load_fifteen, cpu_user, cpu_system,
bytes_in, bytes_out.

The features area and time_interval are calculated at query time from the spatial and temporal
constraints, respectively. The feature area has been normalized by multiplying the value by 100, and
for cases where there is no spatial filter, the value is zero. The feature interval was discretized, creating
eight categories, seven of them being the ones shown in table I and the last category the case where
there is no temporal filter.

The variable count comes from an indexing service that returns the estimated number of query
results given the spatial and temporal constraints. This variable was discretized into 15 categories
with equal interval width according to the count value. The remaining features come from cluster
metrics collected by the monitoring system using the Ambari 12 framework. These variables are
described in detail in Section 3. The cpu and load variables were normalized multiplying the value by
100 and rounding the value to two decimal places. The network and memory variables were normalized
by dividing the values by 1000 and rounding the result to two decimal places.

12https://ambari.apache.org/ (visited on 22/05/2021)
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The supervised machine learning algorithm XGBoost [Chen and Guestrin 2016] was implemented
using the open-source H2O 13 platform, version 3.24.0.4. The experiments were performed using the
cross-validation method called k-folds, with k=5, using the default values (γ = 0 and λ = 1) for the
parameters of the XGBoost algorithm in the H2O platform. The measurements collected from 118.980
queries were used as training samples, extracting 75% for the training set and 25% for the test set.

SmarT achieved an overall accuracy of 90.1% in choosing the best platform, and even in the cases
where it does not choose the best platform, there is a small difference in response time if it had always
chosen the best one for each query. In 95% of the cases, the platform chosen by SmarT is either the
best or has response times up to 10% longer than the time of the best platform. As it can be seen in
Table V, using SmarT, the query response time was 496ms versus 482ms if it had always chosen the
best platform (“Best” column). We have measured the model error in predicting quantitative data
using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). SmarT had an RMSE
equal to 80.51231 and MAE equal to 47.88053.

Table V. Comparison of the average response time (ms) between SmarT and the three big data platforms. The “Best”
column indicates the average response time if the best option was always chosen by SmarT.

SmarT Best Apache Spark Elasticsearch SciDB
Elasticsearch + SciDB + Spark 496 482 822 6291 605
Elasticsearch + SciDB 537 533 ∅ 6291 605
Elasticsearch + Spark 800 796 822 6291 ∅
Spark + SciDB 527 513 822 ∅ 605

The average response time of SmarT is calculated from the average response times of the chosen
platform on each query. To understand the calculation of this average time, suppose that for a given
query, SmarT predicts as response times: 434ms for Elasticsearch, 390ms for Apache Spark, and
1023ms for SciDB. Indeed, the response times were 455ms, 460ms, and 840ms, respectively. In this
case, SmarT chose Apache Spark to execute the query and add 460ms for the final average time
calculation. For the “Best” response time average, it would add the value of 455ms, as it was the
shortest time among the three platforms. For each query, the time to collect the cluster metrics,
compute the area and time interval, and query the indexing system to estimate the number of query
results is added to the final SmarT time. Table V shows the SmarT results including this overhead
(on average 3ms).

The variable importances were computed from the gains of their respective loss functions during
tree construction, using a squared error based on gradient and hessian. To estimate the response
time of the platforms using XGBoost, the most important feature in SmarT’s decision making was
count, as was already expected by the results shown in section 4.2. To estimate the Elasticsearch
query response time, other features had an impact, in order of priority: area, time_interval and
bytes_out. The variables area and time_interval are related to the number of returned results, since
generally, the greater the spatial and temporal constraint the greater the number of returned results.
The bytes_out feature had an impact on Elasticsearch due to the traffic cost of the query results,
inherent to Elasticsearch which does not have major optimizations to reduce the network traffic, like
Spark and SciDB.

To estimate the Spark query response time, in addition to the count, area and time_interval fea-
tures, the amount of free memory (feature mem_free) impacted the prediction of the machine learning
model. This is because Spark does query processing using in-memory computation and is therefore
impacted by the amount of free memory at query time. In some cases, Spark has to use the swap area
of the operating system when there is not enough memory.

13https://www.h2o.ai/ (visited on 08/01/2021)
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To estimate the query response time in SciDB, in addition to the count, area and time_interval
features, the variables load_one, load_five and cpu_system had an impact to predict the response
time. SciDB has an optimized internal indexing and storage mechanism for retrieving data from disk,
but keeping this mechanism efficient requires high processing cost and CPU usage. Therefore, the
usage of the cluster impacts on SciDB’s response time.

