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Abstract.

Personal data usage and collection are activities that used to grow unrestricted. However, several laws in the physical
world ensure rights to people regarding their privacy and information usage. In the last years, legislators passed many
laws, regulations, and acts to replicate these rights to the digital world. By doing so, new constraints, rights, and
duties appear on every component of the data usage and collection workflow. In this paper, we discuss legislations’
implications, identifying impacts that these regulations introduce to current DBMS, and survey recent works that aim
to solve the problems raised by these impacts, highlighting research opportunities and identifying how solutions can be
achieved for the problems.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems; H.3.2 [Information Storage and
Retrieval]: Information Storage

Keywords: databases, GDPR, purpose, data access

1. INTRODUCTION

Lately, data privacy regulations rule over sensitive personal information in many countries. European
Union has the General Data Protection Regulation (GDPR). In the late 1990s, Canada approved
the Personal Information Protection and Electronic Documents Act (PIPEDA). Several USA states
have similar regulations, like the California Consumer Privacy Act (CCPA). In Brazil, the Lei Geral
de Proteção de Dados (LGPD) comes into effect year 2020. In general, these regulations protect
individuals’ data stored in organizations, giving the individual control over how their data is shared
and processed. They usually focus on data security, defining responsibilities organizations must have
over personal data. Moreover, they restrict individuals’ data usage to the purpose for which the
owner has given authorization. Many applications collect personal data, such as mobile applications,
e-commerce, social networks, and any transactional system where users are involved. For instance,
the coronavirus pandemic led several countries, cities, and health organizations to develop mobile
applications that collect personal contacts based on geolocation data. Although this initiative is of
great importance for controlling the spread of the virus in a community, it is clear that this type of
data might be very sensitive for an individual outside of this purpose.

Database systems (DBMS) are the primary tools organizations use to store and manage their data,
including sensitive personal information. Mining data and sharing information between partners are
both heavily based on data directly provided by DBMS. There is no doubt that personal data is stored,
processed, and shared within organizations, among other transactions’ data. Therefore, DBMSs have
to provide capabilities that allow organizations to comply with the regulations. That involves at least
five concepts:
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—To identify personal data, which includes, automatically or in an assisted manner, conceptually
separate sensitive data from other transactional data;

—To manage metadata about processing and sharing personal data as efficiently as possible since this
type of data grows quickly in this new context. Moreover, metadata is more likely to be queried to
access control and individual privacy;

—To give the user the correct tools for declaring personal data visibility and usage, considering both
the owner and the data administrator;

—To provide efficient auditing interfaces for data usage that goes far beyond regular log files;
—To sanitize personal data before publishing or sharing among partners respecting data utility for

analysis and to the partners.

In this paper, which is an extension of Machado et al. [Machado and Amora 2020], we investigate
the impact of managing sensitive personal data on DBMS. We aim to address the main features that
have to be reviewed at the core level of these systems to allow data controllers and processors to be
compliant with privacy regulations. We enumerate law requirements that have to be met by DBMS
when they store personal information. We survey and discuss several works that address the impacts
of these requirements. We also identify several open issues for research opportunities.

1.1 Policy Requirements

From the concepts stated above, the regulations, acts, and laws have many points of intersection
with regard to users’ rights and data controllers’ and processors’ duties. To discuss these rights and
obligations, we will take GDPR [General Data Protection Regulation 2016] as an example. GDPR
is composed of 99 articles, ranging from data privacy, protection, cryptography as well as users’ own
right to access collected personal data, know what it will be used for as well as request removal of
said data. As GDPR is an extensive regulation, we highlight five rights to focus our discussion:

Right of access - Article 15 states that the data subject can obtain confirmation from the controller
as to whether their data is being processed and access to: data itself, purposes, categories of personal
data, recipients of this data, the period of storage, usage in automated decision-making. This right
enables customers to have property rights over their provided data. To make informed decisions and
properly care for provided information, customers need to know how their data is stored, what it is
being used on, for how long and where this data is stored, as well as if this data is used on automated
decision-making. Through this right, users can request their data from data holders, check if other
applications/companies are using their data accordingly and awareness if this data is being used on a
black-box setting, e.g., machine learning. Aside from allowing data portability, in case the customer
does not agree or trust the data holder, this right also impacts whether the data holder should use
underlying patterns discovered through automated algorithms.

