
Outer-Tuning: an Ontology-based Extensible Framework for
Supporting Database Automatic Tuning

Raphael Marins1, Rafael Pereira de Oliveira2, Edward Hermann Haeusler2, Sérgio Lifschitz2, Daniel
Schwabe2 and Ana Carolina Almeida1

1Department of Informatics and Computer Science - UERJ, Brazil
2Department of Informatics - PUC-Rio, Brazil

marins.raphael@graduacao.uerj.br, {rpoliveira, hermann, sergio, dschwabe}@inf.puc-rio.br,
ana.almeida@ime.uerj.br

Abstract. This paper presents the Outer-Tuning framework, which aims to support the (semi) automatic tuning of
relational database systems through a domain-specific ontology. Ontologies have shown themselves to be increasingly
promising, adding semantics and standardizing the different terms used in a domain. Thereby, our framework seeks
to explain and make explicit the tuning heuristics reasoning while enabling the evaluation of new ontology-inferred
methods. In this paper we focus on the main aspects of the Outer-Tuning component-based architecture. We also
give an overview of our tool in practice. Finally, we show two useful extensions, concerning new DBMSs and a way of
dockerizing into a container.

Categories and Subject Descriptors: H.2.2 [Physical Design]: Access methods

Keywords: database tuning, docker, ontology, semantic framework

1. INTRODUCTION

Database administration and tuning are complex tasks that require specialization and fundamental
knowledge in this area of computing. Several tools were developed to support the DBA (database
administrator) in these activities. Some tools allow database (DB) tuning tasks to be performed (semi)
automatically [Shasha and Bonnet 2002][Bruno 2011]. The DB tuning seeks for better performances of
database systems: greater efficiency or transaction throughput. Adjustments are made to parameters,
physical design, selection of access structures, always according to the DB workload.

In DB tuning tools, there is a lack of clarity about the decisions and actions that are taken automat-
ically, making it difficult for the DBA to accept them blindly. Thus, Outer-Tuning proposes the use
of a domain ontology for DB tuning (automatic or not) that provides a formal and explicit approach
to decisions and inferences. The innovative contribution of this approach is to offer transparency and
reliability about the alternatives available for possible scenarios in the Database Management System
(DBMS), through concrete justifications for the decisions that were semantically defined.

This article is an extension of the paper presented by Almeida et al. (2018) [Almeida et al. 2018]. We
describe the software architecture, functional and practical aspects of the Outer-Tuning framework,
an ontology-based tool designed to support DBAs and developers in general in the decision-making
involved DB tuning task. This tool aims to support the (semi) automatic DB tuning in relational DB
systems. The tool’s name originated because it presents all the alternatives analyzed by the heuristics
and not only the one considered the best DB tuning action. An analogy is made to the relational

This work was partially supported by the Rio de Janeiro Research Foundation (FAPERJ), CNPq and CAPES Institu-
tional Funding.
Copyright©2021 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 12, No. 2, September 2021, Pages 156–166.

JIDM - Journal of Information and Data Management · 157

operation of an outer join, which returns all tuples of the tables involved and not just those that satisfy
the join condition. The basic idea of Outer-Tuning is to offer mechanisms that allow the DBA to make
more consistent decision-making regarding possible tuning actions based on multiple alternatives and
respective costs.

We next describe directly related work discussed in the literature. Section 3 presents an overview
of the Outer-tuning architecture and Section 4 details framework extensions such as a new DBMS
(e.g. MySQL) and the use of docker containers to facilitate the installation and use of our framework.
Finally, section 5 concludes this work.

