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Abstract. Many scientific experiments are modeled as workflows. Workflows usually output massive amounts of data.
To guarantee the reproducibility of workflows, they are usually orchestrated by Workflow Management Systems (WfMS),
that capture provenance data. Provenance represents the lineage of a data fragment throughout its transformations by
activities in a workflow. Provenance traces are usually represented as graphs. These graphs allows scientists to analyze
and evaluate results produced by a workflow. However, each WfMS has a proprietary format for provenance and do it
in different granularity levels. Therefore, in more complex scenarios in which the scientist needs to interpret provenance
graphs generated by multiple WfMSs and workflows, a challenge arises. To first understand the research landscape,
we conduct a Systematic Literature Mapping, assessing existing solutions under several different lenses. With a clearer
understanding of the state of the art, we propose a tool called Polyflow, which is based on the concept of Polystore
systems, integrating several databases of heterogeneous origin by adopting a global ProvONE schema. Polyflow allows
scientists to query multiple provenance graphs in an integrated way. Polyflow was evaluated by experts using provenance
data collected from real experiments that generate phylogenetic trees through workflows. The experiment results suggest
that Polyflow is a viable solution for interoperating heterogeneous provenance data generated by different WfMSs, from
both a usability and performance standpoint.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

Keywords: Polystore, Syntactic interoperability, Semantic interoperability

1. INTRODUCTION

Over the last decade the (big) data-driven science paradigm became a reality [Hey et al. 2009;
de Oliveira et al. 2019]. As discussed by [Abbasi et al. 2016] and [Jagadish et al. 2014], there has
been an increasing number of efforts by the industry to create more efficient and accurate applications
and Information Systems (e.g., new view on Business Intelligence and Analytics) to adhere to this
new paradigm [Abadi et al. 2016; Abadi et al. 2019]. However, to adhere to this paradigm, some
challenges must be overcome, such as the dependency on data quality [Hazen et al. 2014] and the lack
of reproducibility of the results [Peng 2015; Schwab et al. 2000; Freire and Chirigati 2018; Chirigati
and Freire 2018]. In order to foster reproducibility [de Oliveira et al. 2017], historical information
such as all generated data, the used software and the settings of the execution environment must
be made available to different researchers. This metadata is called Provenance [Freire et al. 2008].
Provenance can be classified as Prospective (or simply p-prov), which is associated to the specification

1This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001. This study was also financed in part by CNPq, FAPERJ and UFJF. The authors would like to
thank Kary Ocaña (LNCC) for her support on the experiments.

Copyright©2020 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 11, No. 3, December 2020, Pages 165–192.



166 · Y. Mendes et al.

of an experiment, and Retrospective (or simply r-prov), which is associated to the execution of an ex-
periment. Since provenance represents generated that and the processes that generated them, it can
be represented in a graph, called a provenance graph, whose nodes represent the artifacts/influences
and whose edges their relations with one another [Huynh et al. 2018].

The lack of provenance data can be especially hindering for researchers that use computational
models to conduct experiments [Mattoso et al. 2010]. The use of computational simulations to support
experiments in various fields of science has become a reality in the last 10 years [Mattoso et al. 2010;
Atkinson et al. 2017; Deelman et al. 2018]. These experiments follow a well-defined life cycle (with
composition, execution, and analysis steps [Mattoso et al. 2010]), and they are commonly composed by
the invocation of several applications in a specific order, according to their production and consumption
of data, thus creating a Scientific Workflow (henceforth named as Workflow) [Atkinson et al. 2017].
There are several Information Systems that already support the composition and execution of such
workflows, e.g., Workflow Management Systems (WfMS) and Science Gateways. There is a plethora
of WfMSs, such as Kepler [Altintas et al. 2004], Taverna [Wolstencroft et al. 2013], Chiron [Ogasawara
et al. 2013], Swift/T [Wozniak et al. 2013], Pegasus [Deelman et al. 2015], eScience Central [Watson
et al. 2010], VisTrails [Bavoil et al. 2005], and SciCumulus [de Oliveira et al. 2010; de Oliveira et al.
2013]. Each of these WfMS manage the execution of the workflow and capture provenance data from
the workflow execution automatically.

Science Gateways [Gesing et al. 2018] are complex information systems that aim at integrating
several existing approaches that support the composition and execution of workflows in distributed
environments, such as clouds, grids, and clusters, by integrating many existing WfMSs [Glatard et al.
2017]. Although such gateways represent a step forward, they follow a tight integration, where the
underlying WfMSs share software components with the gateway, but not their provenance databases
and repositories, i.e., it is not possible to query all provenance databases in an integrated form since
most solutions adopted proprietary data models. Thus, inter-operating provenance data captured by
underlying WfMSs remains an issue [Oliveira et al. 2016].

This way, while in theory it should be possible for scientists to transparently query both provenance
databases, the heterogeneity in the data models and implementations makes it difficult to query them
in an integrated way, i.e., one has to be aware of both database schemas and the association between
them. Ultimately, this lessens the role of provenance in fostering interoperability. This way, one can
reduce this scenario to two fundamental issues: (i) the heterogeneity of storage methods and (ii) the
heterogeneity of data models. These issues lead to two types of interoperability issues in provenance
databases: (i) syntactic and (ii) semantic [Litwin and Abdellatif 1986].

Recently, new approaches such as Polystore systems [Begoli et al. 2016; Hamadou et al. 2019; Khan
et al. 2019] started being discussed very intensively across the research community as a solution for
integrating multiple heterogeneous databases. According to [Duggan et al. 2015], a Polystore system is
built on top of multiple, heterogeneous, integrated storage engines. Differently from their predecessors
Federated Databases, they integrate several heterogeneous databases engines while accessing them
separately through their own query engine [Duggan et al. 2015]. Polystore databases support multiple
query languages and data models, as opposed to traditional federated systems that support a single
one. The rationale behind Polystore systems suits well for the problem of querying heterogeneous
provenance databases.

Nevertheless, the semantic interoperability problem is still an open issue since one needs to be aware
of the underlying provenance database schemas. This way, in this article, we propose Polyflow, a
Polystore-compliant mechanism that provides semantic interoperability of heterogeneous provenance
graphs. We assume that all data models are from the same domain (i.e., provenance), thus they
follow a Conceptual Canonical Model (CCM) (e.g., ProvONE [Cuevas-Vicenttín et al. 2015]) that can
represent all concepts involved, even if they present different granularity. Polyflow uses a media-
tion approach, i.e., when connected to a Data Source (e.g., a provenance database), users can create
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Entity Mappers between elements in the CCM and elements in the original data models [Coulouris
et al. 2005] that are used to rewrite, at runtime, the submitted queries. Thus, queries submitted to
Polyflow refer to ProvONE entities, and then are rewritten to be submitted to the underlying prove-
nance schemas. By using Polyflow, we support distributed environments, empowering geographically
scattered researchers, since different researchers commonly use different WfMSs (and consequently dif-
ferent provenance databases).

The contributions of this article are summarized as follows. First, to propose a viable solution
to solve the syntactic and semantic interoperability in provenance databases using a polystore ap-
proach. Second, we provide an overview of the research topic, comparing state-of-the-art approaches
to Polyflow using a Systematic Literature Mapping (SLM). And finally, we have conducted a range of
experiments to evaluate Polyflow with experts. This article is an extension of the conference paper
[Mendes et al. 2019] published in the Proceedings of the 2019 Brazilian Symposium on Databases
(SBBD). This extended version provides new empirical shreds of evidence regarding the proposed
approach, an evaluation of the approach with experts and a broader discussion on related work.

The remainder of this article is organized as follows. Section 2 briefly provides the background
knowledge that supports this article; Section 3 showcases related work, granting an overview of the
research topic through a SLM; Section 4 details the proposed approach; Section 5 showcases two
evaluations of Polyflow, and, finally, Section 6 concludes this article.

2. BACKGROUND KNOWLEDGE

In this section, we introduce the main concepts and techniques adopted in this article. Firstly,
we formalize scientific workflows and provenance concepts. Next, we discuss Polystore systems and
databases.

