
Efficient Set Similarity Join on Multi-Attribute Data Using
Lightweight Filters

Leonardo Andrade Ribeiro, Felipe Ferreira Borges, Diego Oliveira

Universidade Federal de Goiás, Brazil
{laribeiro,felipeferreiraborges,diegooliveira}@inf.ufg.br

Abstract. We consider the problem of efficiently answering set similarity joins on multi-attribute data. Traditional
set similarity join algorithms assume string data represented by a single set and, thus, miss the opportunity to exploit
predicates over multiple attributes to reduce the number of similarity computations. In this article, we present a frame-
work to enhance existing algorithms with additional filters for dealing with multi-attribute data. We then instantiate
this framework with a lightweight filtering technique based on a simple, yet effective data structure, for which exact and
probabilistic implementations are evaluated. In this context, we devise a cost model to identify the best attribute order-
ing to reduce processing time. Moreover, alternative approaches are also investigated and a new algorithm combining
key ideas from previous work is introduced. Finally, we present a thorough experimental evaluation, which demonstrates
that our main proposal is efficient and significantly outperforms competing algorithms.

Categories and Subject Descriptors: H.2 [Database Management]: Database applications; H.3.3 [Information
Search and Retrieval]: Search process

Keywords: Advanced Query Processing, Data Cleaning, Data Integration, Multi-Attribute Data, Similarity Join

1. INTRODUCTION

Modern enterprises increasingly acquire and store large amounts of data. Massive repositories built
from numerous sources, often referred to as data lakes, are becoming popular in the industry. Analytic
tasks tap into such repositories to enable better decision-making. Data quality is a major concern in
this scenario because dirty data can jeopardize analysis results [Chu et al. 2016]. A recent survey of
data scientists has confirmed that dirty data still is the main problem faced at work [Kaggle 2017].
Moreover, data cleaning is a laborious process, frequently requiring more time than the analysis itself.
Indeed, another study has shown that cleaning and organizing data is the most time-consuming task
of a data scientist workflow [CrowdFlower 2016]. Thus, speeding up data cleaning tasks is crucial for
delivering analysis results in a timely fashion.

Set similarity join is a core operation for string data cleaning [Sarawagi and Kirpal 2004; Chaudhuri
et al. 2006; Xiao et al. 2011; Ribeiro and Härder 2011; Mann et al. 2016; Wang et al. 2017; Deng et al.
2018], which pairs strings represented as sets whose similarity is not less than a specified threshold. A
set similarity function is employed in the join predicate to mathematically approximate some notion
of similarity. Set similarity join is attractive owing to its efficiency in dealing with large datasets and
versatility in supporting a variety of similarity functions. Duplicate detection is a major example of the
use of set similarity join in data cleaning [Chu et al. 2016]. Duplicates are multiple and non-identical
representations of a real-world entity. Such kind of redundant information inevitably appears in data
lakes that integrate independent data sources containing overlapping information. Under the premise
that duplicates are similar in some aspect to one another, set similarity joins can be used to find pairs
of potential duplicates.

Copyright©2021 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021, Pages 226–241.

JIDM - Journal of Information and Data Management · 227

Table I. Records containing people’s personal information.

ID Name Street City State

1 Tom Allen Texas Ave. Augusta Maine
2 Tom Alen Texas Ave. August Maine
3 Tom Alen Clancys St. New York New York
4 T. Augusta Main St. Allen Texas

Traditional set similarity join algorithms assume string data represented by a single set over which a
simple similarity predicate is defined. However, real-world data is often multi-attribute. While we can
still use traditional algorithms by representing multi-attribute data as a single set—either by selecting
a single attribute for similarity matching or concatenating string values from multiple attributes, such
approach may produce unsatisfactory results. For example, consider the sample database shown in
Table I. The four records represent three distinct individuals, because records 1 and 2 actually refer
to the same person, i.e., they are duplicates. If only the attribute Name is considered for similarity
matching, record 3 could be deemed as a duplicate of records 1 and 2. Instead, if all attributes are
concatenated into a single string, then is record 4 that could be considered as a duplicate of records
1 and 2, because values of Name and City, as well as Street and State, are similar.

The above problems are avoided by representing multi-attribute data as multiple sets. Accordingly,
multiple similarity predicates can now be defined to compose the join condition. To the best of our
knowledge, Li et al. [Li et al. 2015] and Oliveira et al. [Oliveira et al. 2017; Oliveira et al. 2018]
are the only previous works that have addressed set similarity joins on multi-attribute data. In a
centralized setting, Li et al. proposed a prefix tree index to enable pruning of candidate pairs over
multiple similarity predicates. In a distributed setting, Oliveira et al. proposed a data partitioning
strategy based on a cost model to reduce both communication and computation costs.

In this article, we present a filter-based approach to speed up set similarity join on multi-attribute
data in a centralized setting. We propose an algorithmic framework that allows incorporating addi-
tional filters into traditional algorithms. We then present a lightweight filtering technique that can be
implemented using simple data structures. In this context, we evaluate exact as well as approximate
implementation alternatives. Finally, we devise a cost model to identify the best attribute ordering
for similarity join processing. We conduct an empirical evaluation on publicly available datasets. Our
results show that our proposal outperforms the algorithm of Li et al. by orders of magnitude.

This article is an extended and revised version of a previous conference paper [Ribeiro et al. 2020].
As part of the new material, we present a novel algorithm based on the central concept behind the
algorithm of Li et al. while avoiding some of its shortcomings by adopting the processing paradigm
of existing solutions. By comparing our main proposal with such competing approaches based on
the same fundamental concept, we can better identify key aspects with a major impact on runtime
performance. Accordingly, we provide a more detailed and comprehensive set of experiments.