2. RELATED WORK

Zhang et al. presented the OtterTune tool [Zhang et al. 2018]. OtterTune collects knobs and metric
data from past tuning sessions to train machine learning models (Gaussian Process Regression model).
This model predicts how well the DBMS will perform with each possible configuration of DBMS. Thus,
OtterTune optimizes the following configuration, gathering information to improve the model. The
demonstration of OtterTune is carried out on PostgreSQL DBMS 9.6 with OLTP and OLAP work-
loads (TPC-C and TPC-H, respectively). Combining supervised and unsupervised machine learning
methods, the authors proved that the tool could incorporate new information after observing the DB
environment’s behavior and the models learned from them, providing an increase in the efficacy of its
recommendations. It is concluded that OtterTune was able to select impacting knobs in performance
and recommend suitable knob configurations.

Zhang et al. proposed the CDBTune [Zhang et al. 2019]. This end-to-end automatic DBMS configu-
ration tuning system recommends superior knob settings in cloud environments, using a try-and-error
manner in deep reinforcement learning (RL). They expect to improve tuning efficiency. Experimental
results showed that CDBTune improved performance with higher throughput and lower latency than
other tuning tools through superior configurations.

Goasdoué et al. devise new algorithms for recommending view sets to be materialized (Materialized
Views - MVs) according to the workload composed of RDF (Resource Description Framework) triples
and rewriting queries based on RDF Schema [Goasdoué et al. 2012]. The proposed approach was
implemented as a Java 6 application and used PostgreSQL 8.4.3. The experiments showed that
the tool achieved cost reduction factors in many cases and recommended views that reduced query
evaluation times by several orders of magnitude.

Some DBMSs have specific tools for suggesting tuning actions. Oracle DBMS has an Automatic
Database Diagnostic Monitor (ADDM) tool that diagnoses bottlenecks and provides actionable rec-
ommendations to alleviate them [Dias et al. 2005][Alhadi and Ahmad 2012]. The experiments used
Oracle 10g and proved that ADDM identified and correctly diagnosed several performance issues on
internal production systems. Also, this tool makes the rationale of their choices available.

In Table I, we summarize and compare related work. Only our tool provides two ways to apply
tuning actions. Although our tool does not yet have a defined heuristic in the ontology that adjusts
the knobs, it may be extended to include this feature. Our tool is the only one that is concerned
with adding semantics to the DB tuning process, thus allowing an explanation of the reasoning closer
to the terms used by the DBA. In addition, this facilitates the extension of the framework, since the
heuristics are also defined using the concepts known to the DB community. Outer-Tuning can be
used with three DBMSs but has not yet been tested on cloud databases. Some tools (e.g., ADDM)
are already concerned with explaining the reasoning for their recommendations but end up failing in
other aspects, such as the lack of flexibility in adapting to the different terms used by DBMSs and
facilitating their extension for use in other DBMSs.

In general, none of the tools are not concerned with recording the DBA’s justifications and his/her

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

158 · Raphael Marins et al.

Table I. Comparison of related work
Tool Tuning action Tuning

target
Tuning
semantics

DBMS
support

Transparency
in tuning
suggestion
(reasoning)

Final decision
justification

OtterTune automatic knobs No PostgreSQL No No
[Zhang et al. 2018] MySQL
CDBTune automatic knobs No Cloud No No
[Zhang et al. 2019] databases
[Goasdoué et al. 2012] manual MVs No PostgreSQL No No
ADDM semi-automatic Knobs No Oracle Yes No
[Dias et al. 2005] Indexes
[Alhadi and Ahmad 2012]
Outer-Tuning automatic

semi-automatic
Indexes
MVs

Yes PostgreSQL
Oracle,
MySQL

Yes Yes

tuning decisions. In a collaborative work (DBA team), it is important to record the history of decisions
and their respective justifications. If a DBA A refuses a tuning action at first, it is important to
record the reason for this refusal so that another DBA B, from the same team, will be aware when
this suggestion comes back and consider DBA A’s opinion.

