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Abstract. The detection of events in time series is an important task in several areas of knowledge where operations
monitoring is essential. Experts often have to choose the most appropriate event detection method for a time series,
which can be complex. There is a demand for benchmarking different methods in order to guide this choice. For this,
standard classification accuracy metrics are usually adopted. However, they are insufficient for a qualitative analysis
of the tendency of a method to anticipate or delay event detections. Such analysis is interesting for applications in
which tolerance for close detections is important rather than focusing only on accurate ones. In this context, this paper
proposes a more comprehensive benchmark of event detection methods by including the analysis of temporal bias. For
that, metrics based on the time distance between event detections and identified events are adopted. Computational
experiments were conducted using real-world and synthetic datasets from Yahoo Labs and resources from the Harbinger
framework for event detection. Adopting the proposed temporal bias metrics helped obtain a complete overview of the
performance and general behavior of detection methods.

Categories and Subject Descriptors: H.1 [Models and Principles]: Miscellaneous; I.2 [Artificial Intelligence]:
Miscellaneous; I.6 [Simulation and Modeling]: Miscellaneous

Keywords: Event Detection, Time Series, Benchmarking, Temporal Bias

1. INTRODUCTION

In time series analysis, it is often possible to observe a significant change in behavior at a certain point
or time interval. Such behavior change generally characterizes the occurrence of an event [Guralnik
and Srivastava, 1999]. An event can represent a phenomenon with defined meaning in a domain of
knowledge. In this context, the event detection problem becomes particularly relevant, especially for
applications based on sensor data analysis. Examples of such applications can be observed in chem-
istry, reflection seismic, and oil drilling and exploration, where monitoring of operations is essential.

Experts often have to choose the most appropriate event detection method for a time series and
application. This choice can be a complex task as there are several detection methods in the literature.
Each one presents different characteristics or assumptions about the analyzed time series. In addition,
the nature of the events contained in the time series is often not known. Commonly, events detected in
time series refer to anomalies and change points. In this case, events of certain types may be neglected
or misidentified due to the wrong choice of a detection method. Failures in event identification can
affect the decision-making process or lead to false positives. As a result, there is a credibility loss in
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control techniques and possible damage to applications. It indicates a demand for benchmarking the
results of different methods for event detection. Such a process aims to guide the choice of suitable
methods for detecting events of a time series in a particular application.

For benchmarking event detection methods, common classification quality metrics, such as balanced
accuracy, F1, precision, and recall, are usually adopted as a base for comparison [Han et al., 2011;
Lavin and Ahmad, 2016]. Such metrics focus mainly on a quantitative analysis of detection accuracy.
On the other hand, inaccuracy in event detection does not always indicate a poor result. Inaccuracy
in detecting an event can often result from its anticipated or delayed detection. In this context,
the metrics usually adopted are insufficient for a qualitative analysis of the tendency of a detection
method to anticipate or delay the detection of events. Such an analysis can be interesting for several
applications that are tolerant of close detections rather than focusing on accurate ones [Singh and
Olinsky, 2017].

This paper proposes a more comprehensive benchmark process for comparing methods for detecting
events in time series. Such a process seeks to support the decision-making of the most appropriate
method for a given application with a basis not only on the usual quantitative analysis of accuracy but
also on a qualitative analysis of the temporal bias methods. In this context, we propose new metrics
based on the time distance of event detections to the actual events previously identified in the time
series for enabling the latter. These metrics help guide the choice of appropriate methods, considering
their temporal bias. It enables the analysis of how close their detections come to the events, not just
when they precisely detect them.

Computational experiments were conducted in order to benchmark different methods for event
detection in time series. For that, the Harbinger framework was adopted. It integrates and enables
the benchmarking of different state-of-the-art event detection methods. During the evaluation, eleven
detection methods were selected among the available in Harbinger. These methods encompass the
search for anomalies and change points through different statistical, volatility, proximity, and machine
learning methods. For means of comparison using ground truth data, we have adopted real-world and
synthetic datasets from Yahoo Labs. A total of 367 time series were analyzed. For each method, four
metrics were computed to structure the comparative analysis and discussion of the results. Adopting
the proposed detection temporal bias metrics helped obtain a more comprehensive benchmark of
detection methods and general behavior.

The paper is organized as follows. Section 2 presents the theoretical background. Section 3 addresses
the related works and highlights the contributions of the proposed benchmarking method against the
existing literature. Section 4 describes the adopted methodology. Section 5 presents the experimental
evaluation and its discussion. Conclusions and final considerations are presented in Section 6.

2. TIME SERIES AND EVENT DETECTION

Data that is recorded over time leads to a representation called a time series. When a series is
examined, it is expected to find a temporal relationship, which has influenced the past data and may
continue to influence the future. This behavior of a time series can change due to the occurrence of an
event, so the detection of events becomes an important aspect in the mining of temporal data. This
work addresses the detection of two distinct types of events: anomalies and change points.