2.1 Workflows and Provenance

Over the last few years, workflows have become a de facto standard to represent scientific experiments
based on computational simulations [de Oliveira et al. 2019]. A workflow is an abstraction capable
of representing a logical sequence of programs and/or services invocations (i.e., activities) and their
data dependencies [Mattoso et al. 2010]. Thus, a workflow can be formally defined as an “automation
of scientific processes in which tasks are structured based on their control and data dependencies” [Yu
and Buyya 2005]. In other words, it can be seen as the formalization of a pipeline of computational
tasks with their respective inputs and outputs. A workflow can be modeled as a graph W (A, φ),
where A is the set of activities in W and φ is the set of data dependencies. Thus, A = {a1, a2,
. . . , an} and each activity ai can be represented as ai(I, P ), ai : {I, P} → O, where I is the input
dataset, P the parameters and O the data generated by activity ai. Hence, I = {i1, i2, . . . , id},
where id is an input file for activity ai, O = {o1, o2, . . . , ok}, where each ok is an output file for
ai and P = {p1, p2, . . . , pm}, where each pm is a parameter of activity ai. Each execution of ai is
associated to a tuple of m parameters < p1, p2, . . . , pm >, where the value vm of each parameter
pm is defined by a function ζm(pm) = vm. Thereafter, we can describe a data dependency set as
φ = {ϕ1,2, . . . , ϕi,j}, where each ϕi,j = 〈id, ai, aj〉, input(ai) ∈ I, id 6= ∅ and output(ai) ∈ O. Thus,
ϕi,j ↔ ∃ok ∈ input(aj)|Ok ∈ output(ai).

In order to evaluate and reproduce workflows, provenance data must be gathered, stored and an-
alyzed. Provenance or data lineage is a metadata associated with a data product that describes its
derivation path. More formally, it describes a data fragment, and all processes and transformations
applied to it [Buneman et al. 2001]. These metadata bring transparency to a data product, enabling
its reuse [Simmhan et al. 2005]. Moreover, it also helps data interpretability and audition [Groth and
Moreau 2009]. There are two types of provenance: prospective (p-prov) and retrospective (r-prov)
[Davidson and Freire 2008]. P-prov aims at capturing the specification of a computational task (e.g.,
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a workflow), expressing the steps that need to be followed to generate a set of data products. On
the other hand, r-prov captures the steps executed and information about the execution derives a
data product. Although evolution provenance is not formally defined in the literature, it is present
in several works [Prabhune et al. 2018a]. It aims to capture the evolution of the workflow definition
throughout its versions [Cuevas-Vicenttín et al. 2015].

In the context of this article, we use ProvONE [Cuevas-Vicenttín et al. 2015] as a CCM capable
of integrating provenance graphs of multiple workflows and produced by different WfMSs. ProvONE
extends the W3C PROV recommendation [Moreau et al. 2015] and is composed of several classes
and relationships. Due to space restrictions, only the main classes are detailed in this section. You
can refer for more information in [Prabhune et al. 2016]. ProvONE’s data model is represented in
Figure 1. In ProvONE, a p-prov graph is described by the following entities: Programs represents
an activity that consumes and generates data through its Ports. Program instances can be atomic
or composite, i.e., they can have SubPrograms. A Port enables a Program to send and receive
data and parameters. Data dependencies across programs are identified by the class Channels that
connect two or more Programs through their Ports. The class Workflow represents a special kind of
Program that is the root of a recursive composition of Programs. Finally, the class Entity represents
the information units consumed or generated by a Program. On the other hand, a r-prov graph Gp
is generated by the Execution of W . It is defined as Gp = (Vp, Ep, Ap, Tp), where each vertex Vp
represents either programs or data artifacts and the edges Ep represent its lineage. An attribute
type ∈ Ap should exist for every vertex and edge. If a node vpi represents a program associated
with an activity ai, then V alue(vpi, type) = program. On the other hand, if it represents a data
artifact, V alue(vpi, type) = data. The set Tp represents edge types that can be: WasGeneratedBy,
Used, WasInformedBy, WasDerivedFrom, WasAttributedTo, WasAssociatedWith, ActedOnBehalfOf,
according to the PROV recommendation [Moreau et al. 2015] and ProvONE data model (Fig 1).

Fig. 1. ProvONE model adapted from [Cuevas-Vicenttín Víctor 2016]

2.2 Polystore Systems

According to [Wegner 1996], the term “Interoperability” can be defined as “the ability of two or more
software components to cooperate despite differences in language, interface, and execution platform”.
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Although this can be considered an outdated definition for interoperability [Tolk and Muguira 2003], it
represents what is known as syntactic interoperability. However, syntactic interoperability is just one
existing type of interoperability. In this article’s context, the main challenge is how to provide semantic
interoperability of provenance databases. We assume that software components are the heterogeneous
sources (e.g., provenance databases managed by existing Database Management Systems (DBMSs))
that provide access to provenance data generated by WfMSs. As hinted in Section 1, the approach
proposed in this article is built on top of a Polystore system. Polystore systems can be seen as a new
type of data federation, i.e., a meta-database management system that provides a centralized and
transparent interface to underlying database engines [Gadepally et al. 2016].

Differently from their predecessors (Federated Systems) that support a single query language and
data model, Polystore systems support multiple query languages and data models. Polystore systems
aim at mitigating usability issues by providing users a wide array of storage solutions and query
languages. This new paradigm offers an alternative to the traditional “one size fits all” approach,
storing and processing fragments of the dataset in the engine that provides the best performance to
operation at hand (e.g., insertion, queries) [Gadepally et al. 2016]. BigDAWG2 [Gadepally et al. 2016]
is a pioneer Polystore system and is the engine responsible for the syntactic interoperability layer of
this article. BigDAWG’s architecture is presented in Fig. 2.

Fig. 2. BigDAWG’s architectural design

The middleware layer is responsible for orchestrating incoming user queries, plan its submission to
the underlying islands (by rewriting queries), and integrate intermediate responses. An island is the
definition of a data model and a query language that represents a data type. The shim operator is
responsible for translating the data model and query constructs defined by an island to the model
and constructs supported by the underlying DBMS. Furthermore, shims may navigate across different
islands, i.e., users may recover data using query constructs from different islands than the database
that belongs. Finally, the cast operator is responsible for migrating data between storage solutions.

As discussed by [Tolk and Muguira 2003], interoperability goes beyond the implementation itself.
The last layer of conceptual interoperability proposed by the authors is named “Harmonized data”,
where “applications can comprehend the data, both structurally and semantically”. In this article,
semantic interoperability is the difference between the data models that describe provenance data

2https://bigdawg.mit.edu
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captured and stored by WfMSs. It comes down to the database integration problem with a bottom-
up approach [Coulouris et al. 2005], i.e., seamlessly integrating several different databases into one.
The first step of the process proposed by [Coulouris et al. 2005] is to define conceptual schemas.
Local Schemas (LSs) are schemas that describe data from a specific database. Since we aim to integrate
several heterogeneous data sources into a single one, a Conceptual Global Schema (CGS) is required.
The second step is to define the integration strategy to allow data to flow between the schemas. It
can be either physically or logically [Jhingran et al. 2002].

The physical approach (Fig. 3(a)) materializes the results of the mapping using the CGS, which
speeds up querying. However, this approach has an availability problem, since it requires constant
extraction of data from underlying databases to keep data up to date. On the other hand, the logical
approach (Fig. 3(b)) transforms, at runtime, queries using entities and relations of CGS to constructs
of underlying databases. This approach does not have any availability issues since the original data is
being queried. However, speed may become an issue for two reasons: (i) the overhead added by the
translation operation; and (ii) queries may not be as optimal because there is a layer that is abstracted
from the end-user.

Fig. 3. (a) Physical approach to database integration. (b) Logical approach to database integration. Both figures
adapted from [Coulouris et al. 2005]

3. RELATED WORK

In this section, we report a Systematic Literature Mapping (SLM) conducted in August, 2018 and an
ad hoc complementary study to discuss works published between August, 2018 and May, 2020.