3. OUTER-TUNING

We have developed Outer-Tuning, an ontology-driven framework for DB tuning, which works in auto-
matic (self-tuning) and semi-automatic (human intervention) modes. Tuning heuristics are described
as inference rules using the Semantic Web Rule Language (SWRL) [Horrocks et al. 2004] defined
over an ontology. This set of inference rules may be enabled/disabled according to the user’s prefer-
ences on the choice of the heuristic(s) that one wants to use to tune the DB. The video available at
http://www.inf.puc-rio.br/~postgresql/conteudo/projeto4/video/outertuning.mp4 shows a
possible use of the tool.

3.1 Outer-Tuning Architecture

The architecture chosen for Outer-Tuning (Figure 1) is based on components. Given the tool’s experi-
mental features and the multiple technologies involved (e.g., DBMSs, rules engine, ontology, libraries),
it was decided that modularizing via components would facilitate communication among the technolo-
gies and leave each of the execution phases independent. Thus, if necessary, the components may be
replaced (or maintained) individually.

As a result of choosing a component-based architecture, it was decided that Outer-Tuning would
be developed as a framework application, which by definition, is a semi-complete application built
with an organized collection of reusable software components [de Oliveira et al. 2011]. The choice
of this type of framework with the use of components was made to enable future evolution towards
service-oriented software with low coupling between the parts of the software.

Outer-Tuning components were defined and specialized for each cycle stage of its execution flow.
Figure 1 lists the main elements of the proposed architecture, briefly described below:

(1) Database: any DB managed by a DBMS has its communication with the framework (6) and
(12) through the connection drivers used by the components: WorkloadCollector (7) and TuningAc-
tionExecutor (11).

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

JIDM - Journal of Information and Data Management · 159

Fig. 1. Outer-Tuning Architecture

(2) Outer-Tuning Framework (Base): library of ordinary and redundant functions shared by
components which may access the shared log.

(3) FunctionLibraries: gathers compiled source code libraries, responsible for extracting concepts
from the workload. The libraries are read and executed at runtime, without intervention in the
framework source code. There is an interface defined in FunctionExecutor (8) that searches in the
repository for the desired functions (3).

(4) Ontology: contains concepts instantiated by the workload and heuristics through “if-then”
rules). It is the main extensible part of the framework. The rules are defined in a declarative language
(SWRL). We described part of the ontology (DB Tuning Heuristic Ontology) used by Outer-Tuning
in [Almeida et al. 2019]. The ontology itself is available at https://www.ime.uerj.br/ondbtuning/.

(5) Interface: is responsible for interacting with the DBA. The communication with the framework
(2) uses the blackboard design pattern [Khosla and Ichalkaranje 2005] due to its ease of implemen-
tation. We decided by an asynchronous approach. Mainly because it helps to scale the amount of
queries to be captured and processed. The BlackBoard framework coordinates messages and designs
a communication process able to extract data from queries incrementally. Thus, possible to be scaled
by running multiple FunctionExecutors (8) at the same time.

(6) Workload: the captured workload consisting of SQL statements of the DML (Data Ma-
nipulation Language) type, their respective execution plans, and their frequency. This workload is
automatically captured when the user submits statements to the database (1).

(7) WorkloadCollector: is the component responsible for collecting the workload with a time
interval predetermined by the DBA to perform DB tuning through the JDBC driver.

(8) FunctionExecutor: extracts information from the workload and generates the individuals
(instances) of the ontology (4) concepts, which are evaluated in the preconditions for the heuristics,
and which must be instantiated and received from the semantic reasoner (10) to infer the tuning
actions (12). The functions are searched in the FunctionLibraries (3). For example, the execution
of a function that submits a query to DB metadata to get a table description (table name and its

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

160 · Raphael Marins et al.

columns). It was implemented using the Factory method pattern, one of the “Gang of Four” [Gamma
et al. 1995] design patterns that describe how to solve recurring design problems to design flexible
and reusable object-oriented software, that is, objects that are easier to implement, change, test, and
reuse.

(9) ConceptInstantiator: instantiates the individuals of preconditions generated by the execution
functions of FunctionExecutor (8) in the ontology (4).