The rest of this article is organized as follows. Section 2 provides background material. Section 3
formally describes the problem, overviews existing techniques, and present a new algorithm derived
from these techniques. Section 4 presents our filter-based approach. Experimental results are reported
in Section 5 and related work discussed in Section 6. Finally, Section 7 wraps up with the conclusions.

2. BACKGROUND

In this section, we review traditional set similarity join concepts, definitions, and optimization tech-
niques for single-attribute data. Finally, we describe a general algorithm based on a filtering-and-
verification framework.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

228 · L. A. Ribeiro, F. F. Borges, and D. Oliveira

2.1 Basic Concepts

We focus on set-overlap-based similarity, in which the similarity between two strings is derived from
the overlap of their set representations. To this end, strings are first mapped to sets of representation
units; such units are referred to as tokens. Then, set overlap can be measured in various ways to
obtain different notions of similarity.

There are several methods for mapping strings to sets of tokens. A well-known method is based on
the concept of q-grams, i.e., substrings of length q obtained by “sliding” a window over the characters
of a given string. To this end, the string is (conceptually) extended by prefixing and suffixing it with
q − 1 occurrences of a special character “$”, so all its characters participate in exact q q-grams. For
example, the string “Tom Allen” can be mapped to the set of 3 -grams tokens {‘$$T’, ‘$To’, ‘Tom’,
‘om ’, ‘m A’, ‘ Al’, ‘All’, ‘lle’, ‘len’, ‘en$’, ‘n$$’}. Note that the result of this mapping method can
be a multiset. Thus, we append the symbol of a sequential ordinal number to each occurrence of a
token to convert multisets into sets, e.g, the multiset {a, b, b} is converted to {a◦1, b◦1, b◦2}. In the
following, we assume that all strings in the database have already been mapped to sets; the resulting
set collection is denoted by C.

Given two sets r and s, a set similarity function sim (r, s) returns a value in [0, 1] to represent their
similarity; larger value indicates that r and s have higher similarity. Popular set similarity functions
are defined as follows [Xiao et al. 2011].

Definition 2.1 Set Similarity Functions. Let r and s be two sets. We have:

—Jaccard similarity : J (x, y) = |r∩s|
|r∪s| .

—Dice similarity : D (r, s) = 2×|r∩s|
|r|+|s| .

—Cosine similarity : C (r, s) = |r∩s|√
|r|×|s|

.

Example 2.1. Consider the sets r = {A, B, C, D, E, F, G, H} and s ={A, B, D, E, G, H}.
We have |r| = 8, |s| = 6, and |r ∩ s| = 6. Therefore, J (r, s) = 6

8+6−6 = 0.75, D (r, s) = 2×6
8+6 ≈ 0.86,

and C (r, s) = 6√
8×6 ≈ 0.87.

Definition 2.2 Set Similarity Join. Given two set collections C1 and C2, a set similarity function
sim, and a similarity threshold τ in the interval [0, 1], the Set Similarity Join between C1 and C2
returns all set pairs (r, s) ∈ C1 × C2 s.t. sim (r, s) ≥ τ .

We focus in rest of this paper on the Jaccard similarity. Thus, sim (r, s) by default denotes J (r, s),
unless stated otherwise. Nevertheless, all concepts and techniques presented in the following can be
extended to Dice and Cosine [Xiao et al. 2011]. Finally, we henceforth use the term similarity function
(join) to mean set similarity function (join).

2.2 Optimization Techniques

Similarity functions measure the overlap between two input sets to derive a similarity value. Thus,
predicates involving such functions can be equivalently rewritten in terms of an overlap bound. For-
mally, given two sets r and s, then sim (r, s) ≥ τ iff |r ∩ s| ≥ τ×(|r|+|s|)

1+τ [Chaudhuri et al. 2006]. As
a result, the similarity join can be reduced to the problem of identifying all set pairs r and s with
enough overlap.

We can significantly reduce the comparison space by exploiting the prefix filtering principle [Sarawagi
and Kirpal 2004; Chaudhuri et al. 2006]. Prefixes allow discarding candidate pairs by examining only
a fraction of the original sets. To this end, we fix a global order O on the universe U from which all

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

JIDM - Journal of Information and Data Management · 229

Algorithm 1: Similarity join algorithm.
Input: A sorted set collection C, a threshold τ
Output: All pairs (r, s) s.t. sim (r, s) ≥ τ

1 I1, . . . I|U| ← ∅
2 foreach r ∈ C do
3 M ← an empty map from set to a similarity score
4 foreach t ∈ pref (r, τ) do
5 foreach s ∈ It do
6 if Filter (r, s, τ) then
7 M [s]← −∞
8 else
9 M [s]←M [s] + 1

10 It ← It ∪ {r}
11 Emit (Verify (x,M, τ))

tokens from the sets in C are drawn. We formally define the concept of prefix and the prefix filtering
principle as follows.

Definition 2.3 Prefix. A set r′ ⊆ r is a prefix of r if r′ contains the first |r′| tokens of r. Further,
we denote by pref (r, τ) the prefix of r of size b(1− τ)× |r|c+ 1.

Lemma 2.4 Prefix Filtering Principle [Chaudhuri et al. 2006]. Let r and s be two sets.
If sim (r, s) ≥ τ , then pref (r, τ) ∩ pref (s, τ) 6= ∅.

Example 2.2. Consider again the sets r and s in Example 2.1; note that both sets are already
lexicographically sorted. For τ = 0.8, we have pref (r, 0.8) ={A, B} and pref (s, 0.8) ={A}.

