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Abstract. Scientific research based on computer simulations is complex since it may involve managing the enormous
volumes of data and metadata produced during the life cycle of a scientific experiment, from the formulation of hy-
potheses to its final evaluation. This wealth of data needs to be structured and managed in a way that makes sense to
scientists so that relevant knowledge can be extracted to contribute to the scientific research process. In addition, when
it comes to the scope of the scientific project as a whole, it may be associated with several different scientific experiments,
which in turn may require executions of different scientific workflows, which makes the task rather arduous. All of this
can become even more difficult if we consider that the project tasks must be associated with the execution of such simu-
lations (which may take hours or even days), that the hypotheses of a phenomenon need validation and replication, and
that the project team may be geographically dispersed. This article presents an approach called PhenoManager that aims
at helping scientists managing their scientific projects and the cycle of the scientific method as a whole. PhenoManager
can assist the scientist in structuring, validating, and reproducing hypotheses of a phenomenon through configurable
computational models in the approach. For the evaluation of this article was used SciPhy, a scientific workflow in the
field of bioinformatics, concluding that the proposed approach brings gains without considerable performance losses.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems; H.2.8 [Database Management]:
Database Applications

Keywords: Scientific Experiment, Phenomena, Hypothesis, Scientific Workflows, Project Management

1. INTRODUCTION

In recent years, there has been a growth in the use of computer simulations in scientific experiments
[Hey et al. 2012; de Oliveira et al. 2019]. According to de Oliveira et al. [2019], today’s scientific
experiments rely heavily on the analysis of data generated from complex computer simulations. There
are several existing approaches to modeling, managing, monitoring, and debugging simulation-based
experiments. Many users implement their own scripts and programs, while others model their exper-
iments using Workflows Management Systems (WfMS) [Deelman et al. 2007; Deelman et al. 2009],
Scientific Gateways [Gesing et al. 2019; Ocaña et al. 2020] or Data Intensive and Scalable Computing
(DISC) frameworks like Apache Spark [Zaharia et al. 2016] or Hadoop [Karau et al. 2015].

However, none of these approaches is able to represent all the concepts involved in the scientific
method as discusssed by Mattoso et al. [2010] and Allen et al. [2017]. Currently, most of existing
approaches focus only on representing the simulations that are executed in the context of a given
experiment [de Oliveira et al. 2019; Marinho et al. 2017]. However, the starting point of a scientific
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investigation is the description of a phenomenon. The studied phenomenon occurs in some space-time,
in which selected physical quantities are observed [Porto et al. 2015]. Scientific hypotheses conceptually
interpret the studied phenomenon through its representation and through mathematical models. The
in silico hypothesis testing involves performing experiments, representing the mathematical models,
and confronting data generated from complex computer simulations [Porto et al. 2015]. That is, in
order to confirm or refute a hypothesis, experiments must be defined, and these experiments may
demand the execution of several simulations implemented in different ways, as presented in Figure 1
(a workflow in WfMS Pegasus, a Python script and an application implemented in Spark).

Fig. 1: Relation between the concepts of the scientific method

Since there is no association between the execution of the simulations, the observed phenomena and
the defined hypotheses, it is up to the scientist to manage all this knowledge in a manual and ad-hoc
(commonly error-prone) way. In other words, if the scientist needs to discover which executions of
a particular script or workflow are essential to refute the α hypothesis, one will have to record this
information on his own. In an even more complex scenario, the validation of a scientific hypothesis
may require the execution of several distinct workflows, scripts or MapReduce applications that may
execute in distributed, high-performance computing (HPC) environments, such as computing clouds
and supercomputers [Vaquero et al. 2008].

Thus, it would be interesting for scientists to have access to an approach that helps in the man-
agement of the scientific project as a whole and in supporting the scientific method, helping in the
documentation, sharing of the obtained data and in easing the reproduction of the performed ex-
periments, which represents an open challenge. Therefore, this article presents an approach called
PhenoManager that aims to support the management and validation of scientific hypotheses in an
integrated way with the execution of experiments, either via workflows, scripts or MapReduce ap-
plications. The PhenoManager manages the scientific project since the design stage, from setting up
the execution model, to the validation and reproduction of the experiments, using provenance data
[Freire et al. 2008]. In addition, the PhenoManager allows for the scientist to execute experiments
in HPC environments (such as the Santos Dumont supercomputer2 of the National Laboratory for
Scientific Computing - LNCC) and integrates with existing tools such as SciManager [Ramos et al.
2016] system, which manages team tasks in scientific projects, in a same {software ecosystem.