(10) SemanticReasoner: is the component through which the rules defined in the ontology (4)
are selected and executed. The Jess1 engine was used for its implementation. There are inference rules
for instantiation and tuning actions. For instantiation, the Semantic Reasoner receives and executes
rules defined in the ontology (4). For tuning actions, it gets the instantiated concepts from the
ConceptInstantiator (9) to infer new database tuning actions. Also, this reasoner sends the signature
of the functions defined in the ontology (4) that need to be called by the FunctionExecutor (8) to
instantiate concepts that cannot be instantiated by inference alone.

(11) TuningActionExecutor: monitors the semantic reasoner (10), captures the inferred DB
tuning actions and executes them in the DB according to the DBA (semi-automatic way) or the
tool(automatic) choices.

(12) DB Tuning Actions: DB tuning actions received from TuningActionExecutor (11) through
the interface (5) (by DBA) or the ontology (4) and semantic reasoner (10) (by agent), which must be
applied to the database (1).

3.2 Outer-Tuning Ontology (OnDBTuning)

A subset of the concepts used in OnDBTuning is illustrated in Figure 2 with the capture of one of
the queries of the TPC-H benchmark. Assume user User_1 submits a DML statement DML_1.
This is automatically classified as DMLCommand - SingleStatement - QueryStatement through rules
defined in the ontology itself. This statement has as property the hasDescription SQL command
derived from the TPC-H benchmark: SELECT no_o_id FROM new_order WHERE no_w_id =
1 AND no_d_id = 1;. The reasoner infers, using the rules, the presence of SELECT, FROM and
WHERE clauses defined in such a statement. The complete domain ontology can be found in the
URL: https://www.ime.uerj.br/ondbtuning/.

An example of a rule defined in the ontology can be seen in Figure 3. To use a given MV heuristic it
is necessary to estimate the cost of creating the MV. This is defined, through the SWRL rule defined
in the ontology, as being the cost of a simple scan of the MV plus the cost of recording the pages in
secondary memory, estimated to be equivalent to 2 (two) times the number of hypothetical pages of a
Hypothetical Materialized View (HMV) [de Oliveira 2015]. Thus, given the concept of HMV, if there
is any HMV (line 1 - Figure 3), it produces a plan (line 2) of type RealExecutionPlan (line 3); such
plan has the properties of hasExecutionCost (line 4) and hasHypotheticalPagesNumber (line 5) with
values previously calculated respectively in the database’s metadata and by another rule. Then, the
cost is increased (line 7) by adding the product of the pages by two (line 6). If the total amount is
greater than that zero (line 8), the property hasEstimatedCostCreationValue receives this value (line
9). We believe that the definition of the calculation by the rule using concepts from the DBA’s own
domain, improves the understanding of the rules used in the DB tuning decision of the tool as well as
facilitates the definition of new rules and heuristics.

1http://www.jessrules.com/, last access: january, 2020.

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

JIDM - Journal of Information and Data Management · 161

Fig. 2. Fragment of instantiated OnDBTuning

Fig. 3. SWRL Rule that estimates the MV creation cost [de Oliveira et al. 2019]

3.3 Outer-Tuning in practice

Initially, the framework user can view the heuristics defined in the ontology and select those she wants
to consider for future DB tuning suggestions. Subsequently, the user informs the tool the mode in
which she wishes to work: semi-automatic or automatic (without human intervention). The tool starts
capturing the workload in real-time and graphically displays when the DML command is executed in
the DB and its duration in seconds. If the user wants more details on the command’s execution, she
may check further down the same screen (Figure 4).

If the user wants to follow the tuning actions analyzed and suggested by our tool, she may do so
through the Tuning actions menu. Outer-Tuning shows a graph with the expected gain information
with the tuning action (x-axis) and the estimated cost of creating the access structures (y-axis).
The circle’s size in the graph represents the number of SQL queries that the particular action can
benefit from: the larger the circle’s size, the greater the number of statements that benefit from the
tuning action on the workload. The pop-up presented summarizes the proposed tuning action with
the following information: expected gain, creation cost, type of action (e.g., index or MV), and the
number of statements benefited by the action.

