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Abstract. An image data warehousing extends a conventional data warehousing to also manipulate images represented
by feature vectors and attributes for similarity search. A challenge that arises is the efficient processing of analytical
queries extended with a similarity search predicate. These queries have a high computational cost since they require the
processing of costly star join operations and distance calculations in the same setting. We consider applications that
manage huge volumes of data, where the use of parallel and distributed data processing frameworks is needed. In this
article, we introduce two methods to efficiently solve this challenge in Spark. BrOmnlmg is based on the integration of
the broadcast join and the Omni techniques for the processing of the star join operation and the distance calculations,
respectively. BrOmnImg®F extends BrOmnlImg by using the conventional predicate to further reduce the number of
distance calculations. Compared with the closest method available in the literature, BrOmnlImg reduced the time spent
on query processing by up to about 65%. Compared with BrOmnlImg, BrOmnImg®¥ improved the performance by
up to about 54%.

Categories and Subject Descriptors: H.2.4 [Database Management|: Query processing; H.4.2 [Information Sys-
tems Applications|: Decision support

Keywords: Image data warehouse, analytical queries extended with a similarity search predicate, parallel and distributed
processing, medical images, star join, distance calculations

1. INTRODUCTION

A data warehousing is of paramount importance to the decision-making process. It stores data from
autonomous, distributed, and heterogeneous sources in the data warehouse. Data in the warehouse is
integrated, subject-oriented, non-volatile, historical, and multidimensional [Kimball and Ross 2002].
Analytical queries, called OLAP (on-line analytical processing), are issued against the data warehouse
to discover useful trends. In relational implementations of the warehouse, data are usually modeled
through a star schema, where a central fact table is linked to satellite dimension tables. Therefore,
the conventional predicate of an OLAP query requires the processing of the star join operation, i.e.,
performing joins between the fact table and each conventional dimension table involved in the query.

An image data warehousing extends a conventional data warehousing to also manipulate images
[Teixeira et al. 2015]. The ETL (extract, transform, load) process is also responsible for extracting the
intrinsic features of the images, which are represented by features vectors and attributes for similarity
search. In the image data warehouse, these new types of data are stored as dimension tables or facts
in the fact table. Further, OLAP queries are composed of a conventional predicate and a similarity
search predicate. The similarity between two images can be evaluated by a distance function that
becomes smaller as the images become more similar [Hjaltason and Samet 2003]. Therefore, the
similarity search predicate requires the processing of distance calculations.

A new range of queries can be performed over the image data warehouse, enriching the decision-
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making. For instance, a medical organization focused on analyzing images of exams can determine
how many images of pulmonary cancer are similar to a given image, considering patients older than 40
years and that lived in S&o Paulo state between 2010 and 2013 [Teixeira et al. 2015]. In the agriculture
field, agricultural measures related to soil, fertility and humidity over the years represent conventional
data types and the image feature vectors extracted from images of the plantation represent extended
data types [Nguyen et al. 2017]. In the decision-making, they can be used to investigate the quantity of
images that are similar to a given soil image, considering specific values for the agricultural measures.

A core issue in an image data warehousing is to process OLAP queries extended with a similarity
search predicate. In addition to execute the expensive star join operation, these queries also require the
computation of costly distance calculations. Furthermore, image data warehouses are very voluminous,
as they store conventional and image data. They also may be fed from applications in big data,
corroborating the fact that their volume may be orders of magnitude larger than megabytes [Kuo
et al. 2014].

Data warehousing applications that exceed the megabyte order and involve costly operations usually
require storage and processing capacity to guarantee scalability [Cuzzocrea 2016]. They can benefit
from using the MapReduce programming model [Dean and Ghemawat 2008] and data processing
frameworks like the Apache Hadoop! and the Apache Spark? [Zaharia et al. 2010]. These frameworks
enable data sharing and robust decision-making [Sebaa et al. 2018]. In the literature, the use of these
frameworks has become an attractive alternative to individually minimize the cost of the star join
operation over conventional data warehouses and the cost of distance calculations in applications that
manage complex data. However, to the best of our knowledge, there are no approaches that investigate
these aspects in the same setting.

In this article, we fill this gap. We propose the BrOmnlImg and the BrOmnImg®* methods to ef-
ficiently process analytical queries extended with a similarity search predicate in Spark. BrOmnlImg
integrates the broadcast join [Brito et al. 2016] and the Omni [Traina-Jr et al. 2007] techniques.
Broadcast join is used to load small tables on each node of the cluster and to compute the joins in
parallel. Omni is used to decrease the number of distance calculations in image similarity searches.
BrOmnImg®? empowers BrOmnlImg to deal with applications that restrict to one-to-one the rela-
tionship between the fact table and the table that stores the feature vectors of the images.

The advantages of BrOmnImg and BrOmnImg®" were investigated through performance tests
considering a medical image data warehouse. The experiments exploited different properties that
affect the general behavior of queries, i.e., the selectivity of the similarity search predicate and of the
conventional predicate. We compared BrOmnlImg to the closest method available in the literature
and also compared BrOmnImg®? with BrOmnImg. The results demonstrated that the proposed
methods are very competitive solutions to process analytical queries extended with a similarity search
predicate in image data warehousing applications in Spark. Compared with the closest method avail-
able in the literature, BrOmnlImg reduced the time spent on query processing by up to 64,47%.
Compared with BrOmnImg, BrOmnImg®" improved the performance by up to 54.21%.

A preliminary version of this article is described in [Rocha and Ciferri 2019]. Here, we provide
a detailed description of the background. We also detail the systematic review. Furthermore, we
introduce the algorithm of BrOmnlImg. Moreover, we propose the novel BrOmnImg®¥ . Finally, we
describe performance tests that include a different data volume and new values for the selectivity of
the conventional predicate, as well as compare BrOmnlImg with BrOmnImg©¥.

The paper is organized as follows. Section 2 details the theoretical foundation, Section 3 describes
the systematic review, Section 4 proposes BrOmnlImg and BrOmnImg®" Section 5 describes the
performance evaluation, and Section 6 concludes the article.