4.4 Discussion

Table V also presents the comparison of the average response time of SmarT against Spark, Elas-
ticsearch, and SciDB. In this table, a comparison of the response time is also provided when SmarT
has all platforms or only two of them to choose from. SmarT had an average response time close to
“Best” with a difference of less than 3% for all platform combinations. With two platforms, Spark
and SciDB had the best performance, followed by Elasticsearch and SciDB with a small average time
difference of 10 ms between the two. The duo Elasticsearch and Spark had the worst performance,
being 33% worse than the other options. As expected, from the evaluation of Table II, SciDB is the
most important platform among the three for reducing response time. The average time for all queries
in SciDB is the lowest among the three because it has the best performance when the query returns
a high number of results. For these cases, the times in Elasticsearch and Spark get higher, as can be
seen in Table IV, which impacts the final average time.

It is recommended to have all three platforms to have the best possible performance. But if it is
not possible, analyzing the results of Table V and Table IV, the pair Elasticsearch and SciDB should
be used if there is a scenario in which there will be many queries with constraints that return few
results. When the spatial and temporal filtering constraints are not known, or in query scenarios with
a large volume of results, it is ideal to use the pair Spark and SciDB.

When choosing only one big data platform, SciDB proved to perform better than Spark and Elastic-
search in filtering and retrieving time series data. But it was evidenced in Table V that using SmarT
with all three platforms is the better choice. SciDB had a 21.9% higher average response time than
SmarT when all platforms are available to SmarT. Even when pairing Elasticsearch with SciDB and
Spark with SciDB using SmarT to choose the best in real time, SciDB had an average response time
of 12.6% and 14.8% longer than the pair, respectively.

It is usual in big data architectures, such as Lambda [Kiran et al. 2015] and Kappa architectures [Lin
2017], to have more than one big data platform in the cluster to handle different query scenarios [Feick
et al. 2018]. Thus, the SmarT query engine, with 90.1% accuracy and almost 22% response time
reduction over SciDB, proved to be a good choice in big data architectures to process spatial and
temporal queries over large volumes of time series data.

5. CONCLUSION

The large volume of unstructured and high dimensional data poses the problem of processing time
series in the context of Big Data [Fan et al. 2014]. The efficient processing of a large volume of
spatiotemporal data is one of the biggest open challenges in the area. This work proposes an intelligent
engine, called SmarT, that adapts itself to the environment of available systems automatically, in real
time, being capable of efficiently filtering and retrieving time series data. SmarT uses a machine
learning algorithm to choose the best Big Data system, among several existing ones, to filter and
retrieve the query data in the shortest possible time.

The experiments reported in this work showed SmarT achieving more than 90% accuracy in choosing
the best system between Apache Spark, Elasticsearch, and SciDB. As a result, there was a 22%
reduction in response time using SmarT than if only one of the three systems processes the query.
It would be practically impossible to make this choice manually, following each query, due to the
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number of possible combinations of variables considered. SmarT represents an important step towards
time series processing research, as it allows researchers to focus on building time series processing
algorithms, without worrying about the challenge of efficiently filtering and retrieving large volumes
of data.

SmarT training is carried out periodically by executing a set of queries on the existing systems and
collecting the metrics to be used as variables of the machine learning methods. During the collection
of metrics, it is not recommended running other queries in the cluster to not negatively impact the
response time of user’s queries. The collection of metrics for SmarT should be performed at times of
the day when there is historically little use of the cluster. In this case, SmarT is limited to always
being trained with the same set of queries and in predetermined periods. To generate a training
set that better represents the scenarios of queries made by users, we intend to modify SmarT to
generate the training set from real user queries, training the model in periods of idleness of the cluster
automatically. Other variables will be added to the predictor, such as the data partitioning criterion
that profoundly impacts big data processing.

Another limitation of SmarT is that data must be replicated among the systems, as there is no
efficient bus for data storage and retrieval. In future work, we will carry out cost-benefit assessments
in replicating the data on various platforms and measuring the gain in response time. In addition, we
plan to create an efficient data bus that is capable of integrating with the various big data systems. A
challenge of this bus is to have the least possible impact on latency with the replacement of the native
storage layer of each system. Another challenge is to build a data bus that facilitates integration with
other systems that may be added. Lastly, we also intend to evaluate other machine learning models,
in addition to XGBoost, and the impact of other variables, such as internal metrics for each big data
platform.
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