Right to be informed - Article 12 states that the data subject must be informed in a concise,
transparent, and easily accessible form if their data is obtained or not, if data will be used in automated
individual decision-making, if data about this subject is breached, as well as their capabilities of data
portability and objection. This imposes restrictions on data holders and data controllers, as they
must be able to track data owners and inform them of their uses and purposes. The customer must
be clearly informed, and their decisions must be respected by the data holder and whoever uses the
data. In case of a data breach, the data holder is responsible for contacting customers, make them
aware of the breach and take appropriate measures to contain the breach, and ensure that the leaked
data is useless.

Right to be forgotten - Article 17 states that the data subject has the right to obtain the erasure of
personal data without undue delay. This covers not only active requests but also covers collected data
that is no longer necessary, unlawfully processed. The controller must also inform other controllers of
the erasure request so that appropriate measures are taken. The implications of this right are twofold:
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First, all data related to a customer must be accessible for deletion, therefore, this data and any
copies made must be trackable. Secondly, this data must not be kept for a longer period of time than
necessary. This requires special mechanisms that ensure that data is effectively removed from storage,
be it by irrecoverable erasure, or complete inaccessibility, for example, erasing a cryptography key so
that the information is completely lost.

Consent - Article 6 states that one of the conditions to make data processing lawful is that the data
subject consent to the processing directed to one or more specific purposes. Consent is defined by
article 4 as a freely given, informed, and unambiguous agreement, therefore, consented data collection
may not be misused under a different purpose. Data holders and processors must be aware of the
customers’ choices and permissions to not violate them, as these violations may incur huge fines. This
consent must be clearly stated in the terms and conditions. Consent mixes with purpose-based access
in terms of restricting access to data, but it goes wider than that.

Singling out - Article 4 defines personal data as “any information relating to an identified or identifi-
able natural person; an identifiable natural person is one who can be identified, directly or indirectly”.
Following Recital 26, singling out is a way of identifying a natural person in a database. Therefore
it is expected that the database system does not provide for sharing or publishing any data that
would allow singling out a person. That is particularly true for any user who declares himself as
“opted out” whenever he declines to allow the data holder to use his data differently from the origi-
nal purpose. Opting out must ensure that the individual is not uniquely identified, even considering
semi-identifiers, data that does not single out any customers, however, can be crossed and, after some
processing, uniquely identify customers.

2. IMPACTS ON DB SYSTEMS

In this section we discuss six components necessary to achieve compliance, what are the responsibilities
of the DBMS and storage engine, interweave related work to each component, and present research
opportunities in each component.

2.1 Metadata explosion

This requirement relates to all rights described before given each right must have its own data to
be guaranteed. It refers to the amount of metadata needed to comply with the regulation, that it
will grow considerably, even exponentially, as new data is stored. For instance, additional information
regarding user consent and purpose access, as well as auxiliary data structures to permit data tracking
related to a user. The storage engine must be aware of these metadata, if it will be stored together
with data or accessible in a different way. Furthermore, the DBMS must guarantee that the overhead
of storing this extra data and updating it does not severely impact performance. The implications are
twofold: Storage technology must be able to store this data without allowing an exponential growth
of used space and access must be efficient, since this information must be available and up-to-date,
for it to be used accordingly to the regulation.