3.1 Systematic Literature Mapping

The goal of the SLM is to identify and discuss interoperability solutions for heterogeneous provenance
data, assessing them in a qualitative manner by the following perspectives: (i) Completeness: the
ability to capture p-prov, r-prov and evolutionary provenance, (ii) User Adaptability : how big is the
learning curve for new users and (iii) Extensibility : how hard it is to extend the proposed solution.
Thus, the contributions are twofold: (i) it provides an overview of the research area, identifying
the most used provenance models and query languages; (ii) each work is individually presented and
discussed, providing qualitative analysis of these solutions based on aforementioned metrics, guiding
future research efforts.

As discussed by [Pérez et al. 2018], there are numerous surveys regarding provenance and WfMSs
(e.g., [Simmhan et al. 2005; Davidson and Freire 2008; Bose and Frew 2005]). However, to the best
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of the authors’ knowledge, there are no secondary studies or surveys that tackle interoperability of
provenance data generated by WfMSs, thus justifying this study. This SLM is structured based on the
guidelines on established by [Budgen et al. 2008] and [Kitchenham 2004]. Sub-section 3.1.1 discusses
the planning of this SLM; Sub-section 3.1.2 presents the execution procedure; Sub-section 3.1.3 reports
the findings; showcasing and discussing related literature. Finally, Sub-Section 3.3.1 exposes threats
to this study’s validity.

3.1.1 Planning. During the planning process, we identified the goals and defined a protocol, fol-
lowing the guidelines defined in [Kitchenham 2004]. The protocol specifies the method to be used
in the SLM in order to reduce researcher bias [Steinmacher et al. 2013]. Moreover, a SLM must be
reproducible and the protocol is the document that empowers it. The main goal of this study is
the identification of the current state-of-the art in provenance data interoperability. As a secondary
goal, we aim at evaluating these solutions under three different aspects: completeness, usability and
extensibility, identifying possible improvements to those. In the context of this article, we follow the
definition of interoperability proposed by [Asuncion and van Sinderen 2011], that is “the ability of
different systems to use each other’s services effectively”. More specifically, we hereby define prove-
nance data interoperability as any effort that allows users to store and query heterogeneous provenance
traces of workflows, i.e. provenance data described by different formats and/or generated by different
WfMSs. Finally, we restrict the scope of this article to assess only papers that propose a solution that
supports interoperability to provenance data generated by WfMSs.

Regarding the Protocol definition, the first step is to define the Population, Intervention, Compar-
ison, Outcome and Context, according to the PICOC procedure [Kitchenham 2004]. This is done
to formalize the scope of the study as following: (i) Population: Heterogeneous provenance data,
(ii) Intervention: Support interoperability, (iii) Comparison: -, (iv) Outcome: Solutions (frameworks,
tools, models, architectures, etc), and (v) Context: Scientific experimentation.

Since terms used in the PICOC may have multiple synonyms, we have to define keywords and syn-
onyms (Table I) that will compose the search string. The second step is to define questions that the
SLM looks for answers to, namely: (MQ1) What is the current state of the art of heterogeneous prove-
nance data interoperability? (MQ2) What query languages are the most used in solutions that support
interoperability across heterogeneous provenance graphs? (MQ3) What models are the most used to
represent provenance data?, and (MQ4) What are the existing gaps that justify the improvement of
the current state of the art?

Table I. Keywords and synonyms derived from PICOC.
Keyword Synonyms Related to

Heterogeneous provenance data

Heterogeneous lineage data
Heterogeneous pedigree data
Heterogeneous provenance graphs
Heterogeneous tracking data
Provenance graphs

Population

Interoperability Interoperable
Interoperate Intervention

Scientific experimentation e-Science
Scientific Workflows Context

Collaborative experiments Collaborative research
Collaborative workflows Context

In order to evaluate the latter in a more objective fashion, three aspects of the solution are con-
sidered: completeness, usability and extensibility. To assess completeness, we analyze its ability to
capture p-prov, r-prov and evolution provenance. We also evaluate the querying interface, more specif-
ically, if it supports query languages that their prospective users are already familiar with. Finally,
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to assess extensibility, we take into account the used model - if it is already defined in the literature
or if it is a novel approach. All aforementioned aspects are evaluated using the following annotation:

(i) ≡ - The solution fully satisfies the assessed metric,

(ii) ' - The solution partly satisfies the assessed metric, and

(iii)� - The solution does not satisfy the assessed metric.

Due to the huge number of papers returned during the search process, we had to define a Filtering
Process to guarantee reproducibility of the SLM. The first filtering was performed by reading the
title of the paper. At this stage, only the papers in which the title clearly indicated that the paper
did not propose a solution towards supporting interoperability between multiple scientific workflow
(e.g. A scripting approach for integrating software packages and geoprocessing services into scientific
workflows) or that indicated that the paper was not a primary study (e.g. A systematic review of
provenance systems) were removed. Since a large volume of papers were evaluated in this first phase,
to minimize human bias and error, this process was revisited at two distinct occasions.

The second filtering was performed by assessing the title of the paper, its abstract and, when
available, its introduction and conclusion. Finally, the last filtering was performed by reading the
entire paper. To mitigate threats to this study regarding papers that share the same scope as this
SLM, but were either not in any of the knowledge bases used in this research, or not captured by
the search string, we conducted one iteration of backward and forward snowballing [Wohlin 2014].
We chose the following Knowledge Bases according to criteria proposed by [Costa and Murta 2013]:
(i) They are capable of using logical expressions or a similar mechanism; (ii) They allow full-length
searches or searches only in specific fields of the works; (iii) They are available in the researcher’s
institution; and (iv) They cover the research area of interest in this mapping: computer science.

This way, the search was done using the following knowledge bases: (i) ACM Digital Library3,
(ii) El Compendex4, (iii) IEEE Digital Library5, (iv) Scopus6, and (v) Springer Link7. Even though
Springer does not provide a refined search (e.g., search indexed metadata terms) as other knowledge
bases, it is important to the present context since many papers in the area, e.g., [Oliveira et al. 2016;
Prabhune et al. 2016; Prabhune et al. 2018b], are only available in this knowledge base.

To create the Search String, we used the terms defined in PICOC. In a iterative fashion, the knowl-
edge bases were queried and some papers were read, enriching the Keywords and synonyms (Table I).
This process culminated in the following search string, validated by co-authors and researchers in this
domain: ("Collaborative experiments" OR "Collaborative research" OR "Collaborative workflows" OR
"Heterogeneous provenance data" OR "heterogeneous lineage data" OR "heterogeneous pedigree data"
OR "heterogeneous provenance graphs" OR "heterogeneous tracking data" OR "provenance graphs"
OR "scientific workflow" OR "e-science") AND ("interoperability" OR "interoperable" OR "interop-
erate")

The decision on whether or not to discard a paper is based on the following Inclusion Criteria (IC)
and Exclusion Criteria (EC): (IC1) The work proposes an interoperability solution on storing and
querying heterogeneous provenance metadata; (EC1) Deprecated, i.e. a more recent follow-up study
was found; (EC2) Duplicated, i.e. the work was already recovered in another knowledge base; (EC3)
The paper does not have an abstract; (EC4) The paper is not a primary study; (EC5) The paper
is not available to download using the university’s credentials; (EC6) The study was published as a
short paper; (EC7) The study is not written in English; (EC8) The study was not published in a

3http://portal.acm.org
4http://www.engineeringvillage.com
5http://ieeexplore.ieee.org
6http://www.scopus.com
7http://link.springer.com
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conference or journal related to Computer Science; (EC9) The study was not published in a peer-
review vehicle; (EC10) The study was published before 2008; (EC11) The study does not propose
a solution that supports interoperability across heterogeneous provenance datasets; and (EC12) The
proposed solution is not able to capture generic provenance metadata - i.e. it was designed for a
domain-specific solution.