Note in the example above that sim (r, s) < 0.8 even though r and s share a token in their prefixes.
The prefix filtering principle defines a condition necessary, but not sufficient to satisfy the original
overlap constraint: an additional verification must be performed on the remaining tokens of both
sets. Further, the number of candidates can be reduced by using document frequency ordering, Odf ,
as global token order to obtain sets ordered by increasing token frequency in the set collections1. The
motivation is to minimize the number of sets agreeing on prefix elements and, in turn, candidate pairs
by moving lower frequency tokens to the prefix positions.

Other popular optimizations include size-based filtering [Sarawagi and Kirpal 2004] and positional
filtering [Xiao et al. 2011]. Size-based filtering exploits the fact that a set r can only be similar to sets
whose size is within

[
|r| × τ, |r| × τ−1

]
. Positional filtering exploits the position of tokens in common

between two sets to derive tighter overlap bounds.

2.3 Similarity Join Algorithm

Most current similarity join algorithms follow a filtering-and-verification approach supported by an
inverted index [Mann et al. 2016]. Algorithm 1 provides a high-level description of this approach. An
inverted list It stores all sets containing a token t in their prefix (Line 1). The input collection C
is scanned and, for each set r, its prefix tokens are used to find candidate sets in the corresponding
inverted lists (Lines 4–5). This is the filtering phase, where a variety of filters are applied for pruning
candidates (Lines 6–7). If a candidate set passes through, its similarity score is accumulated in a map

1A secondary ordering, e.g., lexicographic ordering, is used to break ties consistently.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

230 · L. A. Ribeiro, F. F. Borges, and D. Oliveira

Table II. Prefixes of the records in C.
Set pref0 pref1 pref2
r A,B D C

s A B,D C

u B A,B C

v B B A,C

(Line 9). A reference to r is appended to the inverted lists associated to its prefix tokens (Line 10).
Note that by indexing only prefix tokens, sets with no overlap in their prefixes are never considered as
candidate pairs. After the filtering phase, the similarity between r and each of its candidates is fully
calculated in the verification phase and similar pairs are sent to the output (Line 11). Verification
can be highly optimized by exploiting the token ordering in a merge-like fashion. Furthermore, the
overlap bound can be used to define early stopping conditions: at each iteration, it is checked whether
the overlap bound has already been met or cannot be reached anymore from the current matching
position [Ribeiro and Härder 2011]. In fact, it has been shown that a fast verification procedure can
overshadow the performance gains of complex filters [Mann et al. 2016].

Although not shown in the algorithm, the set collection can be sorted according to set size to enable
further index reduction either at indexing time [Bayardo et al. 2007] or dynamically during the filtering
phase [Ribeiro and Härder 2011]. It has been shown that the reduction in runtime achieved by such
optimizations largely compensates for the additional sorting cost. Finally, note that Algorithm 1 is
actually a self-join on a single set collection. Its extension to binary joins is trivial: we first index the
smaller collection and then go through the larger collection to identify matching pairs. For simplicity
and without loss of generality, we will assume self-joins in the rest of this article.

3. SIMILARITY JOIN ON MULTI-ATTRIBUTE DATA

In this section, we begin by defining the problem of answering similarity joins on multi-attribute data.
Then, we describe the algorithm of Li et al. and discuss its shortcomings. Finally, we present a
new algorithm incorporating the central concept of the algorithm of Li et al. into the filtering-and-
verification approach described in the previous section.

3.1 Problem Statement

Let’s first redefine our terminology and notation to deal with multi-attribute data. We assume that
each record in the input database follows the same schema and has been mapped to a list of sets
representing its attribute values. For simplicity, the term record refers henceforth to a record repre-
sentation as a list of sets. Thus, we now denote a record by r = r0, ..., rn, where ri represents the set
derived from the ith attribute value; we call ri a set attribute. Accordingly, C now denotes a collection
of records and τ a list of similarity thresholds τ0, ..., τn. Finally, sim (r, s) is redefined as a conjunctive
similarity expression over the input records r and s, where each conjunct is a similarity predicate:

sim (r, s) =

n∧
i=0

simi (ri, si) ≥ τi.

Definition 3.1 Similarity Join on Multi-Attribute Data. Given a record collection C and a similar-
ity expression sim, the Similarity Join on C returns all record pairs (r, s) ∈ C×C s.t. sim (r, s) = true.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

JIDM - Journal of Information and Data Management · 231

Fig. 1. Prefix tree index for the record collection in Table II.

Algorithm 2: The PrefixTreeJoin algorithm.
Input: A record collection C, a similarity expression sim
Output: A set A containing all pairs (r, s) s.t. sim (r, s) ≥ τ

1 Build a prefix tree P with C;
2 foreach inverted list L under each leaf node of P do
3 foreach (r, s) ∈ L do
4 if sim (r, s) ≥ τ then
5 A ← A∪ (r, s)

6 return A

3.2 The PrefTreeJoin Algorithm

Prefix filtering is prevalently adopted by state-of-the-art algorithms on single-attribute data [Mann
et al. 2016]. An intuitive way of using prefix filtering on multi-attribute data is to concatenate the
prefix tokens of all set attributes. We call the result of such concatenation a record token and the
set of all possible record tokens for some ordering of the set attributes a record prefix. Prefix tokens
have holistic pruning power on multiple similarity predicates: clearly, given two records r and s,
if sim (r, s) ≥ τ , then r and s must share a record token. For example, consider the prefixes of the
records composed by three set attributes in Table II; for simplicity, only the prefixes are shown. There
are two candidate pairs: (r, s), which shares the record token A ◦D ◦ C, and (u, v), which shares the
record token B ◦B ◦ C.