GDPRBench [Shastri et al. 2020] is a benchmark suite built upon YCSB and proposes to evaluate
the impacts on performance of making a DBMS GDPR compliant. Without any major changes,
aiming only to evaluate the impact of fulfilling the requirements, modifications were made to Redis,
a key-value storage and PostgreSQL, a relational DBMS. The work raises the following concerns
with respect to metadata explosion, the ability of systems to protect data by design and support
GDPR queries. The benchmark suite presents four types of profiles (Customer, Controller, Processor,
and Regulator) and seven types of queries (create, delete_by, read_data_by, read_metadata_by,
update_data_by, update_metadata_by, and get_system) concerning the participant entities. Each
query is modified to comply with GDPR, for example, a create query not only inserts data into the
table, but also updates all the related metadata. The work finds that even minor modifications to
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comply with GDPR cause an increase of 3.5 times more data stored and this number rises to 5.95
times when secondary indexes are added to this metadata while decreasing performance considerably.
Then, it concludes that even minor modifications greatly impact storage systems, either a full-fledged
DBMS as well as a simple key-value storage engine. Although PostgreSQL has several mechanisms to
speed up queries, these mechanisms backfire when met with the increased metadata volume. While
Redis allows for simple querying, the performance also decreases when some rules are added, such as
time-to-live on inserted data, which sets an expiration timestamp for a tuple, used when evaluating
what data are still valid.

[Kraska et al. 2019] describe an end-to-end system, from application requirements to the DBMS,
as well as a purpose-based data access model, in which purpose filters act between query execution
and retrieval to avoid data leaking to unwanted purposes. These filters are added through bit vectors
associated with each tuple. Each bit relates to a purpose, and is set if a query with this purpose is
allowed to access this tuple. It also discusses the execution model and the amount of overhead space
required to store this metadata, as well as suggest an encoding mechanism that allows filter compres-
sion. For the DBMS, it proposes a more concrete approach to the current relational model. Instead
of using keys to represent relationships, auxiliary tables must be used to represent the relationships,
which store surrogate keys associated with registers. These surrogate keys must not be visible outside
the DBMS and be used only for traceability. The bit vectors used by purpose filters are estimated to
have an overhead proportional to the number of tuples multiplied by purposes, although these can be
compressed if there is a sense of hierarchy between purposes, through algorithms similar to Huffman
encoding, for example.

GDPR Compliance by construction [Schwarzkopf et al. 2019] suggests that all user data is stored
in user shards. The shards are inaccessible for query, instead, materialized views based on the query
and the purposes associated would be produced to provide the data while hiding the true data and
allowing the user to request, remove, or revoke access. Aside from tracking data of the materialized
views and what data is in them, the materialized views by themselves impose a massive overhead,
because user data is copied to them, and multiple copies of the same data are allowed. This falls back
to the widely known view maintenance problem. The work requires an efficient mechanism for view
creation and destruction, and does not discuss the impact on storage space required by the existence
of many materialized views, with reasonable overlapping of data, as well as the impact of tracking
these copies, for when a user requires access/deletion. Figure 1 exemplifies this process.

Sypse [Deshpande 2021] proposes a stateless layer that coordinates access between different parti-
tioned data, and manages data going in and out of these partitions. Sypse partitions data between
two or more partitions, including pseudonymized identifiers and synthetic data to put the database in
a private state. This inclusion of data also concern metadata explosion, because once more partitions
are designed, more synthetic data will be added to this data. The work discusses three possible forms
of creating these partitions, using synthetic keys, adding an encryption key to personal data, and
using encryption with pseudorandom keys.

The aforementioned works rely on increasing metadata, be it embedded directly into data or using
auxiliary data structures. Opportunities remain in data structures or mechanisms that provide com-
pact representation of this metadata, allowing for fast retrieval and modification. There is a trade-off
between storage space and access speed, however, it is possible to achieve a sweet spot on these points,
although these problems can be tackled in a separate manner, be it by using a succinct structure to
compact data and save storage space, or adding more data to perform a more efficient access.