This article extends our previous study performed in [Ramos et al. 2019] entitled “Phenomanager:
um Sistema de Gerência de Hipóteses de Fenômenos Científicos”. In this extended version we enriched
the Experimental Evaluation Section with brand new analysis. We have also added a Background
section that discusses important concepts. The remainder of the article is organized into three sections
in addition to the introduction. Section 2 brings backgound. Section 3 presents an overview of the
PhenoManager. Section 4 presents the evaluation of PhenoManager. Section 5 brings related work,
and finally, Section 6 concludes this article.

2https://sdumont.lncc.br/
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2. BACKGROUND

In the context of this article, there are important concepts to be explained: (i) scientific projects,
(ii) scientific experiments, (iii) scientific hypothesis, (iv) phenomena, and (v) scientific workflows. In
addition, it is important to define the life cycle of a scientific experiment and the life cycle of a scientific
project.

2.1 Basic Concepts

A scientific project is the highest level unit of work and it works as a planning instrument. In this way,
a scientific project must define the goal(s) of the research and how the research will be conducted.
Each project has a group of people to whom tasks and responsibilities concerning the project will be
assigned. Depending on the number of goals to be achieved, a scientific project may consist of one
or more scientific experiments. A scientific experiment, according to the Oxford dictionary, may be
defined as “a test performed under controlled conditions, which is performed to demonstrate a known
truth, examine the validity of a hypothesis, or determine the effectiveness of something previously
unexplored”. There are several types of scientific experiments, namely: in vivo, in vitro, in virtuo and
in silico [Travassos and Barros 2003]. In this article, the focus is on supporting in silico experiments,
i.e. those that are based on computer simulations. In the context of this article, the term scientific
experiment will be consistently used to refer to simulation-based scientific experiments. This type of
experiment is found in many different domains, e.g., bioinformatics [de Oliveira et al. 2013; Coutinho
et al. 2011; Ocaña et al. 2013], deepwater oil exploration [de Oliveira et al. 2009], mapping of celestial
bodies [Porto et al. 2018], etc. All of these examples can be considered large-scale because they
consume and produce a large volume of data.

A scientific experiment is associated with a set of controlled actions (i.e., a protocol) with a well-
defined goal. These actions include multiple tests, and their results are usually compared with each
other to accept or refute a scientific hypothesis. In order to confirm or refute a hypothesis, experi-
ments must be defined, and these experiments can demand the execution of several simulations that
may be implemented in different ways, e.g., a workflow in WfMS Pegasus, a Python script and a
MapReduce application implemented in Hadoop. Large-scale experiments can be executed multiple
times to produce a result. Since each execution may demand many resources and time to finish,
these experiments usually require parallel techniques and distributed environments (HPC and DISC)
to produce results in a feasible time. Commonly, these scientific experiments are composed by the
chaining and execution of different programs, which may consume multiple combinations of parame-
ters and large amounts of data. Thus, scientific experiments can be modeled as scientific workflows.
Scientific workflows can be defined as an abstraction for modeling the flow of activities and data in an
experiment. Thus, we have the following interconnection between the concepts: a scientific workflow
is part of a given experiment, which, in turn, is in the context of a scientific project. A workflow is
the concrete representation of a scientific experiment and symbolizes one of the possible executions of
the experiment (i.e., trials). Each experiment follows a well-defined life cycle as defined by [Mattoso
et al. 2008], as discussed following.

2.2 The Life Cycle of Scientific Experiments and Scientific Projects

The life cycle of a large-scale scientific experiment, according to Mattoso et al. [2008] , consists of
multiple interactions, to be performed by scientists during the course of an experiment. Since there
may be several experiments coexisting within the same scientific project, we may have more than one
life cycle, overlapping or interacting with each other. Fig. 2(a) presents a simplified version of the
cycle proposed by [Mattoso et al. 2008] where the main phases can be identified: (i) Composition, (ii)
Execution and (iii) Analysis. In the composition phase, scientists define the structure of the scientific
experiment, i.e., the logical sequence of activities, the types of input/output data and parameters that
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must be provided. The execution phase is responsible for executing a workflow specification on a given
WfMS. Finally, the analysis phase supports the interpretation and evaluation of the data generated
by the composition and execution phases. This phase is highly dependent on provenance data [Freire
et al. 2008]. Provenance data represents the history of the experiment, from its specification, to
the parameters used, and the execution times for each activity in the experiment. With these data
scientists can audit multiple executions and guarantee the reproducibility of the experiment.