Thttps://hadoop.apache.org/
?https:/ /spark.apache.org/
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2. THEORETICAL FOUNDATION

In this section, we summarize underlying concepts used in our proposal. We describe the main issues
related to similarity search over images and the Omni technique in Section 2.1. We introduce details
related to a image data warehousing in Section 2.2. Sections 2.3 and 2.4 are aimed to describe parallel
and distributing computing and the broadcast join technique, respectively.

2.1 Similarity Search and The Omni Technique

Complex data, such as image data considered in this work, can not be sorted and searched using
ordinary relational operators (e.g., <, <, >, >). They should be compared through a distance
function that calculates the dissimilarity between two complex elements based on their feature vec-
tors [Hjaltason and Samet 2003]. Examples of widely used distance functions are the Manhattan
and the Euclidean distances, known as L; and Lo, respectively. A feature vector describes a given
characteristic of interest. For instance, feature vectors generated by image extractors, such as Color
Histograms [Gonzalez and Woods 2006] and Haralick descriptors [Haralick 1979], contain the numeric
representations of these images according to the attributes of color and texture, respectively.

One of the most useful types of similarity query is the range query. It is defined as follows. Given
a dataset S of elements (i.e., the feature vectors of the images), a distance function d, and a query
radius g, this query retrieves every element s, € S that satisfies the condition d(s;, sq) < 7. To this
end, the range query calculates the costly distance function several times, one for each pair (sq, s;).
The Omni technique drastically reduces the number of distance calculations [Traina-Jr et al. 2007].
It is based on strategically positioned elements f; € S, called foci, and on previously storing the
distances between each s; and each f;. It is composed of two steps. In the filtering step, each f; is
used to generate a ring in the metric space that surrounds s,, considering r, and the distance between
f; and s4. The intersection of the rings produces a region with candidate elements to answer the
query. In the refinement step, distances are calculated only for the candidate elements to eliminate
false positives. The number of foci, determined by the Hull-Foci algorithm, is given by the intrinsic
dimensionality of the dataset.

2.2 Image Data Warehousing

In addition to conventional dimension tables and fact tables, an image data warehouse also contains
tables that store the feature vectors of images and attributes for similarity search [Teixeira et al. 2015].
Figure 1 depicts a schema of a medical image data warehouse that is used throughout the paper. It
employs different colors and line styles to identify the different types of tables. The conventional
dimension tables, Patient and FxamDescription, are represented using the blue color and long dash
dot dot lines. The feature vectors of all images generated by all image extractors are stored in the
FeatureVector table, which are colored in red and are designed using thick lines. In this running
example, there are two feature vectors for each image. The attributes for similarity search, i.e.,
the distances between each image and each foci determined by the Omni technique, are stored in
the Perceptual Layer tables Color Histogram and Haralick Variance. The green color and dash
lines are used to identify these tables. Finally, the fact table Exzam, colored in yellow and designed
using thin lines, stores the quantity of exams by patient, by exam description, and by exam image
represented by the attributes of color and texture. In detail, a perceptual layer is an abstraction that
represents images through their feature vectors, which are generated according to a specific feature
descriptor (e.g., Color Histograms and Haralick Variance), and their similarity search data, which are
generated according to a specific metric space.

The image data warehouse supports the processing of analytical queries extended with a similarity
search predicate. These queries may have two predicates. The conventional predicate is based on
selection conditions. Each selection condition is defined over an attribute stored in a conventional
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Fig. 1. Schema of the medical image data warehouse used throughout the paper.

dimension table. The similarity search predicate is composed of a similarity operation and one or
more perceptual layers. For instance, consider the query named as Qczampie: “List the number of
similar images to a given image, for female patients diagnosed with breast cancer that have Rh factor
blood positive”. The selection conditions of Qezampie are: (i) Gender = ‘female’ and RhType =
‘positive’, defined over the table Patient; and (ii) BodyPart = ‘breast’ and ReasonlInvestigation
= ‘cancer’, defined over the table ExamDescription. The similarity operation is range query and is
performed using the table FeatureVector. Finally, because the images are represented considering the
attributes of color and texture, Qezampie uses the tables Color Histograms and HaralickV ariance.

In [Teixeira et al. 2015], it was conducted a study that investigated the use of a image data ware-
housing from the point of view of medical specialists. Two high level queries like Qczampic Were defined
to support the specialists’ opinions. According to them, it is feasible to use a image data warehousing
and the queries have great potential for improving the medical decision-making.

2.3 Parallel and Distributed Computing

The Hadoop Distributed File System (HDFS) [Shvachko et al. 2010] has been currently used as a
support for parallel and distributed computing environments. In the HDFS, the data file is divided
into blocks, which are distributed and replicated on the nodes of the cluster. There are a namenode
and several datanodes. The namenode stores metadata related to the file, such as the nodes where
each block is stored, while the datanodes store the distributed and replicated blocks. There may
exist a secondary namenode used as backup. To manipulate a given file, it is necessary to access the
namenode to identify the nodes where each block of the file is stored.

Hadoop is a parallel and distributed data processing framework based on the MapReduce program-
ming model [Dean and Ghemawat 2008]. It is able to process big datasets distributed across a cluster
of machines through the execution of map and reduce functions. Map functions process input data
and transform them into intermediate key-value outputs, while reduce functions process these inter-
mediate key-values by integrating all values related to a given key into a single output. In this model,
all intermediate data are written to disk in the HDFS [Shvachko et al. 2010].

On the other hand, Spark is a in-memory parallel and distributed data processing framework based
on the concept of Resilient Distributed Datasets (RDDs) [Li et al. 2017]. Further, all operations on
the RRDs are first mapped into a directed acyclic graph and then reorganized into sets of smaller
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tasks according to their mutual dependencies. In this model, intermediate results are stored in the
main memory and data are written into HDFS only when necessary, considerably reducing the I/0
cost [Shvachko et al. 2010]. Data manipulation in Spark is performed with predefined operations
defined over the RDDs. Operations used in this work are: (i) filter: returns a new RDD containing
only the elements that satisfy a conventional predicate; (ii) collect: sends all data from the dataset to
a driver process; (iii) mapToPair: processes the data and generates intermediate key-value pairs; and
(iv) reduceByKey: merges the values for each key using a reduce function.