Exclusion criteria from 1 through 9 are self-explanatory and exist to guarantee the quality of the
papers assessed in this SLM. EC10 was included because 2008 is when the first standard provenance
recommendation (OPM [Moreau et al. 2008]) was published. EC11 and EC12 were taken into account
to filter papers that did not attend this SLM scope but were returned by the knowledge bases’ query
engines. It is worth mentioning that some of these criteria (EC7, EC8, EC10) were applied during
the search process in the knowledge bases.

3.1.2 Execution. We executed the search string in the knowledge bases previously presented. The
results (available as BibTeX entries at https://bit.ly/37ROdvv) gathered from all knowledge bases
were organized in Parsifal8. Table II synthesizes the results of each filtering strategy based on ICs and
ECs previously discussed. We then conducted one iteration of backward and forward snowballing on
this set of papers, following the guidelines established by [Wohlin 2014], applying the same inclusion
and exclusion criteria defined before.

Table II. SLM filtering processes and the results of each step.

Knowledge
Base

# papers
returned

After duplicates
removal

After reading
title

After reading
abstract, introduction

and conclusion

After reading
full paper

ACM 95 75 8 0 0
Compendex 144 82 31 5 4
IEEE 81 48 12 5 3
Scopus 168 108 26 2 1
Springer 747 727 58 7 3
Total 1235 1040 135 19 11

3.1.3 Results. In this Subsection, we briefly discuss the proposed solutions and assess them under
the qualitative attributes defined in Subsection 3.1.1. Finally, we compare the works and synthesize
their evaluation regarding this SLM’s questions.

[Ellqvist et al. 2009] propose a mediator-based architecture that is able to interoperate provenance
data derived from different data sources. The architecture has two main components: a global schema
that is general and able to represent provenance information expressed by other models and a system-
independent query API that is able to retrieve answers from distinct data sources. The authors propose
a data model, the Scientific Workflow Provenance Data Model (SWPDM), to represent their global
schema, since the reference provenance data model available at the time (OPM [Moreau et al. 2008])
is unable to capture p-prov. However, it is unable to capture evolution provenance. The querying
layer is implemented as independent APIs for each implemented wrapper. To evaluate their proposal,
the authors conducted a case study with three different WfMSs, creating wrappers that transform
data generated by them to SWDPM, querying the integrated knowledge base in a illustrative fashion.

[Chebotko et al. 2010] propose an integration approach that takes advantage of provenance models
described by ontologies. They designed a storing solution, RDFProv, that transparently works as
an RDF store, even though they use a relational storage. The authors used domain-specific con-
straints,e.g., low frequency on update and deletion operations, to boost performance. The proposed

8http://parsif.al
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architecture is organized in three layers: firstly, the provenance model layer is responsible for manag-
ing provenance ontologies and execute inferences rules on the knowledge-base to generate new triples,
enriching the dataset. The mapping layer provides three functionalities: (i) Schema Mapping: re-
sponsible for generating a relational schema based on the ontology; (ii) Data Mapping: responsible
for mapping RDF triples to relational tuples and (iii) Query Mapping: responsible for translating
SPARQL queries to SQL. Finally, the relational model layer is responsible for storing the data in
a relational fashion. It requires domain-specialists to interoperate datasets represented in different
models. Moreover, the solution is restricted to models that have an ontology representation, which
several WfMSs do not. RDFProv is model-dependent, hence, the ability to capture evolution, p-prov
and r-prov provenance cannot be assessed in a general manner. Users are restricted to SPARQL
queries when using RDFProv.

[Missier et al. 2010], along with integrating heterogeneous provenance data, also propose a solution to
keep the provenance trace alive between workflows executions, i.e., identify that a resource generated
by a given workflow execution is the same as consumed by another. For the integration solution, the
authors propose an extension of OPM [Moreau et al. 2008], since it is unable to capture p-prov in
its original form, as discussed previously. The proposed model, however, lacks support to evolution
provenance. As a proof of concept, the authors implement mapping algorithms that transforms
provenance data from two different WfMSs, namely Taverna and Kepler, into the proposed model.
[Missier et al. 2010] use a relational format to store data and the solution only supports SQL constructs.
However, it can be a challenge to users of WfMSs that do not support this querying format. For the
tracing problem, the authors define the copy(r, S, S′) operation where: r is a reference to the resource
(e.g. an URI); S is the origin storage (i.e. where r is being copied from); and S′ is the destination
storage (i.e. where r is being copied to), thus guaranteeing the provenance trace connectivity between
workflows.

[Anand et al. 2010] propose a tool that supports users in the access and exploration of provenance
metadata by providing a browsing and querying interface. To achieve that, they use a novel provenance
model that is able to express provenance traces, however, it is unable to describe p-prov and capture
the workflow’s evolution. They show that the model has a correspondence to the OPM and that the
proposed architecture can accommodate the latter. Finally, they introduce the Query Language for
Provenance (QLP), a query language based on path expressions, having a similar syntax to graph-based
languages. Even though in their implementation the authors use a relational database, conceptually,
the proposed architecture can support different storage solutions by interfacing them to the proposed
query language, namely, QLP.

In [Altintas et al. 2010], an extension of the QLP [Anand et al. 2009] is proposed to capture implicit
user collaborations, i.e., relations between agents that, directly or indirectly, influenced a data product
generation. Moreover, the authors also establish a mapping between QLP and OPM [Moreau et al.
2008], enabling their solution to be utilized on any data described by the latter. The proposed
architecture consists of heterogeneous data stores (e.g., Relational Database Management Systems
(RDBMS), XML and RDF files), a query engine that is responsible for translating QLP queries to
the respective storage query language and a query interface that works as the user’s endpoint. From
a usability stand point, this is an advancement when compared to the previous analyzed works, since
the solution exempts the user’s need to understand the storage solution, providing a single query
interface that is able retrieve information stored in different formats.

In [Lim et al. 2011], the authors formally define a relational OPM-compliant [Moreau et al. 2008]
model, named OPMProv. To evaluate it, the authors use the relational model to answer a set of
queries defined in the Third Provenance Challenge (PC3) [thi 2009], an effort to promote studies
regarding WfMSs interoperability. [Gaspar et al. 2011] propose a generic architecture that can be
coupled to WfMSs and is responsible for collecting and managing provenance information generated
by the workflow execution. The authors use OPM as a canonical model to represent data and a
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relational storage solution to persist it. To foster the semantic approach of the proposal, the authors
also provide an SPARQL querying interface through the representation of the provenance graph in
RDF format associated with the OPM ontology, enabling the usage of reasoners to make inferences in
these knowledge bases. To illustrate their proposal, the authors conduct some case studies to evaluate
their architecture suitability to collect and manage provenance metadata.

[Ding et al. 2011] assessed shortcomings of solutions proposed at the PC3, eliciting requirements
and developing a solution with web-semantic components. It extends the OPM ontology specification
and, given a OPM-compliant RDF provenance trace, users can query the knowledge base via SPARQL
constructs. The proposed data model lacks p-prov and evolution provenance support. Moreover, their
architecture only supports RDF stores and users are restricted to SPARQL constructs. Regarding
extensibility, a mapping between the proposed model or OPM ontology is required to support data
described by different formats.

In [Cuevas-Vicenttin et al. 2012], the authors propose an extension of the OPM [Moreau et al. 2008],
namely D-OPM, that is able to capture p-prov, r-prov and evolution provenance. To evaluate their
model, the authors implement it in a RDBMS and provide a querying mechanism based on Regular
Path Queries (RPQ): graph paths expressed as regular expressions, to ease querying since provenance
trace resembles graphs. Finally, they conduct a performance evaluation of their architecture utilizing
a generic graph testbed dataset. Since their proposal provide a standard canonical data representation
and storage solution, to integrate data derived from different WfMSs, all one must do is create wrappers
to transform the data and store it.