Fig. 2: Experiment (a) and Project (b) Life Cycles

In the same way that the life cycle of an experiment presents defined phases and characteristics,
the life cycle of a scientific project (when based on project management techniques/methodologies)
consists of a set of phases that are performed by the project members, as presented in Fig. 2(b).
Each of the phases presented in Fig. 2(b) has several activities performed by project members. These
activities are considered to be finished when the users provide the deliverables. In the first phase
of this cycle, called Project Initiation, the project goals are discussed, which methodologies will be
used and who will be the members (scientists) and managers (e.g., principal investigators). As a
result of this phase a document is produced that represents a opening term of the project. The
opening term contains the goals, the components of the team, available budget, etc. The second
phase, called Planning, discusses the high-level requirements to create more specific requirements that
guide the creation of tasks. These requirements allow for scientists to define one or more scientific
hypotheses. To confirm or refute the hypotheses, one or more tasks are created and assigned to
project members. For example, in a bioinformatics project a high-level requirement is “Identify drugs
to fight Malaria”. This high-level goal can be detailed in specific goals such as “Perform Phylogenetic
Analysis” and “Molecular Modeling Study”. Each of these more specific goals must be associated with
an experiment, and one or more tasks can be created that are associated with the goal. For example,
for the “Perform Phylogenetic Analysis” we can create tasks entitled “Create the Phylogenetic Analysis
Workflow”, “Select the Input Data”, etc. Each of these tasks is associated with an experiment and a
workflow or script, and must be assigned to one or more members of the project. The third phase is
the Execution phase of the project. In this phase, the tasks specified in the previous phase are actually
executed; the workflows or scripts are implemented, tested, executed, and the data is analyzed. The
fourth phase is the Control and Monitoring phase, where the tasks performed in the execution phase
phase are checked and audited by the project managers. Finally, in the Finalization phase, a final
document is obtained that presents both the results generated and some project insights.

2.3 A Model for Representing Scientific Hypothesis

In this subsection, we present the data model for representing scientific hypotheses used in this article
[Porto et al. 2015]. The conceptual model interprets the role of in silico data, highlighting formulation
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and validation of scientific hypotheses, as presented in Fig. 8.

Fig. 3: Scientific Hypothesys Conceptual Model [Porto et al. 2015]

One of the applications of the conceptual model is its implementation as a database that includes
data and metadata about the scientific life cycle of the experiment [Porto et al. 2015]. This model
reflects the entities involved during an in silico experiment life cycle. The domain is structured around
the following main concepts: Phenomenon, Hypotheses, and Process of Hypotheses and Phenomena. A
scientific hypothesis conceptually represents a formal model that provides a reasonable interpretation
for the studied phenomenon. A hypothesis is formally expressed and modeled in a computational
representation. The formalization of a scientific study can be provided by a mathematical model.

The representation of the mathematical model is relevant as it is the basis for a consistent map-
ping between its formal mathematical representation and its data representation. In this model, the
specification of a scientific hypothesis is performed from two perspectives: a continuous and a discrete
process. The first refers to the mathematical model, discussed previously, representing the studied
phenomenon. The latter corresponds to the computational representation of the hypothesis that in-
duces discrete transformations of the state-phenomenon that lead to the generation of simulation
data.

3. PROPOSED APPROACH: PHENOMANAGER

In this section, we present the architecture of PhenoManager and a brief guide on how to use
PhenoManager in practice.

3.1 Architecture

Fig. 4 presents the architecture of the PhenoManager and its main components. The PhenoManager
can be organized into six functional layers: (i) Authentication Layer, (ii) Environment Management
Layer, (iii) Execution Layer, (iv) Data Layer, (v) Query Layer, and (vi) Web Portal. The proposed
architecture is based on the layered pattern of software architecture [Bass et al. 2003]. The core idea
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is to split up the software code into layers, where each layer has a certain responsibility and provides
a service to a different layer. Each layer may have several components, and each component has a
specific task in the system and can be interchangeable according to the needs of the user. In the
proposed approach we group the components that present similar and interchangeable goals into the
same layer.