2.4 The Broadcast Join Technique

The broadcast join technique called SBJ [Brito et al. 2016] processes star joins over conventional data
warehouses in Spark as follows (Figure 2). Consider that the conventional dimension tables and the
fact table are distributed in the nodes of the cluster. The selection condition is performed on each
block ¢ that contains the dimension table Conventional;, generating a conventional dimension table
Convyog that contains the filtered data. SBJ assumes that this table is small enough to fit in the main
memory. Then, it broadcasts C'onvias to all nodes of the cluster that contain blocks of the fact table.
Finally, SJB computes in parallel the joins between Conuvioz and the blocks of the fact table on each
node.

[ Conventional; } [ Conventional, J

1 o 1 " . o
Selection condition Selection condition Selection condition

- ~

=" .’ \q “'\
(o bdract, | [Comiaotracr, | [Gomn trace, | (Gomis deact,

Fig. 2. General view of the broadcast join technique.

3. SYSTEMATIC REVIEW

The goal of a systematic review is to identify gaps in the literature that should be explored and
to discover approaches that have similar characteristics to the proposed methods [Kitchenham and
Charters 2007]. Furthermore, our work was developed considering the context of medical images, due
to the importance of the analytical decision-making over these images and their impact on society. For
instance, it is possible to generate knowledge that can be used to identify trends in healthcare, prevent
diseases, combat social and health inequalities, and provide new ideas about science [Kuo et al. 2014].
It is also possible to make vital decisions against disease outbreaks and treatment effectiveness [Teixeira
et al. 2015]. Another example is the analysis of patient profiles to identify individuals who would
benefit from preventative care and lifestyle changes [Raghupathi and Raghupathi 2014].

To comply with the goal of a systematic review and to consider the medical context, we defined
the following search questions: (Q1) How to perform the star join operation in Hadoop; (Q2) How to
perform image similarity search operations in Hadoop; (@Q3) How to design a medical data warehouse
in Hadoop; and (Q4) How to perform the star join and the similarity search operations over a data
warehouse in Hadoop. The term “Hadoop” was used because there are more related work in the
literature that use this term instead of “parallel and distributed processing”.
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Based on the search questions, we defined the keywords depicted in Figure 3 to compose the search
strings. We submitted the strings to the following sources: IEEEXplore Digital Library®, Springer?,
ACM Digital Library®, and Elsevier®. We did not consider the Digital Bibliography & Library Project”
(DBLP) because most of its publications can be obtained from these other sources [Batista et al. 2018].
As inclusion criterion, we considered the articles that answer at least one search question (i.e., @1,
Q2, Q3, or Q4). As exclusion criteria, we defined: (i) articles that do not answer any search question;
(ii) articles that are not complete or are not fully available; (iii) articles written in other languages
than Portuguese or English; and (iv) articles published before 2014.

Figure 3 details the systematic review process. The search returned 148 articles. The initial selection
was performed by reading the title and the abstract of the articles. According to the exclusion criteria,
128 articles were discarded. The final selection was performed by reading the full article, leading to
the exclusion of 6 more articles. The remaining articles were grouped based on the defined search
questions as follows: star join in Hadoop (Section 3.1), image similarity search in Hadoop (Section 3.2),
medical data warehousing in Hadoop (Section 3.3), and star join and similarity operations over data
warehouses in Hadoop (Section 3.4). Figure 3 also lists the related articles for each group, which are
ordered according to the year of publication.

- (star join) AND (hadoop OR spark OR mapreduce);

- (images similarity operations) AND (hadoop OR spark OR mapreduce);

- (data warehouse OR DW OR OLAP) AND (medical OR medical images OR medical area) AND (hadoop OR spark OR mapreduce);
- (data warehouse OR DW OR OLAP) AND (medical OR medical images OR medical area) AND (images similarity) AND (hadoop OR

spark OR mapreduce). .
IEEE (18) Springer (68) ACM (7)  Elsevier (10)

g
148
Initial Selection (title + abstract) l — 128 excluded articles

20
Final Selection (full article) | —» 6 excluded articles

14

3(Q) 4(q,) 7(Q,) 0(Q,)

L image similarity search in medical data warehousing starjon.\ I ]
star join in Hadoop Hadoop T {edleas operations over data

warehouses in Hadoop

[Guoliang and Guilan 2015] [Giangreco et al. 2014] [Raja and Sivasankar 2014]
[Brito et al. 2016] [Nguyen et al. 2016] [Istephan and Siadat 2015]
[Brito et al. 2020] [Li et al. 2017] [Kuoet al. 2015]

[Nguyen and Huh 2017] [Istephan and Siadat 2016]

[Sebaa et al. 2017]
[Sebaa et al. 2018]
|Dash et al. 2019]

Fig. 3. Systematic review execution.

3IEEEXplore Digital Library: (https://ieeexplore.ieee.org)

4Springer: (https://www.springer.com/ComputerScience)

5 ACM Digital Library: (https://dl.acm.org)

6Elsevier: (https://www.elsevier.com/physical-sciences/computer-science)
"DBLP: (https://dblp.uni-trier.de/)
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3.1 Star Join in Hadoop

Articles classified in this group are aimed to propose efficient techniques to process the star join
operation considering new technologies. The massive parallelism and high scalability GBFSJ (GPUs
Bloom Filter Star Join) algorithm in proposed in [Guoliang and Guilan 2015]. It considers that the fact
table and the dimension tables are column storage and that every column is processed separately. The
star join is composed of several parallel hash join procedures executed on GPUs (Graphics Processing
Units) with the help of Bloom filters [Tarkoma et al. 2012]. But, this related work differ from our
work on its purpose since it is focused on GPUs.