[Oliveira et al. 2016] propose an integration architecture that has two layers: the first (namely,
Cartridges - a wrapper abstraction -) is responsible for transforming WfMSs’ traces into Prolog facts
described by the ProvONE model; the second, a shared knowledge base where the facts are stored
and can be accessed via Prolog queries. The authors evaluate their approach using real workflow
traces generated by two research groups that share the same research domain. From a extensibility
standpoint, since all data is represented by the ProvONEmodel and integrated in the shared knowledge
base layer, all one must do is implement a new Cartridge to support a new WfMS. On the other hand,
to access the knowledge base, users must write Prolog queries (a query language that is not supported
by most WfMSs), which may hamper the usability of the approach.

[Jabal and Bertino 2016] propose a data model focused on access control over provenance data that
is unable to capture both p-prov and evolution provenance. Moreover, they also implement algorithms
that map data described in their model to OPM [Moreau et al. 2008] and PROV [pro 2013]. The
solution supports RDBMS and a graph store (Neo4j9) as storage solutions for their framework.

Differently from [Jabal and Bertino 2016], [Prabhune et al. 2018] proposes a more generic framework
that aims to support any kind of metadata, not only provenance. They accomplish that by providing
support to multiple data models and tools to handle metadata from different domains. As for prove-
nance metadata, they support two models, namely ProvONE a PREMIS [Li and Sugimoto 2014],
storing data in a RDF solution (Apache Jena TDB 10). Along with providing a SPARQL endpoint,
the authors also implement an API with various query patterns already implemented that retrieve
useful provenance information.

[Prabhune et al. 2018b] propose a framework that aids researchers in analyzing heterogeneous
provenance metadata. To accomplish that, they use a similar approach to [Prabhune et al. 2018]
to handle provenance: a RDF storage solution where data is represented by the ProvONE model. In
this work, they implement three mapping algorithms that transforms data described by other formats
into ProvONE-compliant data. To evaluate their framework, the authors illustrate its functionality
by interoperating data generated by different WfMSs.

9https://neo4j.com/
10https://jena.apache.org/documentation/tdb
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3.2 Ad-Hoc Complementary Literature Review

Since some time has elapsed since the SLM execution and elaborating this article, we need to com-
plement it with published works since then. Since the SLM process is time-consuming, we have opted
to cover works published in the last 1.5 years with an ad-hoc search. We used Google Scholar as the
search engine and issued the following query: “Heterogeneous provenance data Interoperability”. From
the results, we filtered the papers based on their titles and abstracts. We present the results following.

[Parciak et al. 2019] consider different research groups, in the medical domain, sharing research
topics that have difficulty assessing concluding results created by heterogeneous software. The authors
propose an implementation roadmap of a system that captures provenance, using the PROV data
model, so these heterogeneous processes are comparable. [Souza et al. 2019] propose a distributed
system that can capture heterogeneous workflows provenance data at runtime with small overhead.
Even though the authors do not propose a solution that integrates heterogeneous provenance data,
they still propose a workflow-agnostic solution that could be plugged into any WfMS. They use PROV
as their lingua franca to capture provenance from the external workflows. [Khan et al. 2019] collect
a comprehensive summary of recommendations by the community regarding workflow design and
resource sharing and leverage that knowledge to define a hierarchical provenance framework. The
goal is to achieve homogeneity in the granularity of the information shared, with each level addressing
specific provenance recommendations. Based on that, they also define a standardized format, namely
CWLProv.

3.3 Discussion

All the papers evaluated in this SLM propose either a storage solution and/or an architecture that
supports interoperability of heterogeneous provenance graphs. A timeline of the publications is pre-
sented in Figure 4. Figure 5 illustrates vehicle types in which the papers have been published and
Figure 6 shows the number of citations of each paper. Following we discuss each of the questions.

(MQ1) What is the current state of the art of heterogeneous provenance data interoperability?

Many solutions were assessed in this SLM. Some aim to be WfMS-agnostic and others that impose a
less harsh learning curve on prospect users, using storage solutions, data models, and query languages
that they are already familiar with. However, none of those fully satisfies all these criteria. All the
evaluations of the solutions are synthesized in Table III. The rows are shortened due to space restric-
tions and are described following: (i) p-prov: The solution is able to capture prospective provenance;
(ii) r-prov: The solution is able to capture retrospective provenance; (iii) Evolution: The solution is
able to capture evolution provenance; (iv) Query: The solution supports a query language that users
are already familiar with. A full score is given if the authors propose at least SPARQL and SQL
constructs. In case they support only one of those or propose another querying solution that aims
to attenuate the users’ learning curve, a half score is given; and (v) Model: The solution uses a data
model already defined in the literature. In case it extends one, a half score is given.

(MQ2) What query languages are the most used in solutions that support interoperability across
heterogeneous provenance graphs?

This mapping question aim to assess the most used query languages in this context, guiding future
research efforts. The results are synthesized in Table IV. There is a clear preference for SQL and
SPARQL (query languages that most WfMSs natively support). Besides those who propose their own
querying infrastructure [Ellqvist et al. 2009; Altintas et al. 2010; Anand et al. 2010; Cuevas-Vicenttin
et al. 2012]. [Oliveira et al. 2016] use Prolog constructs to query the data and [Jabal and Bertino
2016] use Cypher, Neo4j’s query language. Given the natural representation of provenance metadata
as a graph, the latter may be a viable alternative solution to the more traditional relational and RDF
stores.
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Fig. 4. Timeline of publications. Edges connecting two papers represent a citation. Works in red are the product of
snowballing; the ones in blue were were found in the knowledge bases and the yellow ones were derived from the ad-hoc
complimentary search.

Fig. 5. Vehicle type in which the papers were pub-
lished.

Fig. 6. Number of citations each paper has on July,
2020.

(MQ3) What models are the most used to represent provenance data?

This mapping question aims to assess the most used models in this context, guiding future research
efforts. The results are synthesized in Table V. The ' sign indicates an extension of the model. Even
though OPM and PROV are the more frequent used models, more recent works use the ProvONE
data model, since it was specifically designed to attend WfMSs demands. It is worth mentioning that
[Chebotko et al. 2010] propose a storage solution that is not constrained by any model and, therefore,
its column in Table V is empty.

(MQ4) What are the existing gaps that justify the improvement of the current state of the art?
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Table III. Comparative table that synthesizes all aspects assessed in this SLM.
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p-prov. ≡ ' ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡
r-prov. ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡
Evolution ' ≡ ≡ ≡ ≡
Query ' ' ' ' ' ' ≡ ' ' ' ' ' '
Model ' ≡ ≡ ≡ ' ' ≡ ≡ ≡ ≡ ≡ ≡

Table IV. Query languages supported by each solution.
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SPARQL ≡ ≡ ≡ ≡ ≡ ≡
SQL ≡ ≡ ≡ ≡
API ≡ ≡ ≡
QLP ≡ ≡
RPQ ≡
Prolog ≡
Cypher ≡ ≡

Table V. Provenance model used by each solution.
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None of the proposed approaches fully satisfy the criteria analyzed in this SLM. Even though all
of those support interoperability across heterogeneous provenance metadata, very few of those regard
for usability. The recent work of [Souza et al. 2019] leverages a Polystore approach, using multiple
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storage solutions and query languages through a single interface, granting a wider array of options to
users, however they opted for the PROV data model, constraining the solution to r-prov queries.

3.3.1 Threats to Validity. Many papers excluded in the filtering process proposed a solution to
support interoperability between WfMSs executions since the scope of this SLM is defined to be a
subset of this area, i.e. interoperability between provenance data generated by any WfMSs. Since
there is a strong intersection between these two research topics, there is the chance of existing a WfMSs
interoperability solution that can also support interoperability to the provenance data generated. The
inability to identify these solutions is the first threat to this work. Moreover, some papers were not
available using the university’s credentials in the knowledge bases. The authors of those papers were
contacted, but not all of them answered, so some papers were left unchecked. Even though other
researchers evaluated the search string and keywords table, they may not contemplate all the works
in the area. Finally, only one researcher conducted the filtering process. The bias would have been
reduced if this process was done by a group, being the final identified threat.

4. POLYFLOW: INTEGRATING HETEROGENEOUS PROVENANCE GRAPHS

Polyflow’s approach was developed to integrate heterogeneous databases that represent heterogeneous
provenance graphs of workflow executions. In this section, we present an extension of the formalism
initially presented in Section 2, the data mapping process and the proposed architecture of Polyflow.