Fig. 4: Architecture of the PhenoManager

The Authentication Layer is responsible for managing the access credentials to the PhenoManager.
This layer is critical since unpublished search data is handled by PhenoManager. Credential control
is performed at two levels. At the Personal Profile level, each user of the tool configures/completes
their personal information and loads credentials for access to the various environments (e.g., Amazon
AWS). At the User Groups level, the administrator (with privileges to create groups) search, select
and group existing user profiles, and, once the group is created, share the same privileges. Each user
or group can access the data and functionalities provided by PhenoManager according to the following
privileges: (i) Read permission: the user and/or group can only view the data; (ii) Write permission:
the user and/or group can read and submit information; (iii) Administrator permission: in addition
to the aforementioned permissions, the user and/or group can register permissions for other users and
groups;

The Environment Management Layer is responsible for configuring distributed environments for
executing simulations. For each different environment, a component must be developed with the
calls to its specific API. The PhenoManager already provides integration with three different types
of environments: Cluster, Cloud (Amazon AWS) and SSH. Additionally, one can configure a VPN
connection for these environments by selecting between Cisco VPN and VPN default. For the Cloud
environment, one can configure in detail, the types and images of the virtual machines that will be
built in the Amazon AWS environment.

The Execution Layer is responsible for invoking WfMSs, scripts or external applications in the
HPC environments. For each different system or application to be invoked, a specific wrapper must
be provided (since the PhenoManager needs to be aware of the invocation process of the external
application). The call to the wrappers is asynchronous, so the service of this layer can be scaled
to more instances, thus increasing the throughput of parallel executions of scientific simulations for
different users. Thus, through this artifice, we try to guarantee parallelism and high availability of
the PhenoManager.

The Data Layer contains the provenance database and the raw data produced by the simulations.
In addition, this layer contains a series of extractors responsible for accessing the provenance database
or log of the external application and loading the information into the provenance database of the
PhenoManager. In its current version, the provenance database is modeled is PostgreSQL DBMS and
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the raw data is loaded into Google Drive. The Query Layer is responsible for allowing the scientist
to submit queries to the data managed by the system. This layer provides an API that abstracts the
queries to the data in a way that makes it easy for scientists and other applications that consume
this service to handle them. The API allows for the scientist to submit queries containing filters,
sorting, aggregation functions, and field projections on all the entities exposed in the PhenoManager
data model. Another important aspect is that the API only responds successfully if the user passes
correct credentials in the request header. In addition, the Query Layer is responsible for exporting
packages called Research Objects (RO) [Holl et al. 2013], which contain both the queried metadata
and the raw data produced by the simulation. By means of ROs, scientists can reproduce a certain
simulation, an experiment or check if a hypothesis has been effectively validated.

Finally, the Web Portal is responsible for all the interface with the scientist and the integration with
the other layers. Using it the scientist registers the observed phenomena, the associated hypotheses,
his/her experiments and the models that execute the simulations of each experiment (e.g., workflow,
script or application). Furthermore, through the Web Portal, the scientist is able to effectively execute
his/her simulations and query the collected provenance data in an integrated manner,i.e., if a same
experiment is composed of several workflows and applications, the queries to the provenance base
consider all the simulations as part of the same experiment, which does not occur in the existing tools
that manage the computational models in an isolated manner [Deelman et al. 2009].

PhenoManager was developed in Java and follows the architectural pattern of APIs as microser-
vices, i.e., each component is a small, autonomous web service that provides only one functionality
[Newman 2015]. All microservices were built using the Spring Boot framework, which already pro-
vides support for developing applications in this pattern in a fast and low verbose manner. For data
security and authentication between components, the Spring Security framework was used. The de-
velopment of the interfaces, templates and screens of the Web Portal was done with AngularJs. Since
each service that composes the PhenoManagerarchitecture is completely isolated from the others,
scalability becomes one of the key points of this ecosystem. To ensure the invocation of external
applications asynchronously, the open source RabbitMQ message Broker was chosen. The souce code
of PhenoManager can be obtained at https://github.com/UFFeScience/Phenomanager.

3.2 PhenoManager in Practice

The Web Portal of PhenoManager is presented in Fig. 5. The scientist first accesses the dashboard
(Fig. 5(a)) that presents all the simulation executions in progress, finished, etc., but the scientist
can also register a phenomenon and hypotheses in the PhenoManager. After defining the access
credentials, profiles and user groups, the PhenoManager features are enabled. Thus, the first action
that the user can perform in the system is to register a scientific project, which is the highest level
work unit. A project has a name, a description/documentation and phenomena associated. If the
user is an administrator or has write priviledge, it can create a project, edit, as well as create/edit the
phenomena that one intends to study. Users with read-only priviledges are only able to view project
information.