Li et al. proposed the PrefTreeJoin algorithm [Li et al. 2015], which builds a builds a prefix tree
to quickly identify pairs with record tokens in common. In the prefix tree, each original prefix token
corresponds to a node and a root-to-leaf path forms a record token. Leaf nodes are associated with
an inverted list of records containing the corresponding record token in their prefix. Figure 1 shows
the prefix tree for the records in Table II. PrefTreeJoin first builds the prefix tree before comparing
all record pairs appearing in the inverted lists as described in Algorithm 2. Because the same record
pair can appear in more than one inverted list, a hash table is used to avoid unnecessary comparisons
and duplicate pairs in the result.

The complete prefix tree can be very large since its size grows exponentially with the number of set
attributes involved in similarity predicates. Thus, a partial prefix tree is derived from the complete
prefix tree in a bottom-up manner by eliminating unnecessary branches and merging the corresponding
inverted lists. To avoid building the complete prefix beforehand, a greedy algorithm is proposed that

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

232 · L. A. Ribeiro, F. F. Borges, and D. Oliveira

Fig. 2. Inverted index for the record collection in Table II.

Algorithm 3: The PrefInvJoin Algorithm.
Input: A record collection C, a list of similarity thresholds τ
Output: All pairs (r, s) s.t. sim (r, s) ≥ τ

1 I1, . . . I|pref0|×...×|prefn| ← ∅
2 foreach r ∈ C do
3 M ← ∅
4 foreach t0 ◦ ... ◦ tn ∈ pref (r0, τ1)× ...× pref (rn, τn) do
5 M ←M ∪ It0◦...◦tn
6 It0◦...◦tn ← It0◦...◦tn ∪ {r}
7 Emit (Verify (x,M, τ))

directly constructs a partial prefix tree in a top-down manner. However, this algorithm requires
knowledge of the sizes of inverted lists under all tree nodes. Therefore, an additional pass over the
data in a preprocessing phase is needed to collect these statistics.

Besides the above issue, PrefTreeJoin has two major drawbacks. First, the construction of the partial
prefix tree, whether in a bottom-up or top-down manner, is computationally expensive. Indeed, it can
even take more time than the filtering and verification phases in some datasets (see [Li et al. 2015],
Figure 8). Second, the algorithm is blocking, i.e., it cannot output any result without reading all its
input. Similarity join is typically used in concert with other operations in a data analysis process and
such blocking behavior prevents pipelined execution.

3.3 The PrefInvJoin Algorithm

We now present a new algorithm called PrefInvJoin, which integrates record tokens into a filtering-
and-verification approach. To this end, PrefInfJoin uses an inverted index to find all records with
overlapping record tokens; Figure 3.3 illustrates this idea. The steps of PrefInvJoin are formalized in
Algorithm 3. For each record r in the input collection, PrefInvJoin generates its record prefix (Line
4) by computing the Cartesian product of the prefixes of all set attributes. For each record token in
the prefix of r, the records in the associated inverted list are added to the set of matching candidates
(Line 5) before appending a reference to r to this list (Line 6). Finally, record r is then compared
against each of its candidates and those record pairs satisfying the similarity threshold are sent to the
output (Line 7).

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

JIDM - Journal of Information and Data Management · 233

(a) Overview of our approach. (b) Secondary index.

Fig. 3. Our proposed solution.

Despite its simplicity, the PrefInvJoin algorithm avoids all the drawbacks of PrefTreeJoin. The
inverted index is more compact than the prefix tree and is dynamically constructed as the record
collection is processed. Since now we only perform equality checks on the whole record tokens to find
candidate pairs, we can simply hash them into 32 bit integers to both reduce the memory footprint
and speed up access time. Note that hash collisions do not affect the correctness but could introduce
additional false positives. In practice, the effect of such collisions is nevertheless negligible. Finally,
in a similar fashion to Algorithm 1, PrefInv-Join can produce results at each iteration.

4. OUR SOLUTION

In this section, we present our main solution for efficiently computing similarity join over a record
collection. We first introduce an algorithmic framework to enable additional filters in similarity join
algorithms. Then, we instantiate this framework with a lightweight filtering technique based on simple
indexes. Finally, we present a cost model to identify the best order for set attributes.

4.1 Overview

We can straightforwardly adapt existing similarity join algorithms to multi-attribute data. To this
end, we first select a set attribute, on which a regular filtering phase is carried out; we call this
selected set attribute primary set and the remaining ones secondary sets. Then, we only need to
adapt the verification phase for evaluating not only the primary set against the corresponding sets of
the matching candidates but also evaluate the similarity predicates on the secondary sets.

Similar to PrefInvJoin, the above approach also avoids the drawbacks of PrefTreeJoin. However,
we miss the opportunity to exploit multiple similarity predicates to reduce the number of similarity
computations. Indeed, using the prefixes of a single set in the filtering phase has less pruning power
than using record prefixes. For example, in Table II, selecting the first attribute as primary set
generates 4 candidate pairs, namely (r, s), (r, u), (r, v), and (u, v), whereas using record prefixes
generates only 2.