The processing of star joins in Hadoop is exhaustively investigated in [Brito et al. 2016; 2020]. In
these articles, several algorithms are proposed and compared with a wide range of related work avail-
able in the literature. In [Brito et al. 2016|, the proposed algorithms are characterized by performing
full scan regardless of the query selectivity. In [Brito et al. 2020], the proposed algorithms are based
on the use of a distributed Bitmap Join Index. We use in our work the SBJ algorithm [Brito et al.
2016], which is described in Section 2.4.

3.2 Image Similarity Search in Hadoop

A system that is able to store and retrieve multimedia objects is introduced in [Giangreco et al. 2014].
It provides functionalities to Boolean retrieval and similarity search in MapReduce. Despite the
advantages introduced in this related work due to the use of the parallel and distributed computing,
it does not focus on reducing the number of distance calculations. In our work, we use the Omni
technique to comply with this goal.

The approach proposed in [Li et al. 2017] optimize image similarity operations in Spark by applying
hash functions that guarantee a high probability that similar objects will collide. Therefore, there is a
reduction in the number of objects to be analyzed. In [Nguyen et al. 2016; Nguyen and Huh 2017], the
VP-tree method [Fu et al. 2000] is used to reduce the number of distance calculations in MapReduce.
This method is also associated with a strategy that is used to store distances previously calculated in
cache [Nguyen et al. 2016]. However, it is difficult to efficiently define the hash functions. Also, the
VP-tree is a in-memory method that is invariably outperformed by other methods [Carélo et al. 2011].
We use in our work the Omni technique [Traina-Jr et al. 2007]. It enables building similarity search
operations on top of existing structures, providing prunability and therefore significantly improving
their performance. The Omni technique is described in Section 2.1.

Although the articles in this group focus on parallel and distributed processing to optimize image
similarity search, they are not based on the use of a image data warehouse. In detail, they are not
aimed to optimize star join operations, which are demanding operations commonly present in OLAP
queries over data warehouses. Furthermore, these articles do not consider the organization of the
image data as fact and dimension tables. These issues are addressed by our proposal.

3.3 Medical Data Warehousing in Hadoop

Several articles in the literature investigate how the use of big data technology improves the perfor-
mance of medical data warehousing [Raja and Sivasankar 2014; Istephan and Siadat 2015; 2016; Kuo
et al. 2015; Sebaa et al. 2017; Sebaa et al. 2018; Dash et al. 2019]. The data warehouse defined in
[Istephan and Siadat 2015; 2016] considers conventional data as structured data and medical images
as unstructured data. These images are used to perform content based image retrieval in MapReduce.
No details are provided regarding data storage. Dash et al. (2019) propose an architecture based on
HDFS and Spark, as well as list several parallel and distributed-based tools aimed to perform medical
analyses.

In [Raja and Sivasankar 2014], data from medical sources are transferred from a relational database
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to the Apache HBase® using the Apache Sqoop®. The article compares the time spent: (i) to populate
the relational database and HBase; and (ii) to process queries in MapReduce and in the Apache Hive!°.
In [Kuo et al. 2015], data from a medical application are stored in HBase and on-line transaction
processing (OLTP) queries are performed against these data by using the Apache Phoenix''. The
strategies described in [Sebaa et al. 2017; Sebaa et al. 2018] store data in Hive and query these data
by using HiveQL. Furthermore, queries can also be carried out considering data stored in HBase.

Despite the fact that the articles described in this section highlight the importance of using parallel
and distributed computing in medical data warehousing, they do not focus on analytical queries
extended with a similarity search predicate. Therefore, they do not propose optimizations in the
processing of these queries, differing from the objective of our work.

3.4 Star Join and Similarity Operations over Data Warehouses in Hadoop

No related work was classified in this last group. Thus, to the best of our knowledge, there are not
approaches in the literature that investigate the processing of star join and distance operations in the
same setting, considering image data warehousing and Spark. Our work fill this gap.

4. THE PROPOSED BROMNIMG AND BROMNIMG®¥ METHODS

In this section, we propose the BrOmnImg and BrOmnImg®" methods to efficiently process, in
Spark, analytical queries extended with a similarity search predicate over a image data warehouse.
We introduce these methods in Sections 4.1 and 4.2, respectively. We use as a basis the image data
warehouse depicted in Figure 1. In Figures 4 and 5, we also employ the same colors and line styles as
those used in Figure 1 when providing the general view of the methods: blue and long dash dot dot
lines for the conventional dimension tables, red and thick lines for the feature vector table, green and
dash lines for the perceptual layer tables, and yellow and thin lines for the fact table.

pommmmmmmm e meeoee Conventional Predicate --------- ) r———-SimiIarity Predicate ------------ooooooo-n
[ N T T B A e ‘ '
! Condition; : Condition,, L Similarity Operation D
i s T N S ,J‘_\:i‘r 77777777777777777777777 T P
i~ T “Conventional ' , 7 [ Conventional ;' ;| Perceptual | | Perceptual
| oblen TN | | (leverTable, i layerTable, ) :
i : HashMapFiltering, H i

i HashMapConventional,

. HashMapFiltering, !
1 @ o &

Distance Calculations

i (a) : : L Feature Vector Table '

] - L 5 ] i
1 (c) HashMapRefinement !
v v (d) {}
[ Extended Star Join
{ Fact Table

Fig. 4. General view of the proposed BrOmnImg method.

8https://hbase.apache.org/
9https://sqoop.apache.org/
Ohttps://hive.apache.org/
Mhttps://phoenix.apache.org/
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4.1 BrOmnlmg

Consider the conventional predicate. For each Conventional dimension table i (1 < ¢ < m),
BrOmnlImg executes the conditions selections that apply on the attributes of this table and produces
as a result a structure HashMapConventional; (Figure 4a). Consider now the similarity search predi-
cate. Then, in the filtering step, for each Perceptual Layer table j (1 < j <n), BrOmnlImg filters its
data using the Omni technique and generates a structure HashM apF'iltering; to store the candidate
elements (Figure 4b). In the refinement step, the method analyzes all candidate elements to elimi-
nate false positives. The Feature Vector table is accessed and distances are calculated to determine
the elements to be further considered, which are stored in the structure HashMapRefinement (Fig-
ure 4c¢). Finally, BrOmnlImg broadcasts HashMapRe finement and each HashM apConventional;
to all nodes of the cluster and performs the extended star join over the Fact table in parallel (Figure
4d). Algorithm 1 details the algorithm of BrOmnImyg.