After configuring the project, the user needs to configure the phenomena and hypotheses from
which a described phenomenon refers. Similarly to the scientific project, the phenomenon and the
hypothesis have a name and a description. In the case of the hypothesis, it may contain several other
derived hypotheses that describe derivations of a study [Gonçalves and Porto 2013]. According to the
results obtained during executions of experiments associated with a given hypothesis, the scientist
can change the hypothesis’ state. A hypothesis can assume the following states in PhenoManager:
Formulated : a newly created hypothesis; (i) Validated : a hypothesis validated by experiments; (ii)
Confirmed : hypothesis proved to be true, however, it lacks validation; (iii) Improved : a hypothesis
that had an improvement in its formulation; (iv) Refuted : a hypothesis that has been refuted;
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Fig. 5: Dashboard of PhenoManager

The next step is to register the scientific experiments that play a fundamental role of validating (or
not) the hypothesis. The scientific experiment also contains name, description, and the computational
models that are the concrete representation of the experiment. Furthermore, as it is a conceptual mod-
eling of an execution model, it may have a guideline of the parameters that the computational model,
in turn, uses for its execution. In addition, it is possible to create checkpoints for the validation of an
experiment. Validation items are entities that aim at determining a guideline on how an experiment
can be validated. The same experiment may contain several validation items and by selecting an
item as validated, the scientist is able to upload files that evidence that this checkpoint was in fact
validated.

The creation and configuration of an execution model inside the PhenoManager must follow these
steps: (i) Registration of the Computational Environment in which the model will execute (SSH,
Cluster, Amazon), as shown in Fig. 6; (ii) Registration of the artifact that will be executed in the
environment configured in the previous step (e.g., a program, a workflow); (iii) Registration of the
parameters, which represent the values consumed by the execution of an artifact; and (iv) Registration
of the execution data extractor(s), which are components responsible for extracting the provenance
data.

In the execution environment configuration step, the scientist has the option to configure three
different environment types: Cluster, Cloud (Amazon AWS) and SSH. Furthermore, it is possible to
configure VPN connection for such environments, being able to select between Cisco VPN and default
VPN. When the user selects the Cloud environment, it is possible to configure, in detail, the types
and images of the virtual machines that will be deployed in the Amazon AWS environment (Fig. 6).
When the user selects the type Cluster, she has to specify the resources that will be allocated and
used inside the batch file of the job.

After configuring the environment, the user can start configuring the artifacts to be executed. One
can choose three types of artifacts (called Executor in the interface): WebService, Workflow, Command
and Executable. AWebService executor can perform REST and SOAP calls. For theWorkflow type, a
compressed .zip file is expected, with the programs and the workflow system responsible for managing
the Workflow execution. If the user chooses the Executable type, an executable code is expected.
Finally, the type Command, expects a text with the command line that will be executed in the
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,
Fig. 6: Defining a Cloud Computational Environment in PhenoManager.

configured environment.

After the artifact configuration is performed, it is possible to start its execution and the asyn-
chronous execution service will be in charge of orchestrating the execution. The provenance data and
logs of the execution are displayed in real time as the execution proceeds, as one can see in Fig. 7. In
Fig. 8, we show the provenance of a specific computational model.

Once the executions have started or have finished, the user is able to query the PhenoManager
provenance database. An example query that can be submitted is “What are the names and versions
of the models used in the validation of a hypothesis with a specific name (“sciphy”)? ” After processing
the query, a Research Object containing the query response and associated data is generated for
download. Fig. 9 presents a fragment of the generated Research Object.

4. EVALUATION

This section presents the experimental evaluation of the proposed approach. We use a scientific
workflow from the bioinformatics domain as a case study. The experiments were separated into two
parts. In the first part, we evaluated the overhead of PhenoManager when executing a workflow. In
the second, we evaluated PhenoManager in terms of its usability, using the Technology Acceptance
Model (TAM). Thus, the key idea of this section is to evaluate the efficiency and usability of the
PhenoManager as well as its limitations.
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,
Fig. 7: Logs of executions of a computational model displayed in real time.

,
Fig. 8: History of executions of a computational model.