It is important to remember that the purpose of our tool is not necessarily to have the best DB
tuning heuristic, but to formally make available and add semantics to the existing heuristics. Exper-
imental results demonstrate that Outer-Tuning is capable of simultaneously executing more than one
heuristic for the same type of DB tuning strategy and providing information for the comparison of

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

162 · Raphael Marins et al.

Fig. 4. Sample Screen of the Outer-Tuning Tool

inferred actions. The tool user selected three heuristics: (i) selection [Carvalho 2011] - responsible
for suggesting HMV (not physically created yet) for each command submitted to DB; (ii) benefits
[Morelli et al. 2012] - choose the selection heuristic MVs that can be physically created in the DB.
This occurs when the accumulated benefit (execution plan cost gain) of the MV is greater than the
cost of creating it; (iii) expectation [de Oliveira 2015] - similar to benefits, but without considering the
frequency of command in the workload (non-accumulated benefit). In this case, it was assumed that
if the cost of reading the result stored on disk is 50% less than the total cost of executing the original
query, a MV could save time for the workload. The heuristics that propose MVs were executed, and
their results were evaluated and compared using Outer-Tuning. For the generation of the workload
during the tests, the benchmark TPC-H was used, conducive to evaluating MV selection tools, since
it is OLAP. It should be noted that the tool presents both positive and negative evaluations. Some
positive suggestions were implemented and brought benefits, as expected. More details are available
at [de Oliveira et al. 2019].

4. OUTER-TUNING EXTENSIONS

Outer-Tuning was initially implemented with PostgreSQL and was later extended to include Oracle
DBMS. With respect to this particular extension capability, we have decided to illustrate its extensi-
bility showing the way we have included MySQL, a very popular open licence DB-Engine2. Besides,
to facilitate our tool’s use, both by users and by developers that might want to extend it, we show
how to place it in a docker container.

2https://db-engines.com/en/ranking_trend/relational+dbms, last access: march, 2021.

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

JIDM - Journal of Information and Data Management · 163

4.1 DBMS extension

The Outer-Tuning architecture, based on components, facilitates the inclusion of new Relational
DBMSs. Initially, the JDBC driver needs to be downloaded and included in the framework’s depen-
dencies. Posteriorly, the abstraction class responsible for connecting to DBMS must be extended with
connection details for the new RDBMS. Specific queries to the metadata of the new RDBMS need to
be added to the sql.properties file. These queries get the workload (current queries submitted to the
database), names and sizes of the referenced tables, referenced columns details, DDL syntax to create
MV and execution plans for each workload query. These queries extract data that will be instantiated
into the tuning ontology. The last step is to extend and implement all functions responsible to get
data of execution plans (e.g., getTotalCost, getTupleNumber, getDuration, and extractData).

Extension with MySQL DBMS. Outer-Tuning was extended with MySQL version 8.0.19. This
version includes features that may help with other DB tuning strategies (e.g., invisible indexes) but
the MV concept is still not available. Thus, in addition to the driver and the framework classes, other
extensions were necessary that resulted in actions in the database system to allow Outer-Tuning to
use heuristics that suggest MVs.

Following steps to extend Outer-Tuning with a new DBMS, we download the JDBC driver for
MySQL3. Thus, the abstraction class was extended with MySQL connection details, describing the
driver name and connection properties (database url, database name, username, and password).

Figure 5 shows specific queries to the metadata of MySQL that have been added to the sql.properties
file. Line 1 shows the query to capture the workload; Lines 2 and 3 present the queries to get referenced
table names and lengths, respectively; the query to get columns details is described in Line 4; Line 5
shows the code to create a simulated MV through a stored procedure (described below), and Line 6
has the explain query to capture the execution plan.