2.2 Delete guarantees

This requirement relates to the right to be forgotten and brings the problem of ensuring that the
requested deletes happen without undue delay. This means that deletes must be followed through,
instead of them being a promise, as well as if such promise is made, that it is tracked, to be fulfilled in
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Fig. 1. Querying user shard data through materialized views (Adapted from [Schwarzkopf et. al. 2019]).

a given time. The storage engine must provide either a confirmation mechanism or have in its design
the deletion guarantees, and the DBMS must guarantee that the deletes happen in able time, through
management mechanisms handling the delete confirmation and/or enforcement. Another problem
that arises is that whenever users request their data to be removed, this data might be distributed
in several tables/databases within the same application. The delete operation must be able to access
different representations of the same data. This problem is known as the entity resolution problem,
and, while explored in academia, the main focus is to access scattered data or reconstruct an entity,
not to remove this data and deal with the aftermath of separate data being selectively removed. On
this topic, the recovery log is another place that may contain data related to a user, bringing up
challenges related to the immutability of the log vs the erasure guarantees.

Lethe [Sarkar et al. 2020] is an LSM-based storage engine that upgrades delete operations to first-
class citizens, without loss to other operations, such as reads and inserts. Lethe is based on two
other mechanisms: Fast Deletion (FADE) and Key Weaving Storage Layout (KiWi). FADE works by
triggering tree level compactions over time, instead of on demand, whenever nodes need to be split.
Then, with each compaction, delete tombstones are pushed down until data is completely erased
from the tree. FADE works based on an estimated time-to-live, which varies by tree level, meaning
that lower levels will take longer to trigger the compaction, and ensuring an upper-bound for delete
persistence. KiWi is a storage layout that organizes LSM data not only based on a sort key, using
also a delete key. Files contain delete tiles, which are sorted by sort key. Inside delete tiles, pages are
sorted by delete key. Inside each page, records are organized by sort key. The main idea behind this
storage layout is to ensure fast access to data based on the delete key, namely the timestamp used as
a time-to-live by FADE. KiWi also uses Bloom Filters and Fence Pointers to filter out non-existing
entries. Lethe unifies FADE and KiWi, tuning the storage layout to find the optimal value for delete
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tiles’ granularity.

GDPR Compliance by construction [Schwarzkopf et al. 2019] provides the removal of a user shard
as a solution for the delete guarantee, however, while it highlights that the underlying views must be
aware of this removal, it does not discuss a mechanism ensuring this awareness. GDPRBench [Shastri
et al. 2020] evaluates this impact by adding a time-to-live attribute to data, and using a daemon or
adding this functionality to the DBMS to periodically probe the data in search of TTL violations, as
well as deleting them when needed. [Kraska et al. 2019] point out that when an entry is deleted in
their system, the surrogate keys become dangling, rendering data access impossible. Sypse [Deshpande
2021] proposes the deletion of synthetic data as a form of removal, since it would be impossible to
decrypt keys.

Research opportunities remain in approaches that also treat deletes as a first-class citizen, as well as
approaches similar to garbage collection, in an active/passive hybrid approach, to guarantee deletes
on time as well as be opportunistic with relation to the resources. Another opportunity presents in
ensuring recovery consistency when the log is also considered a sensitive location with respect to data.

2.3 Efficient auditing

This requirement relates to the ability of auditing and ensuring the rights are being respected. It brings
the problem of making sure that all data accesses are properly recorded and it is possible to retrieve
all accesses to a given user/register. The storage engine must be able to record each access without
impairing overall performance, storing not only the access, but what was accessed, who accessed it
and how it was accessed, and the DBMS must guarantee that this log is accessible in an efficient
manner, through specialized and indexed logs.

Efficient access to logs has been widely explored in academia, and one example is Instant Recovery
[Graefe et al. 2016], which proposes a structure to facilitate random access to the log, without hindering
log write performance. The work describes a log structure geared towards single-page recovery, aided
by two data structures, an index that finds a given page in a reduced time, and a transaction log
chain, which links records related to a single transaction across pages. Through these structures, it
is possible to restore the database to a partial state that is sufficient to answer queries, avoiding the
high downtime required for complete recovery.