In this context, the main idea behind our proposal is to enhance the filtering phase by using
additional, simple index structures for filtering on the secondary sets. Figure 3 (a) illustrates our
approach. Again, a set attribute is defined as primary set, on which the primary index is built and
regular filters are applied. But now further indexes are built on (part of) the secondary sets; we refer
to those indexes as secondary indexes. We assume that set attributes are ordered: for each record
r = r0, ..., rn, r0 is the primary set and ri, 1 ≤ i ≤ n are the secondary sets. We defer the discussion
on determining the set attribute ordering to Section 4.4.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

234 · L. A. Ribeiro, F. F. Borges, and D. Oliveira

Algorithm 4: Algorithmic framework.
Input: A record collection C; number of secondary indexes l; a list of similarity thresholds τ
Output: All pairs (r, s) s.t. sim (r, s) ≥ τ

1 I1, I2, . . . I|U| ← ∅
2 S1 . . .Sl ← BuildIndexes
3 foreach r ∈ C do
4 M ← an empty map from record to a similarity score
5 foreach t ∈ pref (r0, τ0) do
6 foreach s ∈ It do
7 if Filter (r0, s0, τ0) then
8 M [s]← −∞
9 else

10 for 1 ≤ i ≤ l do
11 if Filter

(
ri, s.id, τi,Si

)
then

12 M [s]← −∞
13 break

14 if M [s] 6= −∞ then
15 M [s]←M [s] + 1

16 It ← It ∪ {r}
17 Emit (Verify (x,M, τ))
18 for 1 ≤ i ≤ l do
19 Index

(
ri, r.id, τi,Si

)

4.2 Algorithmic Framework

We now present our framework for incorporating secondary indexes into existing similarity join algo-
rithms. The algorithmic framework is described in Algorithm 4. The underlying data structures are
created for each secondary index prior to scanning the record collection (Line 2). The filtering phase
starts processing the primary set of the current probing record r: prefix tokens of r0 are used to find
matching candidates and filters are applied on r0 and s0 to prune record pairs (Lines 5–8). Then,
additional filtering is performed on the surviving pairs using the secondary indexes (Lines 10–13).
These filtering checks are applied on ri and s.id, the corresponding secondary attribute of r and the
record identifier of s, respectively. Finally, the secondary sets of r are indexed after the verification
phase (Lines 18–19).

Note that only the identifier of the candidate records is needed to probe the secondary indexes.
The performance benefits of using record identifiers are twofold: it avoids scanning the prefixes of the
secondary sets for each candidate and allows fast searching in the underlying data structures. Thus,
the overhead introduced by probing the secondary indexes in the filtering phase is minimized.

4.3 Secondary Indexes

Secondary indexes must enable prefix filtering using the secondary sets of the probing record and
identifiers of candidate records. In addition, they must lend themselves to an efficient implementation.
Figure 3 (b) depicts our proposed secondary index, which maps prefix tokens of secondary sets to
inverted lists of record identifiers. The indexing of secondary sets is shown in Algorithm 5. In the
filtering phase, we check whether the identifier of s appears in any inverted list associated with the
prefix tokens of r; these steps are formalized in Algorithm 6.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

JIDM - Journal of Information and Data Management · 235

Algorithm 5: Index
(
ri, id, τi,Si

)
1 foreach t ∈ pref (ri, τi) do
2 Sit ← Sit ∪ {id}

Algorithm 6: Filter
(
ri, id, τi,Si

)
1 return id /∈

⋃
t∈pref (ri,τi) S

i
t

We call the algorithm obtained from instantiating our framework with secondary indexes FSSJoin
(filtered set similarity join). Note that we can enable more filters by storing more information on the
secondary indexes, such as set sizes and token positions. However, besides increasing index space,
simply adopting all available filtering techniques may not improve performance. For example, a key
observation in a recent experimental evaluation of several similarity join algorithms is that overly
complex filters can instead increase execution runtime [Mann et al. 2016]. This observation matches
our own experience and has motivated our design of lightweight filters based on secondary sets.

We implement the inverted lists of secondary indexes using set data structures. Thus, filtering on
secondary sets is performed based on fast set membership checking. A potential issue is that the size
of the inverted list can grow very large and consume significant memory resources. We can mitigate
this problem using Bloom filter [Bloom 1970], a space-efficient, probabilistic data structure. On one
hand, it produces no false negatives and, thus, no true matching pair is erroneously pruned, i.e.,
correctness is preserved. On the other hand, false positives are possible, which results in unnecessary
comparisons in the verification phase. In other words, Bloom filter essentially trades runtime-efficiency
for space-efficiency. We compare Bloom filter against an exact set implementation in Section 5.

4.4 Set Attribute Ordering

Identifying a suitable set attribute ordering is crucial to our approach since it determines the primary
and secondary sets. Moreover, we can also apply this ordering to similarity computations in the
verification phase. A natural choice is to sort the attributes in increasing order of processing cost. We
can estimate the processing cost of a set attribute from the number of candidates generated from its
prefix. Our cost model is defined as follows.

Definition 4.1 Set Attribute Cost. Let prefi be the set of all tokens appearing in the prefixes of
the ith set attribute and pfi (t) be the frequency of token t in those prefixes. The cost of the ith set
attribute, denoted by Pi, is given by:

Pi =
∑

t∈prefi

(
pfi (t)

2

)
.

Example 4.1. Consider the record prefixes in Table II. We have the following processing costs:
P0 = 1 + 3 = 4, P1 = 0 + 3 + 1 = 4, and P2 = 0 + 6 = 6.

5. EXPERIMENTS

We now report the results of our experimental study. The goals of the empirical experiments are to
evaluate the performance impact of 1) set attribute ordering based on our cost model, 2) number
of secondary indexes, and 3) inverted list implementation, 4) compare FSSJoin against competing
algorithms, namely PrefTreeJoin and PrefInvJoin, and 5) test the scalability of FSSJoin.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

236 · L. A. Ribeiro, F. F. Borges, and D. Oliveira

Dataset Atribute Avg. set size Max. set size # of distinct tokens

DBLP title 73,23 250 32513
author 15,754 40 23302

IMDB title 19,72 122 37623
actor 15,946 40 25037

(a) Runtime, DBLP dataset. (b) Runtime, IMDB dataset.

Fig. 4. Varying set attribute ordering.