Algorithm 1: BrOmnlImg
Input : Conventionaly, ..., Conventional,,, Perceptual Layery, ..., Perceptual Layer,,

Feature Vector, Fact, sq, rq, Q
Output: Result of @

for each Conventional Table i between 1 and m do
RDDconventional; = Conventional;

RDDc¢onventionat, - filter(Condition;, , ..., Condition;,)
RDDc¢onventional; -mapToPair(Conventional; K ey, null)
HashMapConventional; = broadcast(RD D¢ onventional; -collect()
end

[ I B N N

~

for each Perceptual Layer Table j between 1 and n do

RDDperceptuat Layer; = Perceptual Layer;

RDDperceptualLayer,; - filter(filteringStep(sq, ¢, DistFocij, , ..., DistFocij, ))
10 RDD perceptuatLayer; -mapToPair (Perceptual Layer ; K ey, null)

11 HashMapFiltering; = broadcast(RD D perceptual Layer; -collect())

12 end

©

13 RDDpegivect = Feature Vector

14 RDDrpegrvect-filter(if (HashMapFiltering; .hasKey(FeatVectKey) AND... AND
HashMapFiltering,.hasKey(FeatVectKey)) then
return (refinementStep(FeatVectPerceptual Layery, sq,7q) AND ... AND
refinementStep(FeatVectPerceptual Layery, $q,7q))

15 RDDpeatvect-mapToPair(FeatVectKey, null)

16 HashMapRefinement = broadcast(RDDpeqtvect-collect())

17 RDDpyet = Fact

18 RDDp,et. filter(HashMapConventionaly.hasKey(E _Conventional; Key) AND... AND
HashM apConventional,,.hasKey(E _Conventional,, Key) AND
HashMapRefinement.hasKey(E _FeatVectKey))

19 RDDpyer.mapToPair(1, measure)

20 RDDResult = RDDFact'TeduceByKey(vl + ’Uz)

In Algorithm 1, the inputs are the tables of the star schema of the image data warehouse, a given
image sq, the query radius rg, and the query Q. The algorithm creates RDDs for each table present
in the conventional predicate (line 1), in the similarity search predicate (lines 8 and 13), and in the
extended star join (line 17). After executing the selection conditions of the conventional predicate
in lines 3 and 4, the generated structures HashMapConventional; are broadcasted to all nodes of
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the cluster line 5 (Figure 4a). The filtering step is carried out over the perceptual layer tables in
lines 9 and 10. The candidate elements stored in the structures HashMapF'iltering; are broadcasted
to all nodes of the cluster in line 11. The refinement step is performed in lines 14 and 15, and the
generated structure HasMapRefinement is broadcasted in line 16 (Figure 4c). The extended star
join operation is performed in lines 18 and 19, and the number of similar images is returned in line

20 (Figure 4d).

BrOmnlImg processes each table of the star schema as an RDD. It applies the conventional and
image filters on the corresponding RDDs using the operation filter and stores the data in hash map
structures using the operations mapToPair and collect. Further, BrOmnlImg performs the extended
star join operation by applying the operations filter, mapToPair and reduceByKey.

4.2 BrOmnImg®F

BrOmnImg®" (acronym for integrating Broadcast and Omni for processing analytical Image queries
with Conventional Filter) extends BrOmnlImg to use the conventional predicate to filter the candidate
elements of the similarity search predicate before calculating the image distances in the refinement
step. Contrary, BrOmnlImg processes the conventional predicate after calculating these distances.

BrOmnImg®" processes the conventional predicate (Figure 5a) and the filtering step of the sim-
ilarity search predicate (Figure 5b) in the same way as BrOmnlImg does. Instead of process-
ing the refinement step immediately after the filtering step, BrOmnImg®¥ first broadcasts each
HashMapConventional; (1 <1i < m) and each HashMapF'iltering; (1 < j < n) to all nodes of the
cluster and performs the extended star join over the Fact table in parallel. The results, i.e., every
exam that satisfies the conventional predicate and the filtering step (including false positives), are
stored in the structure HashMapExtendedStarJoin (Figure 5¢). Then, BrOmnImg®F performs
the refinement step over the Feature Vector table in parallel on all nodes (Figure 5d). Algorithm 2
details the algorithm of BrOmnImg®*t.

o Conventional Predicate --------, - Similarity Predicate - Filtering Step --------
[ N T T b LTI T 1 :
3 Condition; : Condition,, D i Similarity Operation i
A — S . T e /!
|~ 'f "Conventional .‘ eee | Conventlonal_\; i1 Perceptual | - Perceptual | |
(Jabley i Tabley i | layerTable, i LayerTable, | |
1 I PP (b) 3
| HashMapConventional, | | HashMapfFiltering, |
; (a) HashMapConventional,, | : HashMapFiltering,, :
u (c) u
[ Extended Star Join
[ Fact Table
HashMapExtendedStarJoin
- Similarity Predicate — Refinement Step ------------ -
1 (d) ‘
[ Distance Calculations
| Feature Vector Table ‘

Fig. 5. General view of the proposed BrOmnImg®F method.