4.1 Formalism

Polyflow enables the user to submit integrated queries across multiple provenance graphs. Thus, in
the context of this article, it is important to formalize the concept of Provenance Database. A prove-
nance database = can be defined as a set of θ provenance graphs Gp, where = = {Gp1, Gp2, . . . , Gpθ}.
For each Gpθ ∈ =, Polyflow must be able to perform queries over these graphs. Thus, a query
based on parameters’ values over multiple provenance graphs can be defined as QM (S,=) ⇔ {Gpθ ∈
=|∃pm ∈ Gpθ ∧ λ(?, ζm(Gpθ.pm), vm) ∧ (pm, vm) ∈ S}, where:

(i) QM is a set of pairs S = {(p1, v1), (p2, v2), . . . , (pm, vm)}, where pm is the queried parameter
and vm is the reference value; and

(ii) λ is the function that compares the value vm of a parameter pm to its value on the graph Gpθ
through ζm(Gpθ.pm), using any relational algebra operator ? (e.g., σ, Π, ./, etc.).

Consider two provenance graphs Gp1, Gp2 ∈ = that present semantically equivalent parameters pm
and p′m (pm ≡ p′m), but with different names. Thus, given a set Pα = {p1, p2, . . . , pµ} ∈ Gp1 and
Pβ = {p1, p2, . . . , pν} ∈ Gp2 and a transformation language Υ, we should be able to find a mapping
υ ∈ Υ where each pµ ∈ Pα and pν ∈ Pβ , τ(pµ) = pν . Hence, in heterogeneous provenance databases,
the most complex task is implementing queries for parameters’ values QM (Γ,=) (where Γ = Sα ∪ Sβ ,
Sα = {(p1, v1), (p2, v2), . . . , (pµ, vµ)} e Sβ = {(p1, v1), (p2, v2), . . . , (pν , vν)}), considering the mapping
τ between parameters of workflow traces represented in different graphs.

4.2 Mapping Local Schemas to ProvONE

As aforementioned in Section 4.1, a challenge to provide integrated provenance analysis is to define
the mapping τ between the parameters in workflow traces represented in heterogeneous graphs. The
mapping between Global and source schemas can be classified as Global As View (GAV), Local As
View (LAV), and Global and Local As View (GLAV). In LAV, sources are defined according to the
global schema, i.e., given the global schema, the sources are modeled based on it. On the other hand,
in GAV approaches, the global schema is defined in terms of the source, representing many data
sources. Finally, GLAV is a generalization of the two.
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This article proposes a GAV approach to query heterogeneous provenance graphs in an integrated
manner. The adopted strategy is based on mediation [Özsu and Valduriez 2011], which is the recon-
ciliation made to enable the translation of the data described by local schemas to a global schema.
Polyflow adopts the ProvONE model as a global (canonical) model. Thus, the strategy adopted in
this article is to map schemas from different sources to the ProvONE model. It is worth noticing that
the proposed mapping represents equivalences between entities of the global schema (ProvONE) and
the local schemas (one for each SWfMS).

Such mappings are used by the components of Polyflow (Query Resolvers and Entity Mappers,
explained in Section 4.3) to execute the queries, whether in a single or multiple provenance graphs.
In Polyflow there are two types of possible mappings: (i) 1−1: where two entities present equivalent
granularity; (ii) 1 − N , where N ≥ 2: when the entity of the Global Schema is associated with the
composition of several entities of the Local Schema, i.e., the granularity level is different. An entity
that is represented by a join between two tables in a RDBMS would be an example of a 1−2 relation.
Polyflow supports other integration operations such as Union for the relational island.

Note that N-1 and N-M multiple (i.e., N) 1 − 1 and 1 −M mappings, respectively. At this time,
just supports equivalence relations, but we want to expand this capability in future work. Figure
7(a) shows a fragment of the Local Schema of Swift/T [Wozniak et al. 2013] provenance database
and its mapping to ProvONE. The dashed arrows show the mappings between the two schemas.
Since the granularity between the models is different, only ProvONE entities involved in the mapping
were represented. Mappings are represented by JSON objects (i.e., Entity Mappers, explained in
the following subsection). Figure 7(b) shows the Mapper of the APP_EXEC entity (Swift/T) to
ProvONE’s Execution.

Fig. 7. (a) Mapping Swift/T schema to ProvONE; (b) Mapper of the APP_EXEC entity to Execution entity.

4.3 Architecture Overview

Polyflow was designed to support provenance interoperability, based on the concept of Polystore
systems that provide logical data interoperability. In this way, Polyflow’s architecture follows the
recommendations of Polystore architectures. In a Polystore approach, the various storage mechanisms
are distinct and accessed in an isolated way using their own query mechanisms and a common interface.
An overview of the architecture is presented in Figure 8. The Polyflow architecture is composed of
four layers: (i) Query Interface, (ii) Data Source, (iii) Mediation Layer and (iv) Query Processing
Layer. The source code of the Polyflow and all the mappings performed in the experiments presented
in this article are available at https://github.com/UFFeScience/Polyflow.

The Data Source layer represents the data sources that contain the multiple provenance databases
=1,=2, . . . ,=f , each of which is represented in different formats. All provenance data is collected by
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WfMS during (or after) a wokflow execution (step [1] in Figure 8) and the stored in a provenance
database (step [2] in Figure 8). Each provenance database is related to a island of the Polystore model
(e.g., relational, JSON, XML). Polyflow currently supports PostgreSQL, MySQL, and BigDAWG
data sources. This way, a data source is a PSQL/MySQL URL or a BigDAWG endpoint. In a more
general manner, it is a Unique Resource Identifier (URI) to resources across the web (e.g., databases,
files) that are mediated by Polyflow.

The Mediation layer is the core of Polyflow. In this layer, all mappings between the multiple
islands are defined. The Mediation layer has three main components: (i) Global Schema, (ii) Local
Schema and (iii) Entity Mappers. Local Schemas are data models associated with each provenance
database in the data source layer. The Global Schema is the canonical model used to perform queries
in the Polyflow. Although the architecture allows the usage of multiple Global Schemas, at the
moment we only consider ProvONE. Finally, Entity Mappers are software modules that exploits
encoded knowledge about certain sets or subsets of data to create information for a higher layer of
applications [Wiederhold 1992]. Entity Mappers perform mappings between the Local Schema and
the Global Schema. Note that the Entity Mappers have to be implemented by users who are aware of
the data models. Entity Mappers are consumed by Query Resolvers (explained next) when processing
provenance queries. It is important to emphasize that implementing Entity Mappers may be an
arduous task. All Entity Mappers are persisted in JSON format in Polyflow’s internal catalog. The
JSON format was chosen for its ability to fully express mappings with the structure we designed.
On top of that, it’s a popular and simple data format, mitigating the learning curve that other more
complex formats (e.g., RDF) could impose.

The Query Processing layer is responsible for receiving a query from the user and, based on the
Entity Mappers, perform a query expansion (step [5] in Figure 8). The main component of this layer
is the Query Resolver which is responsible for expanding queries based on a Global Schema (i.e.,
ProvONE) into valid queries in the Local Schemas (steps [6] and [7] in Figure 8). The Query Resolver
works similarly to the shim operator of the PolyStore architecture. Since Polyflow only supports
equivalences between entities of the models, the Query Resolver accesses all mappings defined in a
JSON format, and expands the ProvONE-based query by replacing ProvOne entities by the entity (or
entities) of the underlying provenance schema using the Entity Mappers.

Polyflow is also capable of resolving aggregations between pairs of entities of the Local Schema
recursively, i.e., a Entity Mapper can be composed of pairs of Entity Mappers. In its current version,
Polyflow supports Query Resolvers for PostgreSQL, MySQL, and BigDAWG. Since Polyflow aims
to be technology-agnostic, different data sources can be added by implementing new interfaces and
Query Resolvers. Due to space restrictions, refer to the project’s GitHub repository for more details.