Solutions for auditing databases exist for quite some time, examples are Oracle Audit Vault [Oracle
Inc. 2021] and pgAudit [Riggs et al. 2021]. However, these solutions provide a more general auditing
mechanism and are placed outside of the database, meaning that they do not consider accesses from
within the database, e.g., query processing access.

Audits can become more efficient by using either a recovery log or a more specialized log entity
for audit if these records are easily searchable. For instance, a logging entity that pertains only to
personal data instead of all data, with a higher level of detail.

A research opportunity presents in using such ideas in a more modern logging scheme, such as
[Haubenschild et al. 2020], which low-latency logging and bounded recovery features can be exploited
in this context, allowing for fast recovery of important data. Another area to be explored is anomaly
detection through log analysis, in which possible violations can be detected.

2.4 Purpose-based access

This requirement relates to right of access, right to be informed, and consent, bringing the problem
of only allowing data associated with a given purpose to be queried within this purpose. The storage
engine must associate each data item with its purpose metadata, as well as return the data accordingly.
The DBMS must guarantee that queries have well-defined purposes and that queries do not access
unwanted data through access filters.
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This problem has been relevant for some time, having works dedicated to it for at least 15 years.
While the driving factor of previous works was mainly information security, there was no guideline on
how this type of access should be made. Nowadays, this problem is tackled with the data regulations
taken into consideration.

Rizvi et al. [Rizvi et al. 2004] describe an authorization model, in which queries posed against
the data are rewritten to comply with the querier’s allowed privileges. This is done through a set
of authorization views, which are queried instead of the raw data. These queries are rewritten to
be compatible with the views, but only if it is valid to be executed. Validity is checked through the
existence of compatible authorization views for the query to be executed, which can be conditional,
based on the current state of data.

Byun et al. [Byun and Li 2008] treat purposes as hierarchical entities, establishing operations to
transition between purposes, providing a notion of intended purpose. Based on this model, the work
discusses how to access data using purposes, and what additional information is required in place for
the model to work.

Other existing works deal with that by associating purposes to tuples as bit-vectors [Kraska et al.
2019] and creating purpose filters to avoid unwanted data leaking. In an application sense, it also
describes a “sandbox” mechanism in which the DBMS would only be accessible by applications through
specific VMs, each with their own purpose. Meanwhile, there are several advances in filters.

Sieve [Pappachan et al. 2020] presents a middleware aimed to scale up purpose-based query pro-
cessing. Sieve does not require internal code changes to the DBMS, relying only on a query rewriting
layer and User Defined Functions to provide guidance in creating and selecting query guards. These
guards guarantee that queriers only access data within their capabilities. By modeling the querier
and policies, which are obtained from a table in the database, Sieve rewrites queries and whenever
possible, force the DBMS to use indexed structures to calculate and generate guards. A cost function
is applied to select the best guard for each query, and finally the query is rewritten using the selected
parameters. Through this approach, Sieve attains a very low response time in comparison to baselines,
and this performance gain remain even with larger datasets.

HOPE [Zhang et al. 2020] proposes a key compression mechanism for in-memory search trees, then,
it can be used to query filters and indexes in an efficient and space-saving manner. HOPE relies on a
String Axis model, in which all possible source strings are organized in lexicographical order. Then,
each string is mapped on this string axis using different intervals. From this model, six different
compression schemes are derived. HOPE uses these compression schemes to encode in-memory search
structures, in order to reduce storage size and not hinder the order-preserving capabilities of these
structures. Therefore, it is feasible to have auxiliary structures to filter access by purpose if using a
technique that reduces their storing size.