2.1 Time Series

A time series is a sequence of observations collected over time. Generally, a time series y is considered
a stochastic process, i.e., a sequence of n random variables <y1, y2, · · · , yn>[Carmona, 2013]. A
time series observation is referred as yi, indexed in time by i = 1, . . . , n, such that y1 represents
the first observation and yn portrays the most recent one. A subsequence of size p obtained from y
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that ends at the i position can be represented by seqi,p(y), which is a continuous sequence of values
<yi−(p−1), yi−(p−2), . . ., yi>, where |seqi,p(y)| = p and p ≤ i ≤ |y|. The moving average yi,p, at
i position, of p terms in a time series y is calculated by the average of tk observations from the
subsequence seqi,p(y), as defined in Equation 1.

yi,p = p−1 ·
p∑

k=1

tk | tk ∈ seqi,p(y), 1 ≤ k ≤ p (1)

2.2 Trend Anomalies Detection

Anomalies are observations that highlight because they appear not to be generated by the same
process as the other observations in the time series. Thus, anomalies can be modeled as isolated
observations of the remaining data based on similarity or distance functions. They can be identified
as a(y) using the Eq. 2, where Q1(y) and Q3(y) are the first and third quartiles, respectively, and
IQR is the interquartile distance [Gupta et al., 2014].

a(y) = {i, ∀ i | yi /∈ [Q1(y)− 1.5 · IQR(y), Q3(y) + 1.5 · IQR(y)]} (2)

In the time series context, there is a particular interest in detecting anomalies that may represent
the occurrence of an event that escapes the trend inherent in the y generating process. Let ŷ be an
estimate of the y generating process, produced by adjusting a α model, with ŷi = α(y)i. Since ε is a
time series of residues (white noise) got after removing the trend ŷ, trend anomalies of y are identified
as at(y) through Equation 3.

at(y) = a(ε), εi = yi − ŷi (3)

The literature presents several methods for detecting trend anomalies. Among them are those based
on decomposition, adaptive normalization (AN), and KNN-CAD. The decomposition method adopts
an approach that comprises decomposing the time series into three components: trend, seasonality,
and the rest, on which the search for anomalies occurs [Gupta et al., 2014]. In AN, inertia is used to
address non-stationary series by calculating the moving average [Salles et al., 2019]. KNN-CAD is an
anomaly detection method based on the k-NN algorithm that adapts to non-stationarity in the data
flow. According to [Gammerman and Vovk, 2007], KNN-CAD uses an approach involving distance
from k nearest neighbors. The greater the distance between a point p and its kth-neighbor, the greater
is the chance of being an anomaly.

2.3 Volatility anomalies detection

Most financial time series exhibit non-linear properties, which existing linear models can not capture,
as the volatility of these series varies widely over time. Thus, there is a demand for the study of the
volatility of time series. Econometric models appear to address the data’s non-linearity, including
stochastic volatility, such as ARCH and GARCH, the latter being the most well-known and applied
[Carmona, 2013]. The works applied to the financial area associate volatility with risk, showing an
event in time series.

GARCH-type models involve estimating volatility based on previous observations. GARCH is a
nonlinear time series model, where a time series yi is defined from the average component µi according
to Equation 4. The noise sequence wi is i.i.d. N(0, 1), so that the conditional distribution of ỹi =
yi − µi, given ỹi−1, ỹi−2, . . . is N(0, σ2

i ) [Carmona, 2013]. Such a model can be used as α for anomaly
detection (Equation 3), or even its instantaneous volatility estimates can be subject to anomaly
detection (Equation 2).
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yi = µi + σiwi (4)

2.4 Change points detection

The methods of detecting change points aim to find in the time series the points or intervals in time that
represent a transition between different states in a process that generates the time series data [Takeuchi
and Yamanishi, 2006]. It is possible to define the change point detection as a hypothesis test problem,
where the null hypothesisH0 characterizes the absence of change points, and the alternative hypothesis
HA negates H0. Let seqi,p(y) be a subsequence of observations from a time series, t, k ∈ {i, . . . , i+p},
and t ≤ k, formally H0 : ∀ t, k (t 6= k) | Pyt

= Pyk
e HA : ∀ t ∃ k (t 6= k) | Pyt

6= Pyk
, where Pyi

is the
probability density function of the subsequence and k is a change point [Chen and Zhang, 2015].