Regarding the last step, Figure 6 shows the main function to extract data from execution plans.
These data include: total cost of the execution plan (this.cost), estimated number of rows returned
(this.numRow), estimated size of a row (this.rowSize) among others. To simulate the concept of MV
in MySQL and enable tuning heuristics, we will create tables derived from queries in other tables
(base tables). For example, Figure 7 shows the statement responsible for creating a table derived
from a query that retrieves the document number, name, and GPA of enrolled students. To update
the tables that simulate the MVs, stored procedures will be created.

In order for the Outer-Tuning tool to create the database object that simulates the MV, we consider
a stored procedure described in [Fedosseeva 2017]: it receives the view name and creates the derived
table. A view is necessary to store the description (query) for data updates in the future. We also
created the stored procedure responsible for updating the MV. According to the heuristic, this may
be scheduled for execution.

4.2 Extension for Dockerization

The extension with Apache Maven aims to simplify the Outer-Tuning framework project’s configu-
ration. Maven is a project management tool that encompasses a set of standards, deals with the
project’s life cycle, has a dependency management system, and allows to run plugins in defined phases
[Sonatype 2008]. Previously, there was no way to create the project executable (.war) without being
done through an IDE, involving the entire test and build cycle. Adding Maven, this whole cycle and
build are performed by Apache, allowing greater portability and speed when initiating any change in
Outer-Tuning and Docker integration.

3https://repo.maven.apache.org/maven2/mysql/mysql-connector-java/8.0.18/, last access: march, 2021.

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

164 · Raphael Marins et al.

Fig. 5. Part of the changes - Outer-Tuning with MySQL

Fig. 6. Main function to get data from the execution plan

In addition to Maven, we consider the concept of a container within the Docker4 tool. We may
then separate the applications from the execution infrastructure, making the process of testing and
application deployment faster. Docker is a platform that allows us to control, at the software level, all
containers that are created and executed. With this dockerization, the Outer-Tuning environment will
have three different containers: MySQL, Outer-Tuning framework and a script to run the workload
test. To orchestrate these containers, a docker-compose.yml file was created with the settings.

4https://docs.docker.com/get-started/overview/\#the-docker-platform, last access: march, 2021.

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

JIDM - Journal of Information and Data Management · 165

Fig. 7. Example of creating a simulated materialized view (Derived table)

Due to the dockerization, the installation and use of Outer-Tuning are now straightforward com-
pared with previous versions. Once Maven, Docker, and the docker-compose are present, now the
user can clone (or download) the Outer-Tuning project to build and run their containers with few
and simple steps. More details about the extension and the download are available at https:
//github.com/raphaelfmarins/outer_tuning.

5. CONCLUSIONS

We have presented the Outer-Tuning tool, a framework to support decision making while tuning rela-
tional DB systems. It is possible to visualize the use of Outer-Tuning in a semi-automatic or automatic
way, enabling tuning experts to interact with it. Our tool’s innovative contribution is to offer trans-
parency and reliability about the alternatives available for possible scenarios in the database system
through concrete justifications for the decisions that are ontology-based and semantically defined. We
also have shown some extensibility features, including DBMS instantiation and dockerization.

As current and future works, Outer-Tuning is being extended to SQL Server DBMS and will further
include the justifications for the DBAs’ decisions when the semi-automatic mode is on. We also intend
to develop the ontology used by the tool to contemplate the concepts defined in Tun-OCM [Almeida
et al. 2021], where management of database system configurations can be more controlled and recorded.

REFERENCES

Alhadi, N. and Ahmad, K. Query tuning in oracle database. Journal of Computer Science 8 (11): 1889, 2012.
Almeida, A. C., Baião, F., Lifschitz, S., Schwabe, D., and Campos, M. L. M. Tun-ocm: A model-driven

approach to support database tuning decision making. Decision Support Systems vol. 145, pp. 113538, 2021.
Almeida, A. C., Campos, M. L. M., Baião, F., Lifschitz, S., de Oliveira, R. P., and Schwabe, D. An
ontological perspective for database tuning heuristics. In International Conference on Conceptual Modeling. Springer,
Springer, pp. 240–254, 2019.