Stacked Filters [Deeds et al. 2021] provide a constructed structure able to incorporate workload
knowledge within itself, without being a learned filter. It works by layering filters one on top of the
other, alternating the layers between positive and negative. Whenever an element is queried, it is
tested against the topmost layer of the filter, which is positive. If it is accepted, it is retested by the
underlying layer, which is negative. If it is accepted by the positive and rejected by the negative, it
means that the total result is positive. If not, the element is tested against lower layers until the filter
is finished. Each underlying layer is smaller than the upper ones, ensuring that the filter is constructed
within an expected size boundary. The strategy also allows for flexibility based on the underlying
filters. Stacked Filters can also be built incrementally, starting from the first layer and constructing
bottom ones as false positives start to occur in upper layers.

Current DBMSs have mechanisms to enforce such rules through a series of constraints and triggers.
Denial Constraints are an evolution of these concepts, being able to model functional dependencies
and more complex relationships. [Pena et al. 2020] describe VioFinder, a mechanism aimed towards
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speeding up the processing of these constraints to find violations, through a process of clustering
and refinement. These constraints and their violations may be modeled to represent unauthorized
purpose-based access.

Research opportunities remain in improvements of storing purpose data efficiently and evaluating
queries against purposes in a fast way. Designs based on specialized hardware can aid this evaluation,
such as on-disk processing [Mishra and Somani 2017], allowing only the data transfer of appropriate
data. Further integration of the mechanisms discussed in query execution engines can also be explored.

2.5 Opted data

This requirement relates to right of access, singling out, and consent, bringing the problem of storing
data, but filtering its access to only some types of queries. The storage engine must filter out all
results that are opted out, however, in aggregation queries, these results must be computed, and the
DBMS must guarantee that query results do not allow users to be singled out, as well as disallow
single target purposed queries in opted-out data.

In GDPR, the notion of singling out is detailed in an additional document of the European Data Pro-
tection Board, further describing anonymization as a mechanism to ensure security against individual
re-identification in a data release [A29WPT 2018]. The document analyses whether specific classes of
anonymization techniques, like k-anonymity, l-diversity, differential privacy, and tokenization, provide
security against singling out [Cohen and Nissim 2020]. There exist approaches to implement some
of those techniques into database systems, either on the storage manager or at the query language
processing level. The general idea is to anonymize personal identification data or to sanitize query
answers before delivering results.

K-anonymity, l-diversity, and tokenization are commonly referred to as syntactic models [Sweeney
2002; Machanavajjhala et al. 2007; Domingo-Ferrer et al. 2016]. They apply data transformation
based on generalization, suppression, or perturbation to make obscure property values that otherwise
would be easier to single out an individual on a dataset [Fung et al. 2010]. Although applying syntactic
models is insufficient to guarantee strong individual privacy, recently several database systems have
provided tools or extensions to anonymize data according to these models.

Azure SQL Database provides a feature, called Dynamic Data Masking, that hides the sensitive data
in a query result for designated table attributes, while the data in the database is not changed [Mi-
crosoft 2021]. Azure SQL implements masking functions that the database administrator can use to
control personal data exposure. Instead of returning raw data, masking functions generalize attribute
values that will compose the query result set. This technique can be used to hide individual identifiers
and to anonymize sensitive data stored in the database. MariaDB also offers similar feature with its
masking filter [MariaDB 2019].

PostgreSQL Anonymizer [Dalibo 2020] is a declarative approach for masking sensitive personal
data in PostgreSQL databases. Masking rules are declared for relational tables using PostgreSQL
data definition language. They associate data with masking functions which can be used for random-
ization, faking, scrambling, and noise addition. Besides, the anonymizer extension also allows for the
generalization of attribute values.

Distinctively from the syntactic models, differential privacy adds noise to query answers according
to a probability distribution associated with the domain of possible query results [Dwork 2006]. With
that random procedure, differential privacy aims to introduce incertitude within the answer, although
much of the original data distribution is kept, allowing for data analysis. Differential privacy, which
is commonly implemented as a randomized mechanism, has strong privacy guarantees. With much
success, it has been used for aggregated queries and statistical data analysis.