One proposal developed for detecting change points in time series is based on the Exponentially
Weighted Moving Average (EWMA). According to [Raza et al., 2015], EWMA is a method used to
detect small changes in the moving average of a time series. The EWMA method uses a weighting
constant (λ) that decides the importance of current and historical observations. Considering yt as the
observation value in time t, the EWMA model can be defined by Equation 5.

zt = λyt + (1− λ) zt−1, (5)

Where λ is a smoothing constant (0 ≤ λ ≤ 1), and z is the exponentially weighted moving average
(EWMA). Analyzing Equation 5, z0 is equal to the average of the initial data [Atashgar et al., 2020],
and the smoothing constant λ is determined considering the change size to be detected [Assareh et al.,
2015]. Therefore, EWMA assigns higher weights to recent data and lower weights to older data.

However, the seminal method of detecting change points (SCP) has become a reference in the
literature [Guralnik and Srivastava, 1999]. Proposed to identify the moment of change in the time
series behavior, the SCP is an iterative algorithm for adjusting a model to a time segment. In other
words, this method utilizes a univariate approach. It follows a subsequent strategy, where models are
fitted to data segments before and after the point, for any point in time. In addition, a likelihood
criterion is used to determine if there is a new change point. There will be a new change point if the
total of fit errors is smaller than when there is no change point.

Besides the advantages as mentioned earlier, the SCP method promoted the development of many
approaches, such as the ChangeFinder (CF) [Takeuchi and Yamanishi, 2006], for example, which is
composed of two phases. In the first phase, given a time series y, a model α is adjusted, resulting
in ŷi and identifying its anomalies from the residuals in the series s defined in the Equation 6. In
the second stage, a new series sp is produced, which is composed of the moving averages of s with p
terms. The change points detection is reduced to anomalies detection in sp.

si = (ŷi − yi)2 , ŷi = α(y)i (6)

2.5 Machine learning-based event detection methods

In contrast to the methods presented previously, the methods based on machine learning are not
necessarily restricted to certain kinds of applications/problems. In the same way, they are not re-
stricted to detecting a specific type of events, such as only anomalies, change points. The machine
learning methods used to compare with the method proposed in this work are Feed-Forward Neu-
ral Network (NNET), Convolutional Neural Networks (CNN), Support Vector Machine (SVM), and
Extreme Learning Machine (ELM), K-MEANS, and Long Short Term Memory (LSTM).
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According to Haykin [2011], NNET can be seen as a set of mathematical tools used to learning
the relationship between input and output variables. One of the advantages of its use resides in the
flexibility of the distributed model defined by the weights of the network. Thus, the linear and non-
linear decisions can be defined by adjusting the neural network configuration. Each node in a layer
is an artificial neuron. Its input is modified by weight and added to all other inputs. The resulting
value is passed through a transfer function to one or more neurons in the next layer [Riese and Keller,
2020].

One of the most well-known deep learning methods is CNN. It is a network formed basically by
modules superimposed on convulsion and grouping layers. CNN considers the identification of the
local relations between the analyzed data [Lim and Zohren, 2021]. A CNN comprises applying the
convolution layers, composed of several neurons, to the input data. Combining the inputs of a neuron
with the respective weights of each connection produces an output for the next layer. A matrix that
contains the weights assigned to a neuron’s connections represents the convolution filter.

The idea behind deep learning is to discover multiple levels of representation expecting high-level
resources may represent a more abstract semantics of the data [Guo et al., 2017]. A CNN is an
architecture composed of three distinct layers: an input layer, a convolutional layer, and a pooling
layer, which reduces the size of the input data. The convolution layers in the datasets can be applied
as an extractor of characteristics implicit in the data. The Equation 7 presents a convolution process,
where g is the input layer, h is one of the k filters that a CNN. It is used to optimize the learning
process at time t, ∗ is the convolution operator, and n is a hidden layer in the neural network.

(g ∗ h)[n] ≡
k∑

t=0

g[k − t]h[t] (7)

LSTM networks have the same properties as conventional recurring networks. However, they can
store information for long periods when processing a time sequence. The memory points of an LSTM
network are called cells. Cells can carry information until the end of a sequence or identify information
that the network should forget after some processing step[Greff et al., 2017].

Support Vector Machines (SVM) are supervised learning models used in classification tasks to
analyze data and recognize patterns. This technique consists of mapping input data points to a high-
dimensional resource space using kernel transformations and aiming for pattern recognition in the
data. SVM seeks to locate classifiers with a greater distance between the support vectors from an
infinite number of classifiers [Chauhan et al., 2019].

SVM-based classifier is suitable for handling large sets of attributes during the event detection and
for quadratic optimization seeking to obtain a stable solution [Rahul and Choudhary, 2021]. SVM
algorithms generally perform well on classification problems. Consider {a1, b1}, · · · , {ai, bi}, such that
a ∈ Rn and b ∈ {−1, 1}, i = 1, · · · , N , where N is the number of training instances, a is the input
vector and b is the desired classification. The objective is to estimate a function F : Rn → {−1 or 1},
using the training examples and applying it in the test examples, in order to classify them correctly.