5.1 Experimental Setup

We used two, publicly available, real-world datasets: DBLP2, containing Computer Science publica-
tions and IMDB3, containing movie information. We generated instances from each source dataset
by randomly selecting records with multiple string attributes: title and author names for DBLP and
title and actor names for IMDB. Further, 4 duplicates were generated from each record, obtained
by performing transformations on string attributes such as characters insertions, deletions, and sub-
stitutions. We converted strings to upper-case letters and eliminated repeated white spaces. Each
string was then mapped to a set of tokens by using q-grams of size 3, hashing each token into an
integer value, and ordering the tokens within a set according to their frequency in the collection. We
generated several datasets from each source with different numbers of records and attributes in the
experiments; the default values are 100k records and three attributes. Table 5.1 shows some important
statistics about the datasets (with 100k records).

A single similarity predicate based on Jaccard was specified for each attribute, all predicates with
the same threshold value within [0.5, 0.95]; the default threshold value is 0.75. The implementation
of FSSJoin was based on the MPJoin algorithm [Ribeiro and Härder 2011]. Similarity computations
in the verification phase were performed following the set attribute ordering for all algorithms; we
evaluated the hybrid verification method proposed by Li et al. [Li et al. 2015] but did not observe any
performance gain. We implemented all algorithms using Java JDK 11 (Oracle). Overall performance
was measured in average wall-clock time over repeated runs. We ran our experiments on an Intel
Xeon E5-26200 six-core, 2 GHz, 15MB CPU cache, and 16 GB of main memory.

5.2 Evaluation of FSSJoin

We begin with an analysis of the main components of our FSSJoin. First, we evaluated the effectiveness
of our cost model in identifying a suitable set attribute ordering. Figure 4 show the timings of all
set attribute permutations on dataset instances with 3 attributes (threshold value fixed at 0.75 and 1
secondary index). The ordering derived from our cost model is denoted by Ocm in the experimental
charts. Ocm provides the best result on both datasets. As compared to the worst-performing orderings,

2http://dblp.uni-trier.de
3http://www.imdb.com

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

JIDM - Journal of Information and Data Management · 237

(a) Runtime, DBLP dataset. (b) Runtime, IMDB dataset.

Fig. 5. Increasing number of secondary indexes.

Ocm is about 4.4x times faster on DBLP dataset (Figure 4(a)) and about 1.7. faster on IMDB (Figure
4(b)). In the following experiments, the set attributes were ordered according to Ocm.

Next, we evaluate the effect of secondary indexes on performance. Figure 5 shows the results for an
increasing number of secondary indexes on datasets with 5 attributes. The best configuration on these
datasets used a single index and performance drops as more indexes are added. The reason for this
behavior is that candidate pairs are filtered mostly due to the first index. For this experiment, more
than one secondary index yielded diminishing returns, i.e., they did not pay off the overhead of checking
and maintaining them. For example, more than 2.6M pairs are filtered by the first index on DBLP and
only about 32K additional pairs are filtered with the inclusion of the second index. Another aspect
is that the verification procedure is already highly optimized (recall Section 2.3). Thus, much more
pairs need to be pruned to compensate for the additional filtering cost. The following experiments
used a single index.

We now compare two implementations of secondary indexes: an exact index implementation based
on a hash table and an approximate alternative based on Bloom filter (with an expected false positive
probability of 3%). Figure 6 shows the results. While performance is comparable at high thresh-
olds, the Bloom filter variant is noticeably slower at low threshold values on both datasets (Figures
6(a) and 6(c)). The number of false positives produced by the approximate implementation steadily
increases as the threshold decreases (Figures 6(b) and 6(d)). As a result, much more unnecessary
similarity comparisons are performed at lower thresholds. The following experiments used the exact
implementation of secondary indexes.

5.3 Comparison with Competing Algorithms and Scalability Tests

We now compare FSSJoin with PrefTreeJoin and PrefInvJoin. Figures 7(a) and 7(b) show the results
for varying threshold values on DBLP and IMDB, respectively. FSSJoin is the faster algorithm in all
settings. Even though record prefixes have more pruning power than prefixes derived from a single
attribute, the cost of their generation outweighs the benefits of a reduced workload for the verification
procedure (which is very fast, as already mentioned). For PrefTreeJoin, the construction of the partial
prefix tree is very expensive computationally and, indeed, most of the execution time is spent in this
phase. PrefInvJoin is faster than PrefTreeJoin because it identifies records with overlapping prefixes
using an inverted index, which is cheaper to construct than a prefix tree. However, the computation
of the Cartesian product over the prefixes of all set attributes is nevertheless onerous and negatively
impacts runtime performance.

Furthermore, the performance gap between FSSJoin and its competitors increases as the threshold
decreases. The reason for this behavior is that lower thresholds translate into larger prefixes, which
leads to an explosion in the number of generated record tokens and a corresponding drop in both

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

238 · L. A. Ribeiro, F. F. Borges, and D. Oliveira

(a) Runtime, DBLP dataset. (b) Number of false positives, DBLP dataset.

(c) Runtime, IMDB dataset. (d) Number of false positives, IMDB dataset.

Fig. 6. Comparison between exact and approximate implementations.

(a) Runtime, varying thresholds, DBLP dataset. (b) Runtime, varying thresholds, IMDB dataset.

(c) Runtime, varying no. of attrs., DBLP dataset. (d) Runtime, varying no. of attrs., IMDB dataset.

Fig. 7. FSSJoin vs. competing algorithms.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

JIDM - Journal of Information and Data Management · 239

(a) DBLP dataset. (b) IMDB dataset.