4.1 Case Study: SciPhy Workflow

Sciphy [Ocaña et al. 2011] is a scientific workflow that is designed to generate phylogenetic trees
with maximum likelihood. It was originally designed to work with amino acid sequences, but can be
executed consuming other types of biological sequences. SciPhy is composed of four activities:

(1) Multiple Sequence Aligment (MSA): this activity builds individual alignments. It receives a multi-
fasta file containing DNA and RNA sequences as input, producing as output an alignment (MSA);

(2) Sequence Conversion (implemented by ReadSeq): Converts the alignment into PHYLIP format;
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Fig. 9: Fragment of the Research Object Gerenated by PhenoManager

(3) Evolutionary Model Evaluation (implemented by ModelGenerator): In this activity each MSA is
tested to find the best evolutionary model to use;

(4) Tree Generation (implemented by RaXml): In this activity both the evolutionary model and the
MSA are used to generate phylogenetic trees;

Since the scientists do not know a priori which alignment method produces the best final result,
they need to execute SchiPhy several times, once for each MSA method. In the configuration of SciPhy
used in this article we consider the following MSA programs: MAFFT, Kalign, ClustalW, Muscle, ans
ProbCons. Fig. 10 shows the conceptual view of SciPhy, where rectangles represent the conceptual
activities and circles represent the programs that implement them. For more details about SciPhy,
please refer to [Ocaña et al. 2011].

Fig. 10: SciPhy workflow

4.2 Overhead Analysis

The environment chosen to perform the overhead analysis was the Santos Dumont Supercomputer at
LNCC. The Santos Dumont has an installed processing capacity of about 1.1 Petaflop/s, presenting
a hybrid configuration of computational nodes. In addition, it has a total of 18,144 CPU cores
distributed on 756 compute nodes (24 cores per node), where each contains mostly exclusively CPUs
with multi-core architecture. Furthermore, it also has a differentiated node (fat node), with a high
number of cores (240) and large-capacity shared memory architecture (6 Tb in a single address address
space).
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Fig. 11: Execution Times with Empty Queues
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Fig. 12: Execution Times with Full Queues

We executed a small-scale version of SciPhy (consuming only 10 multi-fasta files) in two different
scenarios. These 10 multi-fasta files of protein sequences contain 20 sequences (in average) and they
were chosen since their processing is not time-consuming (other multi-fasta files may need several
hours to be processed). These sequences were extracted from the UniProt database [DBL 2011] and
we followed the inclusion criteria defined by [Ocaña et al. 2013]. The first scenario measures the
average experiment execution time of 30 executions with empty RabbitMq queues and one consumer.
The second scenario measures the average execution time of 30 execution times with a RabbitMq
execution queue with one thousand parallel messages and ten consumers with ten threads each. We
have executed the experiment 30 times since it is recommended as a minimum number of experiment
repetitions to be statistically valid [Walpole et al. 2007].

In each of the scenarios, we compare the average execution time of SciPhy workflow using PhenoManager
and only a WfMS (SciCumulus [de Oliveira et al. 2012]). In PhenoManager we measured the following
times:

(1) Time from sending the message to RabbitMq until it consumes the message;

(2) Time to download the workflow specification and programs from Google Drive;

(3) Time to upload the executor to the configured environment (Santos Dumont at LNCC);

(4) Time to effectively execute the workflow;

In Fig. 11, we can see a comparison of the average execution times of a manual execution of
SciPhy and using PhenoManager with empty queues. One can state that in this execution scenario,
the execution time presents has a small and not very relevant variation between the two approaches.
On the other hand, in Fig. 12, considering the second evaluation scenario, one can observe that there
is a larger increase in the total execution time of the of the experiment. In this case, the workflow in
PhenoManager remained in a SCHEDULED state while the messages were consumed in the queue.
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4.3 Evaluation with Users

In order to qualitatively evaluate PhenoManager, we used the evaluation model called TAM (Technol-
ogy Acceptance Model) [Davis 1989]. Inspired by the results in [de Souza et al. 2015], we used the
TAM approach to capture the user perception of the proposed system (PhenoManager) regarding its
utility and ease-of-use or convenience. This qualitative evaluation methodology extends the Rational
Choice Theory (RCT) [Fishbein and Ajzen 1980], which indicates which user beliefs generate attitudes.
Accordingly, the technology acceptance is directly influenced by the users’ behavioral intention [Davis
1989], which in turn is motivated by two cognitive beliefs: (i) perceived utility (PU), and (i) perceived
ease-of-use or convenience (PEOU). The TAM methodology suggests collecting a sufficient number of
answers from questionnaires whose questions are linked with PhenoManager utility and convenience.
Each question within the questionnaires follows a Likert scale [de Souza et al. 2015], and the user
must select only one option between (a) Very Low, (b) Low, (c) Medium, (d) High, and (e) Very
High. Five scholars (02 bioinformaticians, 03 computer science experts) confirmed their participation
in this evaluation. Table I shows the questions used for the TAM evaluation of PhenoManager.