The Query Interface is the area where the user (or groups of users) submits queries using the
provided Polyflow endpoint (step [4] in Figure 8). It is important to highlight that the queries
submitted to the interface follow the Polyflow standard. The queries are SQL-like and must follow the
syntax mediator-name[entity-to-be-mediated]. All valid SQL constructs are supported by Polyflow.
Queries are expanded at runtime by replacing mediators referenced in the query with a subquery
using the elements present in the associated Entity Mapper (explained following). For example, let
us assume that a given user needs to query all the executions of workflows that were performed
in Swift/T WfMS. When querying for all Executions (provone_execution), Polyflow performs the
following query expansion (step [5] in Figure 8):

1 SELECT * FROM swift[provone_execution ];
2 <=>
3 SELECT * FROM (
4 SELECT app_exec_id AS execution_id ,
5 start_time AS prov_startedAtTime ,
6 script_run_id AS provone_hadPlan , duration
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7 FROM app_exec
8 ) AS table_0;

Fig. 8. Polyflow architecture.

4.4 Polyflow In Action

In this subsection we briefly expand formalism described in this section into usage scenarios to illustrate
the proposed approach more clearly. Polyflow is implemented in Node.js due to its capability of
dealing with I/O and HTTP requests asynchronously. This feature enables a looser coupling between
Polyflow and the underlying data sources (i.e., provenance databases), making it possible to return
partial results as queries finish processing. We have implemented a distributed-compliant software by
providing a network interface as its only entry-point. This layer was implemented using GraphQL, an
open-source interface that works on top of TCP/UDP. The main feature that compelled us to make
this choice is its self-documenting capabilities, making consumption and discoverability of endpoints
easier.

Polyflow has an internal catalog powered by a RDBMS where Data Sources, Mediators and Entity
Mappers are stored. Its schema is illustrated in Fig 9. All transactions are negotiated with Polyflow
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through the GraphQL API - one can refer to our Github repository11 for the exact signatures of the
proposed APIs).

Fig. 9. Polyflow relational schema

Assuming an established connection with the Swift/T Data Source and existence of a Mediator,
also named Swift, Fig. 10(a) illustrates how the Entity Mapper would look like for the Execution
ProvONE entity. When querying for all Executions, users submit the query to a GraphQL endpoint,
illustrated in Fig 11 (step 4 in Fig. 8). Fig. 10(b) illustrates the query expansion performed by
Polyflow (step 5 in Fig. 8).

Fig 10 showcases a 1-1 relationship, i.e., the Execution entity’s projection on the Data Source
accesses just one entity (app_exec). Polyflow also supports 1-N mappings, where an Entity Mapper is
recursively composed by relations in the Data Source. Fig. 13(a) illustrates an example of ProvONE’s
Program Entity Mapper for Kepler’s Data Source. This example showcases a 1 − 2 relationship, i.e.
an entity in the global schema is composed by 2 entities in the local schema. Note that this implies
one level of recursion for this example, but Polyflow supports as many as needed (i.e. 1−N). Fig.
13(b) showcases how Polyflow expands a query over all Kepler’s Programs.

5. EVALUATION AND RESULTS

In this section we evaluate Polyflow in two different ways: (i) we assess the technical implemen-
tation in two dimensions: (a) Completeness (i.e., Polyflow can query all provenance graphs across

11https://github.com/yanmendes/polyflow

{
"name" : "app_exec " ,
"columns" : [

{
" a l i a s " : " execut ion_id " ,
" p r o j e c t i o n " : "app_exec_id"

} ,
{

" a l i a s " : "prov_startedAtTime " ,
" p r o j e c t i o n " : " start_time "

} ,
{

" a l i a s " : "provone_hadPlan " ,
" p r o j e c t i o n " : " scr ipt_run_id "

} ,
{ " p r o j e c t i o n " : " durat ion " }

]
}

SELECT
*

FROM swift[provone_execution]

<=>

SELECT * FROM (
SELECT

app_exec_id AS execution_id ,
start_time AS prov_startedAtTime ,
script_run_id AS provone_hadPlan ,
duration

FROM app_exec
) AS table_0

Fig. 10. (a) Entity Mapper for the Execution ProvONE entity in Swift/T’s database; (b) Expansion for the query over
all ProvONE Executions in Swift/T’s database.
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Fig. 11. Querying the Execution ProvONE entity in Swift/T’s database.

{
" en t i t y1 " : {

"name" : " ac tor " ,
" a l i a s " : "a " ,
"columns" : [ {

" a l i a s " : "program_id " ,
" p r o j e c t i o n " : "a . id "

} ]
} ,
" en t i t y2 " : {

"name" : " en t i t y " ,
" a l i a s " : "e " ,
"columns" : [ {

" a l i a s " : " l a b e l " ,
" p r o j e c t i o n " : "e . name"

} ]
} ,
"columns" : [

{
" a l i a s " : "program_id " ,
" p r o j e c t i o n " : "a . id "

} ,
{

" a l i a s " : " l a b e l " ,
" p r o j e c t i o n " : "e . name"

}
] ,
" type" : "INNER" ,
"params" : [ " a . id " , "e . id " ]

}

SELECT
*

FROM kepler[provone_program]

<=>

SELECT * FROM (
SELECT

a.id AS program_id ,
e.NAME AS label

FROM actor AS a
INNER JOIN entity AS e

ON a.id = e.id
) AS table_0

Fig. 12. (a) Entity Mapper for the Program ProvONE entity in Kepler’s database; (b) Expansion for the query over all
ProvONE Programs in Kepler’s database.
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SELECT
*

FROM kepler[provone_program] AS p
JOIN swift[provone_execution] AS e

ON e.provone_hadPlan = p.program_id

<=>

SELECT * FROM ((
SELECT

a.id AS program_id ,
e.NAME AS label

FROM actor AS a
INNER JOIN entity AS e

ON a.id = e.id AS p
)
JOIN (

SELECT
app_exec_id AS execution_id ,
start_time AS prov_startedAtTime ,
script_run_id AS provone_hadPlan ,
duration

FROM app_exec
) AS e
ON p.program_id = e.provone_hadPlan

)

Fig. 13. (a) Entity Mapper for the Program ProvONE entity in Kepler’s database; (b) Expansion for the query over all
ProvONE Programs in Kepler’s database.

distributed databases); (b) Efficiency (i.e., Polyflow adds an acceptable overhead to query the prove-
nance databases); (ii) conduct a pilot experiment with an expert researcher, which uses computational
models empowered by workflows, to evaluate and grant reproducibility to her findings.

5.1 Evaluation Context

In the experimental evaluation, we used the Rede Avançada em Biologia Computacional (Rabicó)12,
a Brazilian network whose primary goal is to develop the computational apparatus to support data
analysis of biological models. The network has members of multiple institutions and universities such
as LNCC, COPPE/UFRJ and UFRGS. In this project, two or more geographically distributed teams
may work on similar research topics such as phylogenetic analysis [Ocaña et al. 2011]. Each team
adopts slightly different approaches, resulting in different workflows that can be potentially managed
by different WfMSs. However, they maintain common goals and, therefore, their results should be
comparable.

In order to evaluate Polyflow, we have chosen the phylogenetic analysis experiment. A phylogenetic
analysis experiment receives as input a dataset composed of DNA, RNA, and protein sequences to
generate a phylogenetic tree that represents the evolutionary relationship between the organisms. It
has seven well-defined steps (Figure 14): (i) Import Datasets: data is collected from different biological
repositories, such as RefSeq13; (ii) Enumerate Sequences: The obtained sequences are identified and
enumerated (it is an optional step); (iii) Multiple Sequence Alignment : sequences are aligned (by
programs such as MAFFT, Kalign, ClustalW, Muscle or ProbCons), i.e., identify similar regions that
may be consequence of functional, structural or evolutionary relations; (iv) Sequence Conversion: the
aligned sequences are converted to the PHYLIP format; (v): Elect Evolutionary Model : the best
evolutionary model for the aligned sequences is elected (this is the most compute-intensive step of the
experiment); (vi): Filter Sequences: sequences can be filtered or trimmed to reduce the complexity of
the generated phylogenetic tree (it is an optional step); and (vii): Phylogenetic Tree Generation: the
phylogenetic tree is finally generated, representing evolutionary relations between the organisms.