Extreme Learning Machine (ELM) is a learning algorithm for hidden layer feed-forward neural
networks. ELM has a lower training error and a lower weight standard compared to other machine
learning models. In this structure, parameters of the hidden nodes are generated randomly, and the
weights of the output are calculated analytically [Tang et al., 2016]. Among the advantages compared
to conventional gradient-based learning methods, [Ismaeel et al., 2015] highlights that ELM is suitable
for most nonlinear activation functions. It can achieve a better-generalized performance compared
to backpropagation. Huang et al. [2006] stand out some points about the performance of ELM: (i)
extremely fast learning speed; (ii) better generalization performance, compared to gradient-based
learning algorithms; and (iii) ability to work with differentiable and non-differentiable activation
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functions.

K-Means is applied to identify clusters in a dataset. The k clusters are identified based on the
similarity. It is based on the Euclidean distance of the observations relative to the centroids of each
cluster. The value k is the arbitrary number of clusters to be identified. The centroid of each cluster
is defined by the algorithm iteratively. They correspond to the mean values of the observations within
each cluster [Muniyandi et al., 2012].

3. RELATED WORK

Comparing different methods of detecting anomalies in time series has been extensively explored in the
scientific community. In Chandola et al. [2009] presented a grouping of anomaly detection techniques
in different categories, covering classification based on closest neighbors, grouping, and statistics.

Braei and Wagner [2020] reported a comparison of twenty anomaly detection methods in univariate
time series. They were divided into three categories: statistical methods, classical machine learning
methods, and methods using neural networks. The results gathered showed better performance in
statistical methods. They evaluated that the properties of the time series affect the performance of
the algorithms. To better understand the several data mining techniques for detecting anomalies, some
hybrid approaches (a combination of two methods) were also analyzed. The literature indicates that
such techniques provide better results and commonly overcome an isolated approach [Agrawal and
Agrawal, 2015]. The survey described by Aminikhanghahi and Cook [2017] enumerates, categorizes,
and compares several methods to detect change points in time series. The methods investigated
include supervised and unsupervised algorithms.

Using distinct databases, Huang et al. [2012] compared the following machine learning methods:
SVM, Least Square Support Vector Machine (LS-SVM), Proximal Support Vector Machine (PSVM),
and ELM. The results show that ELM offers a unified learning platform with widespread attribute
mapping, which can be directly used in regression and multiclass classification applications. Besides,
ELM tends to present fewer optimization constraints, greater scalability, superior results for gener-
alization performance, and lower learning speed concerning the others models. Gupta et al. [2021]
analyzed different cases of COVID-19 in India (confirmed, killed, and recovery), using machine learning
models: Random Forest, Linear Model, SVM, Decision Tree e Neural Network. The results revealed
that the Random Forest presented a superior performance compared to the other evaluated models.

Based on data collected from diverse regions of Nanjing city, China, in 1999, Dong et al. [2003]
used regression and machine learning techniques to predict the heating value of solid waste. The
results show that the three-layer feed-forward neural network with backpropagation surpasses the
multiple linear regression model. In Huang et al. [2006], ELM is proposed as a new learning algorithm
for feed-forward neural networks of one hidden layer. The authors compare its performance with
learning algorithms considered benchmarks, such as NNET and SVM. The ELM randomly chooses
hidden nodes and determines the output weights. The results achieved report that the ELM can
present superior generalization performance and greater learning speed. Aiming at the prediction of
geological disasters. Zhang et al. [2019] proposed the combination of (i) Ensemble Empirical Mode
Decomposition (EEMD) for decomposing micro-seismic signals, (ii) Singular Value Decomposition
(SVD) for extracting values, and (iii) ELM for establishing a classification model. The results show
that ELM performs better than other machine learning models (neural networks and support vector
machines).

Delays related to event detections are found in studies involving Wireless Sensory Networks (WSNs).
The main objective is to calculate the delay until the event is detected by an individual node and the
delivery delay in a transmission network. In this context, Wang et al. [2011] presented a framework
for capturing delays in detecting events in large-scale WSN networks. The average delay is obtained
by averaging several hops in the network. In contrast, the soft delay threshold is defined as the delay
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when an event is detected with a probability p. On the other hand, no references were found that used
the delay measure as a metric to evaluate an event detection concerning a real event in the series.

The works available in the literature generally specialize in detecting events of specific semantic and
may neglect or misinterpret events of different types contained in a time series. These works commonly
implement a limited number of detection methods, which may be unsuitable for specific applications.
There is a demand for a study with different detection methods, thus identifying different types of
events, enabling a comparative analysis of their detections. The presented study made a different
comparison. In addition to covering different types of methods, it reported classic and new metrics,
seeking to measure when the detection occurred in the neighborhood of the event.