In Algorithm 2, lines 1 to 12 are the same as those of Algorithm 1 and are omitted. In lines 13 and 14,
the algorithm creates the RDD for the extended star join using the structures HashM apConventional;
and HashMapFiltering;. In lines 15 and 16, the results are stored and broadcasted in the structure
HashMapExtendedStarJoin. These results refer to the candidate elements of the similarity predicate
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Algorithm 2: BrOmnImg®"

Input : Conventionaly, ..., Conventional,,, Perceptual Layery, ..., Perceptual Layer,,
Feature Vector, Fact, sq, rq, Q
Output: Result of @

13 RDDpyet = Fact

14 RDDpye. filter(HashMapConventionaly.hasKey(E _Conventionaly Key) AND ... AND
HashM apConventional,,.hasKey(E _Conventional,, Key) AND
HashMapFiltering, .hasKey(E _Perceptual Layer; Key) AND ... AND
HashMapFiltering,.hasKey(E _Perceptual Layer, Key))

15 RDD.yom-mapToPair(E_FeatVectKey, measure)

16 HashMapEgztendedStarJoin = broadcast(RDD pqci.collect())

17 RDDpegivecet = Feature Vector

18 RDDrpeqrvect-filter(if (HashMapExtendedStarJoin.hasKey(FeatVectKey)) then
return (refinementStep(FeatVectPerceptual Layery, sq,7q) AND ... AND
refinementStep(FeatVectPerceptual Layers,,, $q,74))

19 RDDpearyect.-mapToPair(1l, measure)

20 RDDpgesuit = RDDFpeqtvect-reduce ByKey(vy + v2)

filtered by the conventional predicate. In line 17, the RDD of the refinement step is created. It uses
the structure HashMapFExtendedStarJoin to eliminate false positives by calculating the distances
using the structures HashMapF'iltering; (line 18). Finally, the result is calculated and returned in
lines 19 and 20.

To process the refinement step after performing the extended star join operation, the Fact table
must have a one-to-one relationship with the Feature Vector table. Due to this fact, BrOmnImg®F
is more restrict than BrOmnlImg.

5. PERFORMANCE EVALUATION

We conducted an experimental study based on a medical image data warehouse to assess the advan-
tages of the proposed methods. The experimental setup is described in Section 5.1. The goal of our
experiments was threefold: (i) investigate BrOmnImg considering medical applications that require
the processing of queries with very different characteristics (Section 5.2); (ii) analyze the impact of
the Omni technique on BrOmnImg (Section 5.3); and (iii) examine BrOmnImg®? with regard to
the use of the conventional predicate to filter the candidate elements of the similarity search predicate
(Section 5.4).

5.1 Experimental Setup

We used the ImgDW Generator tool [Rocha and Ciferri 2018] to populate the image data ware-
house illustrated in Figure 1. The tool generated real data for the tables I'mageFeatureVector,
ColorHistogram, and HaralickV artance, and synthetic data for the remaining tables. We gener-
ated two data volumes, Volume 1 and Volume 2 (Table I). Furthermore, Table II details, for each
perceptual layer, the dimensionality of the feature vector and the number of foci determined by the
Omni technique. Color Histogram has a high dimensionality, 256, while HaralickV ariance has a low
dimensionality, 4. The diameter is the largest distance between any two elements of the dataset. The
characteristics of the perceptual layers are independent of the data volume.

To generate different configurations, we used query Qezampte introduced in Section 2.2 as a basis
and varied the selectivity of the conventional predicate, the dimensionality of the perceptual layers,
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Table I. Data volumes used in the performance evaluation.

Table Volume 1 | Volume 2
Patient 300,000 2,000,000
ExamDescription 3,000,000 20,000,000
Ezam 3,000,000 20,000,000
ColorHistogram 3,000,000 20,000,000
HaralickVariance 3,000,000 20,000,000
ImageFeatureV ector 3,000,000 20,000,000

Table II. Characteristics of each perceptual layer considered in the performance evaluation.
Perceptual Layer | Dimensionality of the feature vector | # foci | Diameter of the dataset
Color Histogram 256 3 584,292.53
Haralick Variance 4 3 80.51

and the selectivity of the similarity search predicate. As the selectivity increases, the portion of data
that is managed to produce the result of the query also increases. That is, low selectivity queries
manage a very small portion of the data.

For the selectivity of the conventional predicate, we defined the following variations: (i) without a
selection condition - NotConw; (ii) with only the selection condition RyT'ype = ‘positive’, determining
a selectivity of 50% - Conv50; (iii) with only the selection condition Gender = ‘female’; specifying a
selectivity of 33% - Conv33; and (iv) with the selection conditions Gender = ‘female’, BodyPart =
‘breast’, and Reasonlnvestigation = ‘cancer’, defining a selectivity of 0.08% - Conuv0.08.

Considering the variation of the dimensionality of the perceptual layers, we defined the following
scenarios: (i) high dimensionality, including only ColorHistogram - His; (ii) low dimensionality,
including only HaralickVariance - Har; and (iii) mixed dimensionality, including Color Histogram
and HaralickVariance - His/Har.

The values of selectivity of the similarity search predicate varied from 1% to 50%. We controlled
these values by limiting the quantity of images returned by the range query similarity operation. The
higher the value of the selectivity, the higher the query radius.

We defined three configurations, as detailed as follows.
—Configuration 1. We fixed the selectivity of the similarity search predicate to 1% and generated

12 queries by varying the values of selectivity of the conventional predicate and the dimensionality
of the perceptual layers. The characteristics of the generated queries are detailed in Table III.

Table III. Characteristics of the queries of Configuration 2.

His Har His/Har
NotConv (Q1) NotConvHis (Q2) NotConvHar (Q3) NotConvHis/Har
Conv50 (Q4) Convb0His (Q5) Convb0Har (Q6) Convb0His/Har
Conv33 (Q7) Conv33His (Q8) Conv33Har (Q9) Conv33His/Har
Conv0.08 | (Q10) Conv0.08His | (Q11) Conv0.08Har | (Q12) Conv0.08His/Har

—Configuration 2. We used the high dimensionality perceptual layer Color Histogram (i.e., His)
and did not define a selection condition to the conventional predicate (i.e., NotConwv).

—Configuration 3. We considered queries Q4, Q7, and Q10 defined in Table III. These queries refer
to the high dimensionality perceptual layer C'olor Histogram and to the values of selectivity of the
conventional predicate of 50%, 33%, and 0.08%, respectively. We also set the values of selectivity
of the similarity search predicate as 1% (Sim1), 10% (Sim10), 20% (Sim20), 30% (Sim30), 40%
(Sim40), and 50% (Sim50). We generated 18 queries by varying the values of selectivity of the
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conventional and the similarity search predicates. The characteristics of the generated queries are
detailed in Table IV.