Although the Phylogenetic Analysis experiment can be implemented in many ways, in this article,
we consider two implementations named SciPhy [Ocaña et al. 2011] and SwiftPhylo [Mondelli et al.
2018]. Both workflows are variations of the same experiment in which results must be analyzed
jointly. SwiftPhylo implements all activities, except for Import Datasets because it assumes that

12https://www.labinfo.lncc.br/rabico/
13https://www.ncbi.nlm.nih.gov/refseq/
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Fig. 14. Specification of the phylogenetic analysis experiment (represented using Apache Taverna notation)

data is already available for processing. On the other hand, SciPhy does not implement any optional
activity, i.e., it has five steps. Moreover, SwiftPhylo uses MAFFT as the alignment program while
SciPhy executes all aforementioned sequence alignment programs and chooses the one that produces
results with the best quality. Finally, SciPhy was implemented in Kepler WfMS while SwiftPhylo in
Swift/T WfMS.

5.2 Feasibility Study

Considering the case study provided in the previous subsection, we assume that the expected outcome
of a feasibility study would be to allow researchers to query integrated provenance data generated by
SciPhy and SwiftPhylo workflows. We use ProvONE as Global Schema because (i) it is able to capture
p-prov, r-prov and evolution provenance; (ii) it is an extension of Prov-DM W3C standard for r-prov
representation; and (iii) it is becoming a de facto standard for representing workflow provenance, as
we show in the next section. In the work of [Oliveira et al. 2016], the authors use a Venn Diagram
to showcase every possible querying scenario using two provenance graphs. Their work inspires this
evaluation, and, due to space limitations, we limit ourselves to three queries: (Q1) p-prov using one
provenance graph; (Q2) r-prov using one provenance graph; and (Q3) p-prov across two provenance
graphs. A working example with other queries can be obtained in the Projects Github repository14.
The aforementioned queries can be implemented as:

—Q1 - List all SciPhy ports (connection between programs and their input/output parameters)

bdrel(select * from kepler[provone_port])

14https://github.com/UFFeScience/Polyflow/tree/master/examples/BigDAWG
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Table VI. Tuple count at every touch point through the architecture.
Query C4 C3 C2 C1
Q1 0 11 11 11
Q2 3000 0 3000 3000
Q3 2 11 22 22

—Q2 - Retrieve all activity executions with their generated data for SwiftPhylo provenance graph

bdrel(select * from swift[provone_execution] as e
join swift[prov_wasGeneratedBy] as wgb
on e.execution_id = wgb.execution_id)

—Q3 - Check if the all ports in SciPhy workflow have an equivalent on in SwiftPhylo workflow

bdrel(select * from kepler[provone_port] left join
(select * from swift[provone_program]) as programs on 1=1)

In terms of Completeness, we first assessed that the returned tuples were equivalent for each query
in every configuration: (C1) using Polyflow, (C2) using only BigDAWG, (C3) using only Kepler
provenance database in the underlying DBMS and (C4) using only Swift/T provenance database in
the underlying DBMS. The results are synthesized in Table VI, where the number of returned tuples
for each query and configuration are presented. Moreover, we have showcased the ability to perform
the queries described in the work of [Oliveira et al. 2016].

As explained in Section 4, when a query is submitted, Polyflow retrieves the Entity Mappers
and performs a query expansion using entities and relationships from the Local Schema. These
operations (e.g., Entity Mapper fetch and query expansion) add an overhead. To evaluate the added
overhead, we calculate the total request time and the query execution time in the underlying DBMS.
All implementation is containerized and connected via a Docker network, hosted by a 2,4 GHz Quad-
Core Intel Core i5, 16GB RAM macOS Catalina 10.15.4 machine.

Each query was performed 10 times, and the first execution was discarded (cold start). All requests
were sequentially submitted. One can note in Table VII that most of the request processing time
is consumed by BigDAWG, with a negligible overhead added by Polyflow (3.8% in the worst case).
Another tendency that one can see is that the more complex the query (i.e., more resource-consuming
on BigDAWG’s side), the more negligible is the overhead added by Polyflow (3.8% for a simple
projection versus a 1.2% for a cross-database query Q3).

It is important to emphasize that these results were obtained from common consultations in the data
provenance area, as defined by [Oliveira et al. 2016]. However, more complex queries involving domain-
specific data, and not just provenance data, can be considered, which would increase the complexity
of Polyflow. It is also important to mention that BigDAWG (which is why we represented queries
followed by ∗ in that way) presents some limitations that impairs some use cases, such as being unable
to process queries that have projections, inconsistent results for queries that use the union operator
and an inability to distinguish join types. A complete list of issues can be tracked in their Github
repository15. Polyflow also has two limitations: the inability to process table and column aliases
without the AS keyword and the lack of support of group by and order by statements in Entity
Mappers.

5.3 Pilot Experiment

Besides the feasibility study, we also carried out an evaluation with an expert in the bioinformatics
domain. This pilot experiment aimed to assess the viability of Polyflow from the perspective of a

15https://github.com/bigdawg-istc/bigdawg/issues
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Table VII. Polyflow Overhead Analysis
Request Time (ms) Query Execution Time (ms) Overhead (ms)

min max avg stdev min max avg stdev min max avg stdev avg%
Q1 123.0 196.0 157.3 74.5 118.0 189.0 151.6 72.2 10.0 4.0 5.7 5.8 3.8
Q2 274.0 1274.0 496.3 899.3 271.0 1270.0 489.6 901.7 16.0 3.0 6.7 11.7 1.4
Q3 393.0 594.0 472.0 177.5 386.0 590.0 466.3 179.9 8.0 4.0 5.7 4.0 1.2

user, i.e., researchers.

The main objective of this experiment is to assess the semantic capabilities of Polyflow. In other
words, we want to evaluate that Polyflow is capable of performing integrated queries over hetero-
geneous provenance graphs by using Global Schema’s (ProvONE) entities in a more straightforward
way than the current state of practice.

The subject of this pilot experiment is a member of Rabicó project and a researcher at LNCC. The
questionnaire was answered on March 12th, 2020. All answers are available, in Portuguese, at this
link16. Following we present a summary of the results of this pilot experiment:

—Messy and convoluted logs and warning messages: The subject had a working version of Polyflow
and BigDAWG running on her machine, but she did not realize it, because there were several
unnecessary logs and warning messages (e.g., BigDAWG failed attempt to connect to a SciDB
instance, which was not used at all). Such messages confused and jeopardized the experience;

—A viable and easy to perform integrated queries over provenance graphs: After overcoming the
problems above, the subject was able to query the provenance graphs and evaluated the solution as
both viable and simpler than manually integrating the data.

With the authors’ assistance, the subject was able to execute Polyflow and perform all the afore-
mentioned queries. All issues reported by the subject were resolved, and we are still developing a
more robust version of the experiment with several participants in the near future.

6. FINAL REMARKS AND FUTURE WORK

This article conducted a Systematic Literature Mapping to understand and compare state-of-the-art
approaches and presented Polyflow. This polystore-compliant approach enables an integrated anal-
ysis of provenance graphs across multiple databases. We use ProvONE as a Canonical Conceptual
Model/Global Schema, to which underlying provenance databases are queried at runtime. Real prove-
nance databases, used by Rede Avançada em Biologia Computacional (Rabicó), a Brazilian research
network, were integrated using Polyflow to assess the proposal. The integration allows researchers
to query, transparently, across multiple databases, providing a broader, unified analysis.

Results show that the overhead introduced by Polyflow is negligible compared to BigDAWG, a
reference Polystore database. We also conducted a pilot experiment with an expert researcher that
evaluated Polyflow and found it simple to use, as opposed to manually querying all data herself. For
future work, we plan on expanding this pilot to a full-scale experiment with multiple participants to
have more quantitative results.
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