4. PROPOSED METHODOLOGY

The proposed methodology aims to compare different event detection methods in times series through
metrics that attempt to assess the quality and quantity of anomaly detection, change points, and
both. The methodology seeks to make it possible to parameterize the methods to assess individual
performance fair and consistent. Five steps were adopted in the proposed methodology: (i) data
acquisition, (ii) methods choice, (iii) parameters definition, (iv) methods execution (framework), and
v) metrics choice for evaluating results.

Data acquisition includes choosing and defining the datasets used in the experiments. In this process,
we use synthetic and real-world datasets containing a labeled reference. This reference comprises a
variable containing event label (i.e., occurrence of events) to compare the performance of the methods.
The next step involves choosing the methods used to assess the detection of events in time series. For
the experimental evaluation, eleven methods were chosen, five based on machine learning, one based
on proximity, and the other five on statistical techniques.

An optimal parameters setting reflects on the success of the event search. Consequently, the com-
plexity of this step depends on each method and the size of its set of parameters. The adjustment of
the moving average size must occur in the CF method. Also, it is possible to choose a model such
as linear regression, ARIMA, AR, or ETS. ETS consists of an exponential smoothing model. The
GARCH method should configure a more extensive set of parameters than the other methods. Table I
provides all parameters, the respective values used in the experiments, their description, and to which
methods they are associated. Two different window sizes were tested in the first two valid series of
each dataset: w = {50, 100}. According to the results obtained (Table II), w = 50 presented the
best results, and it was chosen as the window size in the computational experiments. For the other
parameters, default values were used as shown in Table I.

The Harbinger framework [Salles et al., 2020] was used to run the methods. This framework can
include methods aiming at a unified detection of different types of events in time series and the
comparative performance analysis of different detection methods applied. Harbinger implements and
combines the results of some of the main event detection methods available in the literature. Besides,
this framework, beyond allowing the inclusion of new methods, also makes it possible to optimize
its respective parameters. The detections can be evaluated through graphical visualization of the
results and several quality metrics computations. Such characteristics allow the proper conduct of
comparative analyzes between the different detection methods addressed.

To analyze the event detections in the approached time series, and perform the evaluation and
comparison of the methods, four metrics were used: (i) F1, (ii) Balanced Accuracy, (iii) a priori,
(iv) a posteriori. The metrics Accuracy Balanced and F1 were adopted in the evaluation of the
results. Both metrics are widely employed in the literature and provide a good estimate of precision
in detecting different methods. Detection bias was computed from distance-based metrics, which have
been proposed in this work. With these metrics, detections are measured before (negative values - a
priori distance) and after (positive values - a posteriori distance) of the reference event in the series.
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Table I: Variables and their respective acronyms.

Variables and values Description Method
w = 50 window size NA, SCP

input_size = 5 input window size SVM, ELM, NNET, CNN,
LSTM

mdl = linreg model
m = 5 moving average size CF

alpha0 = 0.9 maximum weighting
beta = 0 weight attributed to the observation probability
lc = 3 control bounds

EWMA

n.train = 50 training set size EWMA, KNN, SVM,
ELM, NNET, CNN, LSTM

threshold = 1 anomaly bound
k = 27 number of candidate neighbors KNN

alpha = 3 number of groups K-MEANS
mean.model = armaOrder average model
distribution.model = norm conditional density model
variance.model = sGarch variance model

GARCH

Table II: Results that support the window size choice

NA KNN EWMA
Window size 1 2 1 2 1 2

Correct 50 2 15 1 1 2 6
100 2 14 0 1 2 6

Priori Distance 50 9 433 24 19 35 89
100 8 445 9 280 35 89

Most of the classification metrics are based on the confusion matrix, which holds four key-values
of the results obtained in the model evaluation: (1) True Positive (TP); (2) False Negative (FN );
(3) True Negative (TN ); and (4) False Positive (FP). Although all the incorrect classifications are
worrisome and can bring wrong decisions, the most alarming is the FP. FPs are classified as correct
when they are not. It can cause major problems or catastrophes. The severity depends on the domain
in which the model is implemented. Most classification metrics are derived from these four values
(TN, TP, FP, FN ). The balanced accuracy metric is used to balance the values obtained from the
confusion matrix, whose average is obtained from the metrics of sensitivity and specificity, according
to Equation 8. Sensitivity represents the amount of TP over (TP + FN), while specificity describes
the amount of TN over (FP + TN).

balancedAccuracy =
(sensitivity + specificity)

2
(8)