PINQ [McSherry 2010] is a data analysis platform designed to provide differential privacy guaran-
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tees. PINQ uses its query system, similar to SQL, called LINQ, and acts as an intermediate layer
between a database and the data holder. Therefore it allows the data holder to carry out consultations
without compromising the privacy of individuals that contributed with their data to the database.

PrivSQL [Kotsogiannis et al. 2019], a differentially private SQL query engine created upon two
tenets: Answer workloads through constructed synopses and construct these synopses over a set of
views, that reflect the data organization of the underlying database, without violating privacy rules.
Once a query is posed against the system, it is analyzed within the context of previously generated
views and rewritten accordingly. This causes the query sensitivity to be bounded within the answering
view sensitivity. The work also describes how to generate the synopses for data defined by the views,
respecting the a given differential privacy budget and definitions.

SAP HANA [Kessler et al. 2019], a widely known commercial DBMS, also has its take on pri-
vacy. From implementing more broad methods such as k-anonimity to applying the concept of local
differential privacy, the DBMS integrates these concepts in a mechanism called Privacy Views.

These works offer the power of differential privacy to answer numerical queries closer enough to the
real results to be useful but slightly different, so that person re-identification is unlikely. Although
several approaches exist for publishing and sharing information in a differentially private way, they
cover most of the aggregate queries, such as COUNT(*), and noise that has to be added in publishing
settings is usually too high. Moreover, mechanism integration to existing DBMS is still a vast subject
of research.

2.6 User related data retrieval

This requirement relates to two of the policies described: right of access and consent. It brings the
problem of timely retrieving all the data related to a given user, even if distributed across relations
and derived information. The storage engine must account for this data, and facilitate retrieval of all
user-related data. Moreover, the DBMS must guarantee that every user has their own data tagged
and available through metadata tags and index structures. This is also a vastly explored theme
in academia, however, points to be taken into consideration are space allocation, as well as timely
retrieval and deletion.

Compliance by Construction [Schwarzkopf et al. 2019] suggests that all user data is stored in user
shards. The shards are inaccessible for query, instead, materialized views based on the query and the
purposes associated would be produced to provide the data while hiding the true data and allowing
the user to request, remove or revoke access.

Other cited works also have solutions for this component, be them explicit, such as Sypse [Desh-
pande 2021] personal information partition, or implicit, like SchengenDB [Kraska et al. 2019] and
GDPRBench [Shastri et al. 2020], which embed the information within data. Although there is not a
clear separation of user related data, it is retrievable through its unique identifiers.

Research challenges in this area overlap with others discussed before, highlighting the entity reso-
lution problem, fast access of all user related data and succinct data structures that can represent the
whole user, facilitating data retrieval.

2.7 Discussion

As Shah et al. [Shah et al. 2019] mentions, GDPR compliance can be seen as a 2-dimensional spectrum,
ranging from real-time to eventual compliance. This means that either the system may be GDPR-
compliant at all times, or guarantee said compliance given some time. The system can also be
evaluated from a full vs partial compliance stance, in terms that either it complies with all GDPR
policies or some of them. We agree with this spectrum, arguing that this flexible compliance should
be dynamic and configurable. DBMSs must have a well-defined set of rules regarding compliance,
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which component is accountable for each rule, and how it is configured. They must also make it clear
to applications what should be considered to achieve full compliance, as well as to avoid interference
from applications into the DBMS guarantees.

Data replication is an issue since when data is copied, it produces more metadata as well as needs
more resources to track the copies. There are position papers on both sides, that data should never be
copied and that data must always be provided as a copy. We believe that copies should be discouraged,
as tracking data may slow down the system as well as leak information, however, derived results that
do not break single individual privacy can be copied because, even if a user requests removal of the
data, their data is not possible to single out.

Another issue that appears is that many of the modifications may conflict so much with fundamental
DB design that they can be either impractical or place trust in the DB administrator (DBA), a human
component subject to malice and failure. SchengenDB provides examples of log maintenance since
erased data will still be present in log records, as well as in the suggested “sandbox” approach, instead
of stopping intercommunication altogether, the system can be permissive and warn that access across
different purposes happens, then, it would notify the DBA, placing the trust that appropriate action
is taken.