Table IV. Characteristics of the queries of Configuration 3.

Sim1 Sim10 Sim20 Sim30 Sim40 Sim50
(Q4) (Q4Sim1) (Q4S1m10) (Q4S51m20) (Q4S51m30) (Q4S1m40) (Q4S1mb50)
Conv50His Conv50 Convb50 Convb50 Convb50 Convb50 Convb0
Sim1 Sim10 Sim20 Sim30 Sim40 Sim50
Q7 (Q7Sim1) (Q7Sim10) (Q7S1m20) (Q7S1m30) (Q7Sim40) (Q7Sim50)
Conv33His Conv33 Conv33 Conv33 Conv33 Conv33 Conv33
Sim1 Sim10 Sim20 Sim30 Sim40 Sim50
(Q10) (Q10Sim1) | (Q108im10) | (Q10Sim20) | (Q10Sim30) | (Q10Sim40) | (Q10Sim50)
Conv0.08His Conv0.08 Conv0.08 Conv0.08 Conv0.08 Conv0.08 Conv0.08
Sim1 Sim10 Sim20 Sim30 Sim40 Simb50

In Sections 5.2 and 5.3, BrOmnImg was compared with SBJ (Section 2.4). The motivations for
choosing SBJ are described as follows. There is no related work in the literature that provides the
same functionality as BrOmnImg (see Section 3). SBJ is the closest to the objective of the proposed
method, since it processes the star join operation over data warehouses in Spark. In the performance
evaluation of SBJ, it was compared to a wide range of algorithms available in the literature and was
usually faster (between 20-50%). However, SBJ does not deal with images. Thus, we adapted it to
process the similarity search predicate by using the feature vector to calculate the distances between
the input image and each image of the dataset.

The experiments were performed in a cluster with 5 nodes. Each node had, at least, 3GB of RAM.
We collected the elapsed time in seconds, which was recorded issuing each query 10 times, removing
outliers, and calculating the average time. All cache and buffers were flushed after finishing each

query.

5.2 Investigating the Performance of BrOmnlImg for Configuration 1

In this experiment, we investigated the variation of the selectivity of the conventional predicate and
the wvariation of the dimensionality of the perceptual layers. The experiment focused on medical
applications that require the processing of queries with very different characteristics. Therefore, it
was defined considering Configuration 1 and the characteristics of the queries described in Table III.
Also, the experiment was executed considering the two data volumes detailed in Table I.

Figure 6 depicts the performance results for Volume 1. For configurations that have at least one high
dimensional perceptual layer (i.e., Q1, @3, @4, Q6, Q7, Q9, Q10, and Q12), BrOmnlImg provided
impressive improvement in query performance that ranged from 57,32% to 64,47% when compared
with SBJ. This is related to difference between the dimensionality of Color Histogram (i.e., 256) and
the number of foci identified for this perceptual layer (i.e., 3). This difference benefited the Omni
technique to process the distance calculations, which in turn benefited BrOmnlImg. On the other
hand, for the configurations that have only the low dimensional perceptual layer (i.e., @2, @5, @8,
Q11), BrOmnImg and SBJ provided almost the same elapsed times. This is due the fact that the
difference between the dimensionality of HaralickVariance (i.e., 4) and the number of corresponding
foci (i.e., 3) was not significant.

We now comment on the performance results for Volume 2 (Figure 7). Considering the configura-
tions that have at least one high dimensional perceptual layer (i.e., Q1, @3, Q4, Q6, Q7, Q9, Q10, and
Q12), BrOmnImg was from 49.91% to 65.77% faster than SBJ. As for the remaining configurations
(ie., Q2, @5, @8, Q11), the methods provided almost the same elapsed times.
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Fig. 6. Time spent by BrOmnlImg and SBJ to process the queries of Configuration 1, considering Volume 1 and different
values of the selectivity of the conventional predicate and of the selectivity of the image similarity predicate.

Analyzing the results depicted in Figures 6 and 7, we can conclude that BrOmnlImg and SBJ

showed the same trend, regardless of the data volume. Therefore, for the remainder of the performance
evaluation, we will only use Volume 1 in the comparisons.
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Fig. 7. Time spent by BrOmnlImg and SBJ to process the queries of Configuration 1, considering Volume 2 and different
values of the selectivity of the conventional predicate and of the selectivity of the image similarity predicate.

5.3 Investigating the Performance of BrOmnlImg for Configuration 2

In this experiment, we investigated the variation of the selectivity of the similarity search predicate.
The experiment was aimed to determine the effect of using the Omni technique, since the main
difference between BrOmmnlImg and SBJ is the processing of the similarity search predicate. Therefore,
the experiment was defined considering Configuration 2.

The performance results of BrOmnImg and SBJ are depicted in Figure 8, considering values of
selectivity of the similarity search predicate varying from 1% (Sim1) to 50% (Sim50). For the values of
1% and 10%, BrOmnImg provided expressive performance gains of 56.75% and 56.94%, respectively.
For the selectivity of 20%, BrOmnImg was 13.31% faster. Considering the values of selectivity of
30%, 40% and 50%, SBJ slightly overcame BrOmmnlImg by 1.27%, 5.40% and 7.72%, respectively.
The results demonstrated that the advantage of BrOmnlImg over SBJ decreased as the query radius
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increased. This is due the fact that the increase in the value of selectivity impairs the filtering step
of the Omni technique. But, this behaviour is expected, as techniques that provide prunability in
searches, such as the Omni technique, are indicated to improve the performance of low selectivity
queries.
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Fig. 8. Time spent by BrOmnlmg and SBJ to process the queries of Configuration 2, considering different values of the
selectivity of the similarity search predicate.