F1, as shown in Equation 11, consists of a harmonic average between two other metrics called
precision and recall. The precision measure can be interpreted as the veracity of the truly detected
events. In other words, it is a metric that evaluates among all the observations identified as positive,
how many were correct (Equation 9). The recall represents how many of the actual events can be
identified by a specific model. In short, such metric evaluates among all the positive occurrences
marked as TP, how many were correct in fact (Equation 10).

precision =
TP

(TP + FP )
(9)

recall =
V P

(V P + FN)
(10)
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The F1 value ranges between 0 and 1. The higher the value, the better the result is. F1 shows how
accurate and robust the method is, i.e., how many observations it classified correctly and how many
it failed to classify because they were difficult to label. However, when evaluating a method based
only on F1, it must be paid attention to because it is inappropriate for an imbalance between positive
and negative reference values.

F1 =
2 ∗ precision ∗ recall
precision+ recall

(11)

Metrics based on distance from the detected event to the real event called a prior and a posteriori
have been proposed to measure temporal bias of detections. The before-mentioned metrics calculate
the detections before (negative values) and after (positive values) of the reference event occurrence
in time series. Let E = {e1, e2, · · · , ev} be the events set detected by a method mh, h = 1, · · · , |M |,
whereM is the set with all methods, D = {D1, D2, · · · , Dj} is the set containing all selected datasets,
and R = {re1, re2, · · · , req} is the set of real events present in the time series, given that |R| = i
represents the number of events present in the series, and Ri, i = 1, · · · , q each position of the event.

Hence, the set of detected events (E) was divided into two subsets: the first containing the event de-
tections before each reference event in the series, and the second containing the detections located after
the real event. Such subsets were defined as γ = {pr1, pr2, . . . , pru} and ρ = {psu+1, psu+2, . . . , psv},
respectively. From these subsets, the distance metrics were calculated as follows:

(1) A posteriori distance: The metric named posteriori distance was determined in order to mea-
sure the absolute value (va) between the distance from a reference event (Ri), i.e., real event
present in the time series, to the later event detected by the method (min(ρ)), according to
Equation 12.

posti = va[min(ρ)−Ri] (12)

(2) A priori distance: The metric named priori distance was determined to calculate the distance
from a reference event (Ri) to the first event before detected by the method (max(γ)). It is shown
in Equation 13.

priori = va[Ri −max(γ)] (13)

The procedure for computing temporal bias of detections is described as follows. For each R event,
the metrics post and prior are calculated. After that, the lowest value is computed. This lower value is
assigned to the temporal bias metric. This process is repeated for each detected event until it reaches
req, representing the last reference event in the series. Consequently, the result is a vector with the
shortest detection distances with each event in the time series. The formalization of the temporal bias
(bias, for short) is described by Equation 14.

biasi =

{
posti if posti < priori

−priori otherwise
∀ i ∈ R (14)

5. EXPERIMENTAL EVALUATION

This section presents an experimental analysis conducted to compare the performance of different
methods for detecting events. Such comparison aims to guide the most suitable detection methods
to a time series and an application. The dataset created by Yahoo Labs was selected to evaluate the
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methods, from now on, referred to as Yahoo. This dataset consists of observations collected by hour
containing anomalies identified manually by editors Webscope [2015]. Part of the data is synthetic,
while the other part is based on service traffic. The dataset is divided into four benchmarks. The
first one, named A1, is composed of real-world data, and the other three, called A2, A3, and A4,
are comprised of synthetic data. A1 and A2 have three attributes: (i) the sequence in the series
(timestamp), (ii) the observed value (value), and (iii) the indication of the presence/absence of an
anomaly. In addition to these three attributes, A3 and A4 have six more. These attributes bring
information about: (iv) noise, (v) trend, and (vi – viii) seasonality, and also labeling whether there
is or not a change point. A1 is the benchmark with the highest number of detected events, with 25
out of 1416 ratings being labeled as such. A2 has five events in a total of 1421 observations. A3 and
A4 have 1680 observations each, containing nine and eight labeled events, respectively.

Event detection processes were run for each time series under study. Therefore, the methods
described in Section 2 were used, covering the event detection of different types. In the CF method,
except when stated otherwise, the linear regression model is adopted to enable a fair comparison with
the results produced by the SCP method. The experiments were performed in a shared computer,
whose configuration consists of an Intel Core i7 processor with 16 cores, 128 GB of RAM, and the
Ubuntu 20.04 operating system.

5.1 Detection Performance Comparison

Table III presents a comparison of quality metrics for event detections produced by the different
detection methods under study in this work. Metrics F1 and balanced accuracy were selected as the
basis for quantitative analysis of the detection accuracy of these methods. In the referred table, it
is possible to observe, in a unified way, the performance of the methods regarding the time series
contained in the Yahoo datasets. The best results for each dataset are underlined.