Fig. 8. Scalability results.

time and space efficiency. For example, PrefInvJoin is 276x slower at threshold 0.5 on DBLP than at
threshold 0.95, whereas FSSJoin is only 18x. PrefTreeJoin is even worse, as it ran out of memory for
thresholds lower than 0.65.

The size of record prefixes grows exponentially with the number of set attributes in the similarity
expression. Figures 7(c) and 7(d) show the results for varying number of attributes on DBLP and
IMDB, respectively (2 to 5 attributes, threshold fixed at 0.75). PrefTreeJoin and PrefInvJoin did
not finish with 5 attributes on both datasets owing to the combinatorial explosion in the number of
generated record tokens; the former also did not finish with 4 attributes on DBLP. In contrast, the
runtime of FSSJoin does not depend on the number of set attributes as prefixes are generated from
set attributes in isolation. In fact, FSSJoin is sometimes even faster with more set attributes in the
similarity expression because more candidate pairs are pruned in the filtering phase.

Finally, we evaluate the scalability of FSSJoin. For this experiment, we used datasets with an
increasing number of records: from 100K to 1000K. Figure 8 shows the results. The runtime of
FSSJoin on both datasets exhibits a quadratic growth (note that we show the square root of the
runtime). This behavior is expected because the number of candidate pairs also grows quadratically
with the input size.

5.4 Experimental Summary

We conducted an extensive experimental analysis to evaluate our proposal and compare it with other
approaches. Our cost model allowed us to successfully identify the set attribute ordering leading to the
best results. On the datasets considered, a single secondary index provided the best trade-off between
the number of filtered candidate pairs and the additional cost in the filtering phase; additional indexes
yielded diminishing returns. The approximate implementation of secondary indexes was competitive
in terms of runtime performance only at high threshold values; at lower thresholds, the number of
false positives increases substantially causing many unnecessary comparisons.

FSSJoin was the best-performing algorithm in all settings both in terms of runtime efficiency and
memory consumption. PrefTreeJoin performed worse than PrefInvJoin due to the high cost associated
with the construction of the prefix tree. As the input size increases, the runtime of FSSJoin follows
the quadratic growth of the number of candidate pairs.

As a general conclusion, the experimental results showed that approaches based on the concept of
record tokens do not scale at low threshold values and with the number of set attributes due to the
explosion in the number of such tokens that are produced in the filtering phase. Finally, our results
suggest a fast verification procedure calls for lightweight filters to improve overall runtime.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

240 · L. A. Ribeiro, F. F. Borges, and D. Oliveira

6. RELATED WORK

There is a wealth of literature on efficiently answering set similarity joins [Chaudhuri et al. 2006;
Xiao et al. 2011; Ribeiro and Härder 2011; Mann et al. 2016; Wang et al. 2017]. The vast majority of
existing algorithms assume single-attribute data, in which a filtering-verification framework supported
by an inverted index is prevalently adopted. In contrast to prior work on multi-attribute data [Li et al.
2015], our techniques can be readily integrated into such algorithms for dealing with multi-attribute
data. Most proposals are geared towards the filtering phase, in which a variety of filters were developed
to reduce the workload of the verification phase (see Section 2). Optimization techniques proposed
for the verification phase include: accounting for previous matches in the filtering phase to skip initial
set positions [Xiao et al. 2011]; leveraging token ordering to enable merge-like routines [Ribeiro and
Härder 2011]; applying early termination conditions [Ribeiro and Härder 2011]; and exploiting overlap
among the matches of different sets [Wang et al. 2017]. In [Li et al. 2015], an algorithm is proposed
to determine the verification order of different similarity predicates. All these optimizations in the
verification phase are orthogonal to our work here, which focuses on the filtering phase.

A number of distributed algorithms for set similarity have been proposed [Fier et al. 2018]. A
common approach consists of applying a partition scheme to send dissimilar strings to different pro-
cessing nodes and, thus, avoid unnecessary similarity calculations; to some extent, the partition scheme
plays the role of the filtering phase in centralized algorithms. Almost all proposals considered single-
attribute data. One exception is work in [Oliveira et al. 2017; Oliveira et al. 2018]. Evaluating our
filters in a distributed setting is an interesting line of future research.

Recent work exploits massive parallelism available in modern graphics processing units to speed up
similarity join processing [Ribeiro-Júnior et al. 2017]. Besides stand-alone algorithms, set similarity
joins can be realized using relational database technology. Previous work proposed expressing set
similarity joins declaratively in SQL [Ribeiro et al. 2016] or implementing it within the query engine
as a physical operator [Chaudhuri et al. 2006].

All algorithms discussed above are exact, i.e., they always return all similar pairs. Approximate
set similarity joins may miss some valid results to trade accuracy for query time. Locality Sensitive
Hashing (LSH) is the most popular technique for approximate set similarity joins [Indyk and Motwani
1998], which is based on a probabilistic scheme of hashing functions that are approximately similarity-
preserving. Minhash [Broder et al. 1998] is a popular LSH scheme for the Jaccard similarity.

String similarity join can also employ constraints based on the edit distance, which is defined by the
minimum number of character-editing operations— insertion, deletion, and substitution—to make
two strings equal [Navarro 2001]. As for token-based similarity, we can map strings to sets and derive
set overlap bounds for the edit distance [Ribeiro et al. 2016] and apply prefix filtering to reduce the
number of expensive distance computations in the verification phase. Therefore, our filters can be
straightforwardly used with similarity predicates based on edit distance.