To further investigate the obtained results, we show in Figure 9 the number of distance calculations
performed by each method (i.e., BrOmnImg and SBJ) and the number of images returned by the
evaluation of the similarity search predicate. Because SBJ does not use the Omni technique, the num-
ber of distance calculations was the same as the number of stored images, i.e., 3,000,000. Considering
BrOmnlImg and the values of selectivity of 1% and 10%, the number of distance calculations was
very close to the result of the similarity search predicate, benefiting the proposed method. For the
remaining values of selectivity, there was a big difference between the number of distance calculations
processed and the number of images returned. The performance of BrOmnlImg decreased due to the
fact that the filtering step was inefficient to filter the candidate elements plus the additional processing

cost of this step.
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000
500,000 I I
Al
1% 0% 30% 40% 50%

10% 2
mMNumber ofimages returned  mBrOmnimg m3SBJ

Number of distance operations

Fig. 9. Number of images returned by the evaluation of the similarity search predicate and number of distance calcula-
tions carried out by BrOmnlImg and SBJ, considering different values of selectivity of the similarity search predicate.
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5.4 Investigating the Performance of BrOmnImg®t

BrOmnImg®" was compared with BrOmnImg to investigate the advantages of using the conven-
tional predicate to filter the candidate elements of the similarity search predicate before calculating the
image distances. Therefore, the experiment investigated the impact of the variation of the conventional
predicate, considering the high dimensionality perceptual layer Color Histogram. The experiment was
defined considering Configuration 3 and the characteristics of the queries described in Table IV.

The results for configurations @4, @7 and Q10 are detailed in Figs. 10a, 10b, and 10c, respectively.
Regardless of the configuration, BrOmnImg®¥ and BrOmnImg provided similar elapsed times for
values of selectivity of the similarity search predicate of 1% and 10%. This is due to the fact that the
filtering step of BrOmnlImg acted as a good filter for the similarity search predicate (recall Figure 9)
and the improvement introduced by BrOmnImg®" was unable to further enhance the filter. For the
remaining values of selectivity, BrOmnImg®¥F nicely overcame BrOmnlImg. In fact, the advantage
of BrOmnImg over BrOmnlImg increased as the conventional predicate became more selective. The
performance gains of BrOmnImg®" varied from 29.50% to 33.12% for Q4, from 38.01% to 44.92% for
Q7, and from 50.24% to 54.21% for Q10. In these configurations, applying the selection conditions first
reduced the number of candidate elements analyzed in the refinement step, benefiting BrOmnImg®¥ .
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Fig. 10. Time spent by BrOmnImg®F and BrOmnImg to process the queries of Configuration 3, considering different
values of the selectivity of the conventional and similarity search predicates. (a) selectivity of the conventional predicate
of 50%. (b) selectivity of the conventional predicate of 33%. (c) selectivity of the conventional predicate of 0.08%.

Figure 11 summarizes the performance results described in this section. It provides a different
visualization of the results considering the values of selectivity of the similarity search predicate from
20% to 50% and the values of selectivity of the conventional predicate of 0.08%, 33%, and 50%. The
difference in the performance was very similar with regard to the selectivity of the similarity search
predicate, but varied with regard to the selectivity of the conventional predicate.

Comparing the performance results of BrOmnImg®", BrOmnImg, and SBJ, it is possible to high-
light the following findings. For the values of selective of the similarity search predicate of 1% and 10%,
BrOmnlImg was much faster than SBJ (Figure 8) and BrOmnImg®F spent almost the same elapsed
time as BrOmnImg (Figure 10). For the values of selectivity from 20% to 50%, the performance gain
of BrOmnlImg over SBJ decreased as the selectivity increased, such that SBJ was slightly faster than
BrOmnlImyg for values superior to 30% (Figure 8). However, BrOmnImg®F impressively overcame
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Fig. 11. Difference in the performance between BrOmnImg®F and BrOmnImg, considering different values of selec-
tivity of the conventional and the similarity search predicates.

BrOmnlImg considering these values of selectivity (Figure 10). We can conclude that BrOmnImg®¥
provided better performance than SBJ, regardless of the selectivity of the similarity search predicate.

6. CONCLUSIONS AND FUTURE WORK

In this article, we focus on the efficient processing of analytical queries extended with a similarity
search predicate over image data warehouses. We consider applications that manage huge volumes of
data, where the use of parallel and distributed data processing frameworks is needed. To this end, we
propose two methods in Spark: BrOmnImg and BrOmnImg®¥.

BrOmnlImg integrates the broadcast join and the Omni techniques to process the star join operation
and distance calculations, respectively. In the performance evaluation, we compared BrOmnlImg with
the closest method available in the literature, SBJ. The results demonstrated that BrOmnlImg greatly
overcame SBJ for queries composed of at least one high dimensionality perceptual layer, regardless of
the selectivity of the conventional predicate. The improvement in performance varied from 49.91% to
65.77%. The results also demonstrated that BrOmnlImg was about 56% faster than SBJ for queries
composed of a similarity search predicate with low selectivity. For the complementary scenarios,
BrOmnlImg and SBJ spent almost the same time or SBJ was slightly faster.

BrOmnImg®Y extends BrOmnlImg by using the conventional predicate to further reduce the
number of distances to be calculated by the similarity search predicate. In the performance evaluation,
we compared BrOmnImg®" with BrOmnImg. The results demonstrated that the methods did not
provide a significant difference in performance for queries composed of a similarity search predicate
with low selectivity. The complementary scenarios resulted in a performance gain of BrOmnImg®*
over BrOmnlImg that ranged from 29.50% to 54.21%.

We are currently extending BrOmnlmg to process analytical queries extended with image, geo-
graphic, and socioeconomic similarity predicates. To comply with this extension, we are also designing
different image, geographic, and socioeconomic star schemas, which may demand different query pro-
cessing costs. We also plan to carry out performance tests considering real data, such as data from
the COVID-19 disease. This will require efforts to generate the feature vectors and the attributes
for similarity search of the images, populate the image data warehouse, and analyze the behaviour of
BrOmnImg and BrOmnImg®F. Future work also includes improving the proposed methods with
the use of a distributed Bitmap Join Index and with the processing on GPUs. In this article, we eval-
uate the performance of the proposed algorithms regarding the time spent to process queries. Another
future work is to provide the time complexity analysis of the algorithms, which should consider aspects
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related to the complexity of the broadcast join and the Omni techniques, as well as the investigation
of the underlying characteristics of the parallel and distributed computing environment.
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