Table III: Comparison of the event detection quality with F1 and Balanced Accuracy metrics.

Method F1 Balanced accuracy
A1 A2 A3 A4 A1 A2 A3 A4

AN 0.58 1.00 0.67 0.13 0.81 1.00 0.75 0.70

GARCH 0.05 0.06 0.01 0.02 0.66 0.71 0.48 0.48

EWMA 0.28 0.50 0.51 0.50 0.64 0.75 0.67 0.67

KNN-CAD 0.07 0.08 0.14 0.13 0.59 0.65 0.70 0.73

SCP 0.03 0.11 0.01 0.01 0.52 0.95 0.48 0.47

CF 0.30 0.72 0.20 0.08 0.89 1.00 0.79 0.67

K-MEANS 0.29 0.50 0.12 0.02 0.83 0.62 0.53 0.49

SVM 0.07 0.04 0.12 0.07 0.80 0.72 0.96 0.94

ELM 0.06 0.07 0.03 0.08 0.62 0.96 0.52 0.94

NNET 0.11 0.05 0.12 0.08 0.94 0.96 0.96 0.95

CNN 0.06 0.04 0.01 0.08 0.77 0.84 0.49 0.92

LSTM 0.09 0.08 0.11 0.10 0.84 0.96 0.83 0.83

By analyzing the results in Tab. III, it is possible to observe that based on the F1 metric, better
detection performances were obtained by AN in almost all datasets. Nonetheless, the performances
of EWMA, CF, and K-MEANS methods also stand out. It is noted that the methods above are
specialized in detecting different types of events, including change points (EWMA, CF) and trend
anomalies (AN, K-MEANS). This fact suggests that these methods can be complementary, and their
combination can better understand the events. Besides, as the EWMA, AN, and CF methods are
based on moving averages, this may indicate that the events in Yahoo datasets can be affected by the
inertia of the data-generating phenomenon.
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The balanced accuracy metric provides an analysis of the detection performance of the methods
from another perspective. In this context, the methods based on machine learning NNET, ELM,
SVM, CNN, and LSTM obtained better overall performance in all datasets. Among these, SVM
and NNET are highlighted in the A3 dataset, whose data present seasonality. The performances of
the AN and CF methods stood out in the A2 dataset while also performing well in the A1 dataset,
composed of real-world data. The characteristic methodology of the methods that obtained the best
performances indicates that the events in Yahoo can be mostly trend anomalies, except for the CF
method. In this scenario, specialized methods for other types of events may not be the most suitable.
Despite this, combining the methods above for performing event detection may offer more relevant
information, including the semantics of change points detected by the CF method. Note that detection
methods based on GARCH and SCP, which are specialized in anomalies of volatility and change points,
respectively, found it challenging to detect events in Yahoo data.

The results suggest that the comparative analysis of the performance of detection methods based
on well-defined metrics can guide more appropriate methods. Also, it can designate the need to
combine methods with different methodologies. However, the metrics usually adopted, such as F1 and
accuracy, focus mainly on a quantitative analysis of a method to “hit” accurately an event occurrence.
Nonetheless, the inaccuracy can be interesting in specific contexts. It can often result from event
anticipated or a delayed detection.

5.2 Discussion on Temporal Bias of Detections

The comparative analysis of different event detection methods based only on accuracy is insufficient
for a qualitative analysis of the tendency of a method to anticipate or delay the event detection. Such
analysis can be interesting for several applications in which tolerance for comparing event detection
methods is acceptable. Thereby, the method comparison process can benefit from a distance-based
metric that indicates possible anticipations or delays in event detection.

In this context, the a priori and a posteriori distances introduced in Section 4 can be used for
analysis. The before-mentioned distances were calculated for each event in the time series of the
datasets under study. The minimum value between the two measurements refers to the nearest
detection distance, from now on called the temporal bias. A minimum a priori distance results in an
anticipation, while a minimum a posteriori distance results in a delay. Fig. 1 shows the distributions
of temporal bias produced by the different methods applied to datasets A1, A2, A3, and A4.

Based on Fig. 1, it is possible to observe that the distributions of temporal bias are overall close to
zero, which means the detections, if not accurate, are close to the actual events contained in the time
series. However, we see many outliers, especially for datasets A1, A3, and A4. We also note that the
machine learning-based methods, except K-MEANS and LSTM, could produce fewer outliers than
other methods over all datasets. Still, we observe methods that display a wider distribution regarding
their temporal bias, such as EWMA (A1, A3, and A4), AN (A3 and A4), KNN (A1), and K-MEANS
(A4), where the last presents the more considerable variance of temporal bias.