Table I: PhenoManager evaluation with TAM.

Question Type V. Low Low Medium High V. High
Which is the applicability degree
of PhenoManager in your data rou-
tines?

1 - Utility 0.00% 0.00% 16.66% 50.00% 33.33%

Which would be the performance
enhancement degree if you adopted
PhenoManager?

2 - Utility 0.00% 0.00% 50.00% 33.33% 16.66%

Which is the information quality
level presented by PhenoManager?

3 - Utility 0.00% 0.00% 33.33% 66.67% 0.00%

To which extent PhenoManager
would enhance the quality of your
work?

4 - Utility 0.00% 0.00% 0.00% 83.33% 16.66%

Which is the ease degree of using
PhenoManager?

5 - Convenience 0.00% 0.00% 0.00% 50.00% 50.00%

Which is the ease degree of learning
how to use PhenoManager?

6 - Convenience 0.00% 0.00% 0.00% 100.00% 0.00%

Which is the ease degree of re-
membering PhenoManager function-
alities?

7 - Convenience 0.00% 0.00% 0.00% 33.33% 66.66%

Which is the ease degree of identi-
fying errors with PhenoManager?

8 - Convenience 0.00% 0.00% 83.33% 16.66% 0.00%

Table I presents the overall results of TAM questionnaires, in which most of surveyed experts
indicate PhenoManager applies to their daily duties. Potential users also marked other features of
PhenoManager as of “high” and “very high” usage. However, more than 80% of them also indicated
identifying and fixing errors in PhenoManager is not simple. Notice that PhenoManager was first
implemented as a proof of concept rather than a final product. Therefore, those indications are being
used to enhance internal routines, such as error spotting and fixing.

5. RELATED WORK

To the best of the authors’ knowledge, there is not another approach that manages a scientific project, a
scientific experiment, the associated phenomena, and the hypothesis as PhenoManager does. This way,
in this section, we present some approaches that present a level of intersection with PhenoManager, i.e.,
this section discusses related work that aims at assisting in the scientific method, either by helping in
the reproduction of experiments, in the management, modeling or execution of computational models.
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Pardi and Russo [2019] propose a global storage Ecosystem to manage large-scale distributed
datasets in the context of scientific projects. The idea is to create a project where scientists can aggre-
gate multiple storage areas and datasets to simplify data retrieval. Differently from PhenoManager,
the approach proposed by Pardi and Russo only considers data produced during experiments, but it
does not manage the metadata associated with the experiment and its associated hypothesis. Kluge
and Friedel [2018] propose Watchdog, a workflow system to automate complex analysis of large-scale
experimental data. Although Watchdog allows for scientists to define their pipelines using pre-defined
modules as well as their scripts, it considers workflows in an isolated way, decoupled from the concept
of experiment and scientific project.

Dayibas et al. [2019] propose an approach to automate labor-intensive parts of simulation-based
experiments. Dayibas et al. focus on the reusability of simulation experiments. Their work considers
the concept of experiment and simulation to manage results. Lepperod et al. [2020] propose an
approach named Expipe for data management in neuroscience experiments. The authors assume that
produced and consumed datasets are too large to be stored locally and thus they demand analysis
in distributed environments. Expipe stores and organizes experimental data and metadata captured
during the execution of a pipeline. Marinho et al. [2017] propose an approach named ExpLine that
allows for scientists to model their experiment in multiple levels of abstraction. It is based on the
concept of Experiment Lines [de Oliveira et al. 2010]. Based on an abstract representation of the
experiment, the scientist can derive concrete and executable workflows. Although it represents a step
forward, ExpLine does not support managing hypothesis either phenomena.

Goble et al. [2018] highlight recent developments and approaches in the ResearchObject community.
Research Object (RO) is a framework composed of several elements in a scientific project that can
be packaged in a single unit of work. ROs contain programs, data, and metadata associated with the
experiments and projects. It is already used in well-known platforms such as MyExperiment [Goble
et al. 2010; Roure et al. 2010]. MyExperiment is a social platform for sharing Research Objects such
as scientific workflows. Unlike existing workflow systems, its goal is only to share ROs and does not
propose the execution and configuration of experiments or hypothesis evaluation. This tool could be
integrated with PhenoManager, as long as the computational model is set as public. Wf4Ever Toolkit
[Page et al. 2012] has the same purpose of sharing research objects. Like MyExperiment, this tool
could be easily integrated with PhenoManager, taking advantage of the benefits of both approaches.