In another widely used approach, strings are numerically represented by high dimensional vectors,
where each dimension is a word (or token) extracted from the dataset. A weighting scheme is typically
employed to produce weighted vectors. The similarity between two vectors is then determined by
the cosine of the angle between them, which reduces to the dot-product for l2 normalized vectors.
Similarity join on vectors is often referred to as All Pairs Similarity Search [Bayardo et al. 2007].
Several optimization techniques for sets can be adapted to vectors, including size-based filter, index
reduction based on data ordering, and most importantly to our context, prefix filter [Bayardo et al.
2007]. Therefore, our filters can be adapted as well to optimize similarity join on vectors. We leave
the evaluation of this approach for future work.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

JIDM - Journal of Information and Data Management · 241

7. CONCLUSIONS

In this article, we proposed a framework to enhance set similarity join algorithms for dealing with
multi-attribute data. Our framework allows easy integration of additional filters into existing al-
gorithms for single-attribute data. We instantiated with an algorithm called FSSJoin based on a
lightweight filtering technique supported by a simple, yet effective index. Implementation alternatives
were evaluated for this index using exact and probabilistic data structures. We proposed a cost model
to identify the best ordering of set attributes to reduce processing time. We also investigated alterna-
tive approaches and presented a new algorithm addressing some shortcomings of previous work. Our
performance study demonstrated that FSSJoin outperformed its competitors by a large margin.

REFERENCES

Bayardo, R. J., Ma, Y., and Srikant, R. Scaling up All Pairs Similarity Search. In Proceedings of the WWW
Conference. Banff, Canada, pp. 131–140, 2007.

Bloom, B. H. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13 (7):
422–426, 1970.

Broder, A. Z., Charikar, M., Frieze, A. M., and Mitzenmacher, M. Min-Wise Independent Permutations
(Extended Abstract). In Proceedings of the STOC Symposium. Dallas, USA, pp. 327–336, 1998.

Chaudhuri, S., Ganti, V., and Kaushik, R. A Primitive Operator for Similarity Joins in Data Cleaning. In
Proceedings of the ICDE Conference. Atlanta, USA, pp. 5, 2006.

Chu, X., Ilyas, I. F., Krishnan, S., and Wang, J. Data Cleaning: Overview and Emerging Challenges. In Proceedings
of the SIGMOD Conference. San Francisco, USA, pp. 2201–2206, 2016.

CrowdFlower. 2016 Data Science Report. https://visit.figure-eight.com/data-science-report.html, 2016.
Deng, D., Tao, Y., and Li, G. Overlap Set Similarity Joins with Theoretical Guarantees. In Proceedings of the

SIGMOD Conference. Houston, USA, pp. 905–920, 2018.
Fier, F., Augsten, N., Bouros, P., Leser, U., and Freytag, J. Set Similarity Joins on MapReduce: An Experi-

mental Survey. Proceedings of the VLDB Endowment 11 (10): 1110–1122, 2018.
Indyk, P. and Motwani, R. Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality. In

Proceedings of the STOC Symposium. Dallas, USA, pp. 604–613, 1998.
Kaggle. The State of Data Science & Machine Learning. https://www.kaggle.com/kaggle/kaggle-survey-2017, 2017.
Li, G., He, J., Deng, D., and Li, J. Efficient Similarity Join and Search on Multi-Attribute Data. In Proceedings of

the SIGMOD Conference. Melbourne, Victoria, Australia, pp. 1137–1151, 2015.
Mann, W., Augsten, N., and Bouros, P. An Empirical Evaluation of Set Similarity Join Techniques. PVLDB 9 (9):
636–647, 2016.

Navarro, G. A Guided Tour to Approximate String Matching. Communications of the ACM 33 (1): 31–88, 2001.
Oliveira, D., Borges, F. F., and Ribeiro, L. A. Uma abordagem para processamento distribuído de junção por
similaridade sobre múltiplos atributos. In Proceedings of the Brazilian Symposium on Databases. Uberlãndia, Minas
Gerais, Brazil, pp. 300–305, 2017.

Oliveira, D., Borges, F. F., Ribeiro, L. A., and Cuzzocrea, A. Set Similarity Joins with Complex Expressions
on Distributed Platforms. In Proceedings of the Symposium on Advances in Databases and Information Systems.
Budapest, Hungary, pp. 216–230, 2018.

Ribeiro, L. A., Borges, F. F., and Oliveira, D. A Framework for Set Similarity Join on Multi-Attribute Data. In
Proceedings of the Brazilian Symposium on Databases. Porto Alegre, Brazil, pp. 61–72, 2020.

Ribeiro, L. A. and Härder, T. Generalizing Prefix Filtering to Improve Set Similarity Joins. Information Sys-
tems 36 (1): 62–78, 2011.

Ribeiro, L. A., Schneider, N. C., de Souza Inácio, A., Wagner, H. M., and von Wangenheim, A. Bridging
Database Applications and Declarative Similarity Matching. Journal of Information and Data Management 7 (3):
217–232, 2016.

Ribeiro-Júnior, S., Quirino, R. D., Ribeiro, L. A., and Martins, W. S. Fast Parallel Set Similarity Joins on
Many-core Architectures. Journal of Information and Data Management 8 (3): 255–270, 2017.

Sarawagi, S. and Kirpal, A. Efficient Set Joins on Similarity Predicates. In Proceedings of the SIGMOD Conference.
Paris, France, pp. 743–754, 2004.

Wang, X., Qin, L., Lin, X., Zhang, Y., and Chang, L. Leveraging Set Relations in Exact Set Similarity Join.
Proceedings of the VLDB Endowment 10 (9): 925–936, 2017.

Xiao, C., Wang, W., Lin, X., Yu, J. X., and Wang, G. Efficient Similarity Joins for Near-Duplicate Detection.
ACM Transactions on Database Systems 36 (3): 15:1–15:41, 2011.

Journal of Information and Data Management, Vol. 12, No. 3, September 2021.