Moreover, when analyzing Fig. 1, we observe that the better-evaluated methods based on the
accuracy metrics presented in Tab. III may not be the ones whose detections are consistently closer to
the actual time series events. That is the case for AN, EWMA, and K-MEANS, for example, which
produced high F1 and balanced accuracy scores in all datasets but presented higher amounts of outliers
and larger variance of temporal bias based on Fig. 1. In this context, the analysis of the distributions
of temporal bias may complement the metrics presented in Section 5.1, giving an overview of how close
the detections produced by each particular method are to the events of a time series. In that case,
methods that can produce detections consistently closer to actual events, with narrow distributions,
smaller variance, and lower outlier rates for temporal bias may be preferable and better evaluated.

On the other hand, one might also be interested to know the tendency of a particular detection
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Fig. 1: Distribution of temporal bias for the datasets under study.

method to produce biased detections. Alternatively, in other words, the tendency of a method to
anticipate or delay detections of a certain time series events. In this context, Tab. IV presents
the mean and skewness of the distributions of the temporal bias of Fig. 1. A negative skewness
coefficient indicates a tendency to delay event detections, while a positive skewness coefficient indicates
a tendency to anticipate them.

Table IV: Mean and skewness of distributions of temporal bias.

Method A1 A2 A3 A4
Mean Skewness Mean Skewness Mean Skewness Mean Skewness

AN 16.33 2.45 -6.30 -5.66 23.54 1.31 -21.58 -0.17

GARCH -17.85 -3.29 0.50 3.50 -34.82 -4.18 -6.69 -0.87

EWMA 2.33 5.63 -8.77 -3.96 12.58 0.30 13.96 0.39

KNN-CAD -2.68 0.20 -0.45 -6.52 0.62 2.39 0.48 1.71

SCP 15.15 3.92 2.86 3.50 -0.11 0.07 11.44 0.82

CF 1.42 0.12 -17.25 -3.95 -0.21 -2.43 0.34 0.72

K-MEANS 51.56 2.37 -3.64 1.28 6.96 0.63 18.30 0.16

SVM 1.04 1.64 -0.70 -0.49 1.10 6.78 1.42 3.09

ELM 3.02 1.17 -0.05 -1.04 1.32 7.05 1.44 2.04

NNET 1.50 0.62 -0.26 -1.61 1.05 6.12 1.57 3.12

CNN 3.15 37.00 0.55 6.17 5.02 28.22 4.46 23.10

LSTM -5.97 -40.10 -17.47 -22.42 -145.06 -30,06 -90.05 -27.96

Given that the distributions of temporal bias displayed in Fig. 1 are mainly centered around zero, the
means presented in Tab. IV, indicate the effect of the outliers and the possible presence of a skewed
distribution. For the A1 dataset, we can observe in Tab. IV that almost all methods resulted in
positive skewness coefficients, which means that most of their detections anticipated the actual events
contained in the dataset. The same can be said regarding the datasets A3 and A4. The exceptions
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correspond to the methods GARCH and LSTM (A1, A3, and A4), CF (A3), and AN (A4). In that
case, if one is mainly interested in preceding events in those datasets, they might prefer to avoid
these methods. For the A2 dataset, on the other hand, most methods resulted in negative skewness
coefficients, meaning that most of their detections delayed the actual events. The exceptions were
posed by GARCH, SCP, K-MEANS, and CNN. In that case, one might prefer to choose among these
methods to anticipate events in A2. Furthermore, based on the skewness coefficients, LSTM detected
events with temporal bias in all Yahoo datasets and, together with CNN, produced the highest values
of skewness (either negative or positive).

The analysis of results presented in Tab. III, Fig. 1, and Tab. IV can be complementary, giving
an overview of the performance and behavior of each detection method applied to the dataset under
study. The combined analysis of detection accuracy measures, distributions of temporal bias, and
skewness coefficients provides a more thorough benchmarking process. Such benchmarking analyzes
detection accuracy and the temporal bias of different event detection methods.

6. FINAL REMARKS

This work presented a comparative analysis of different event detection methods. It includes quanti-
tative analysis of both detection accuracy and temporal bias of different event detection methods. For
that, in addition to metrics commonly found in the literature, metrics related to the temporal bias,
i.e., detection distance concerning the event were adopted. The latter are important for an analysis
focused on anticipated or delayed of event detection. The metrics usually adopted detection accu-
racy. An evaluation was carried out on datasets containing synthetic and real-world data. It became
possible to verify that temporal bias metrics help obtain a more thorough understanding of the per-
formance and behavior of each detection method. It provides opportunities for choosing appropriate
methods for a particular application. The benchmarking of different event detection methods using
different metrics tends to avoid negligence or misidentification of events that can harm applications
that depend on event monitoring. The extension of this study leads us to the event prediction problem
based not only on detection techniques but also on solutions in the analysis and prediction of time
series and machine learning.
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