Rabix [Kaushik et al. 2017] is a project that works as a workflow modeler using Common Workflow
Language (CWL)3. CWL is an open open standard for describing workflows and analysis tools in a way
that makes them portable and and scalable in a variety of software and hardware environments, from
workstations to cluster, cloud, and HPC environments. In terms of scientific project management
as a whole, there are a number of initiatives that aim to support scientists in managing scientific
projects. The LabGuru4 aims to help the scientist in the management of his or her laboratory.
Although it has functionalities for task distribution, LabGuru aims at a better allocation of allocation
of resources (people and equipment) in the daily tasks. LabGuru does not concern with the execution
of the experiment and the analysis of the data. Pinheiro et al. [2006] propose a research project
management methodology, which is based on the use of project management techniques in research
to obtain products. Although they do not propose any tool, the authors discuss their importance to
the process.

Finally, ΥDB [Gonçalves and Porto 2015] is a probabilistic database system for representing numer-
ical simulation output data as hypotheses of the phenomenon they reproduce. The term hypotheses
as data is coined to refer to the output of simulations and associated uncertainty quantification. The
system infers the uncertainty of variables based on the variability of the input values and that of
the numerical model itself. ΥDB can be plugged to the output of PhenoManager, in case of numer-

3https://www.commonwl.org/#
4https://www.labguru.com/
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ical simulation experiments, adding uncertainty to the hypothesis description. In addition, existing
commercial tools such as Trello5, Tasker6, Redmine7 and Jira8 can be used for scientific project man-
agement. However, as these tools do not aim to serve this type of projects, there is no association with
the concept of scientific experiment and there are no mechanisms to specify a workflow or execute it.
Table II presents a comparative analysis of the related work.

Table II: Related work comparative analysis

Approach License Abstraction Level Data Sharing HPC Support
[Pardi and Russo 2019] Academic Project and dataset Distributed dataset Yes
[Kluge and Friedel
2018]

Academic Workflow N/A Yes

[Dayibas et al. 2019] Academic Experiment and simulation No N/A
[Lepperød et al. 2020] Academic Experiment and dataset Distributed dataset Yes
[Marinho et al. 2017] Academic Experiment line, abstract and

concrete workflows
No Partial

[Goble et al. 2018] Academic Concrete workflow Research Object N/A
[Goble et al. 2010;
Roure et al. 2010]

Academic Concrete workflow Research Object N/A

[Kaushik et al. 2017] Academic Abstract and concrete work-
flows

N/A Yes

LabGuru Commercial Task Shared dataset N/A
Trello Commercial Project and task Partial No
Tasker Commercial Project and task Partial N/A
Jira Commercial Project and task Partial N/A
Redmine Commercial Project and task Partial N/A
ΥDB Academic Hypothesis Simulation output N/A
PhenoManager Academic Project, experiment, hypothe-

sis, workflow and task
Research objects Yes

6. CONCLUSIONS

The volume and variety of data produced during the execution of a scientific project can be huge.
All these data need to be structured and managed in a way that scientists can extract useful knowl-
edge. These data may be associated with the execution of multiple workflows, evaluation of several
hypotheses, etc. Managing these data can be arduous without an approach to support it.

This article presents the PhenoManager, a Scientific Hypothesis Management System that is capable
of managing phenomena and hypotheses in conjunction with the execution of their associated exper-
iments and computational simulations. These computational simulations may be implemented as a
workflow, a script or invoking a third party program. The PhenoManager is based on a microservices
architecture, which eases its extension and scalability. In this way, PhenoManager provides a valuable
starting point for the integrated analysis of provenance data from multiple systems and programs.

In this article, we evaluated PhenoManager in a quantitative and qualitative way. In the quantitative
evaluation, we measured the execution time overhead imposed by adopting the PhenoManager. Results
showed that the introduced overhead is acceptable since analytical features are now available for
scientists. In the qualitative evaluation, we analyzed the utility and ease-of-use of PhenoManager
using TAM. Results show that most of the subjects mention that they could use PhenoManager in
their daily duties. This is a contribution of this article in comparison with previous work [Ramos
et al. 2019].

5https://trello.com/pt-BR
6http://www.tasker.com.br/
7https://www.redmine.org/
8https://www.atlassian.com/br/software/jira
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As future work, we plan to provide additional analyses such as performance analyses of the execution
of the simulation. In addition, we plan to implement an automatic hypothesis validation mechanism
from the collected provenance data. The PhenoManager is an open source software and can be obtained
at https://github.com/UFFeScience/Phenomanager.
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