Table I. Comparison of works x impacts.
Metadata
Explosion

Delete
Guarantees

Efficient
Auditing

Purpose-based
Access Opted Data User Data

Retrieval
[Shastri et al. 2020] Partial Complete Partial Partial N/A Partial
[Kraska et al. 2019] N/A N/A Partial Complete Partial Complete

[Schwarzkopf et al. 2019] N/A Complete Partial Complete Partial Complete
[Deshpande 2021] N/A Complete N/A Partial Complete Complete
[Sarkar et al. 2020] N/A Optimized N/A N/A N/A N/A

[Kotsogiannis et al. 2019] N/A N/A N/A N/A Optimized Partial
[Haubenschild et al. 2020] N/A N/A Optimized N/A N/A N/A
[Pappachan et al. 2020] Partial N/A N/A Optimized Partial N/A

[Zhang et al. 2020] Partial N/A N/A Partial N/A N/A
[Deeds et al. 2021] Partial N/A N/A Complete Partial N/A

Table I provides a summarized comparison of selected works described in this paper against the
impacts mentioned, in an overview relating their characteristics. While there are works that address
many of the challenges, they either only discuss possible solutions, or provide acknowledgement of the
issue. More specialized works provide optimized solutions, although these works tend to focus only
on one of the issues.

From this comparison, one takeaway is that current systems need to be redesigned considering
these new restrictions. Another possible solution is to add a new layer to the hierarchy, to ensure
that data coming out of the DBMS is properly handled. However, this approach can generate many
vulnerabilities and add an overhead to general query processing, which can add up and ultimately
hinder performance in the long run.

3. CONCLUSION AND FUTURE WORK

In this work, we extend the discussion of [Machado and Amora 2020] adding more references and an
increased depth to the discussion of each work. Moreover, with the detailing of each right and impact,
we achieve a higher level of understanding the implications of these rights, and better relate existing
solutions to each impact, providing more detail on their strengths and weaknesses. Considering all
the arguments and opportunities presented, we can build the following propositions:
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The DBMS workload profile will change drastically, once read-only transactions become write-
intensive, as a result of increasing metadata and recording accesses and purposes. In a non-optimized
compliant relational DBMS, there is a decrease in performance in 2 orders of magnitude. While
some of this overhead is unavoidable, optimizations are possible once these new characteristics are
considered in design.

The DBMS, as well as the storage manager, must become aware of the queries, the data, and the
metadata, to provide required data as well as to make sure that no unauthorized data leaks through a
query while addressing the performance overhead caused by these constraints. Moving the constraints
to the DBMS brings two benefits: Access to personal data can be protected even from outside the
application, since the DBMS will have awareness regarding these accesses, and more accurate query
processing estimates can be done, with respect to query optimization and plan selection, allowing for
a reuse of existing components without the need for retrofitting.

Data must be treated as a first-class citizen, instead of being neglected in favor of overall performance
increase and low response times. Operations must be confirmed, not only in state, but also in physical
storage and data structure, with a more attentive look to deletes, which many times happen logically
to favor a high throughput in these operations. These operations may add new overheads or increase
the relevance of existing ones.

A new class of activity recording must also emerge, either to facilitate audit activities, but also
to identify unusual patterns within the tasks performed by the database, which may indicate a data
breach and allow the DBA to act accordingly.

These new challenges oppose the usual beliefs of DBMS design and, to achieve performance and
compliance, it is necessary to rethink data structures as well as database architectures. For future
works, there are possibilities in either new algorithms or data structures for reducing each impact,
be it metadata explosion, data or log access and retrieval; or in adapting different solutions to work
together, to address different impacts simultaneously. By integrating different solutions, an optimized,
GDPR-compliant DBMS may be achieved.
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