Almeida, A. C., Haeusler, E. H., Lifschitz, S., de Oliveira, R. P., and Schwabe, D. Outer-tuning: Auto-
matic self-tuning based on ontology (in portuguese). In Demos Session, Proceedings of the Brazilian Symposium on
Databases (SBBD). SBC, pp. 29–34, 2018.

Bruno, N. Automated Physical Database Design and Tuning. CRC Press, 2011.
Carvalho, A. W. Automatic Creation of Materialized Views in Relational DBMSs (In Portuguese). M.S. thesis,

PUC-Rio, Brazil, 2011.
de Oliveira, J., Loja, L. F., da Costa, S. L., and Neto, V. G. An information systems component for business

process management (in portuguese). In Proceedings of the VII Brazilian Symposium on Information Systems (SBSI).
SBC, Porto Alegre, RS, Brasil, pp. 250–261, 2011.

de Oliveira, R. P. Ontology-Based Tuning: The Case of Materialized Views (In Portuguese). M.S. thesis, PUC-Rio,
Brazil, 2015.

de Oliveira, R. P., Baião, F., Almeida, A. C., Schwabe, D., and Lifschitz, S. Outer-tuning: an integration of
rules, ontology and rdbms. In Proceedings of the XV Brazilian Symposium on Information Systems. ACM, pp. 1–8,
2019.

Dias, K., Ramacher, M., Shaft, U., Venkataramani, V., and Wood, G. Automatic performance diagnosis and
tuning in oracle. In CIDR. www.cidrdb.org, pp. 84–94, 2005.

Fedosseeva, A. Speeding Up Mysql Using Materialized Views. https://medium.com/@anna.f/speeding-up-mysql-by-
using-materialized-views-282ecbd3a53f, 2017.

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

166 · Raphael Marins et al.

Gamma, E., Johnson, R., Helm, R., Johnson, R. E., Vlissides, J., et al. Design patterns: elements of reusable
object-oriented software. Pearson Deutschland GmbH, 1995.

Goasdoué, F., Karanasos, K., Leblay, J., and Manolescu, I. View selection in semantic web databases. Proc.
VLDB Endow. 5 (2): 97–108, Oct., 2012.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M., et al. Swrl: A semantic
web rule language combining owl and ruleml. W3C Member submission 21 (79): 1–31, 2004.

Khosla, R. and Ichalkaranje, N. Design of intelligent multi-agent systems: human-centredness, architectures,
learning and adaptation. Springer-Verlag Berlin Heidelberg, 2005.

Morelli, E., Almeida, A., Lifschitz, S., Monteiro, J. M., and Machado, J. Autonomous re-indexing. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing. ACM, pp. 893–897, 2012.

Shasha, D. and Bonnet, P. Database tuning: principles, experiments, and troubleshooting techniques. Elsevier, 2002.
Sonatype. Maven: The Definitive Guide. " O’Reilly Media, Inc.", 2008.
Zhang, B., Van Aken, D., Wang, J., Dai, T., Jiang, S., Lao, J., Sheng, S., Pavlo, A., and Gordon, G. J.

A demonstration of the ottertune automatic database management system tuning service. Proceedings of the VLDB
Endowment 11 (12): 1910–1913, 2018.

Zhang, J., Liu, Y., Zhou, K., Li, G., Xiao, Z., Cheng, B., Xing, J., Wang, Y., Cheng, T., Liu, L., et al. An
end-to-end automatic cloud database tuning system using deep reinforcement learning. In Proceedings of the 2019
International Conference on Management of Data. ACM, pp. 415–432, 2019.

Journal of Information and Data Management, Vol. 12, No. 2, September 2021.

