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Abstract. Association rules are a common task to discover useful and comprehensive relationships among frequent
and infrequent data. Frequent patterns describe a usual behavior, while infrequent ones represent uncommon knowledge.
Our interest lies in finding exception rules, a class of infrequent patterns that may have critical effects as a consequence.
Existing approaches for exception rule mining usually handle “Itemsets databases”, where transactions are organized
without temporal information. However, temporality may be inherent to some real contexts and should be considered to
improve the semantic quality of results. Moreover, these approaches implement a non-discriminatory support measure
to estimate the relevance of an item, thus interpreting a large volume of data that may be merely occasional as patterns.
Aiming to overcome these drawbacks, we propose TRiER (TempoRal Exception Ruler), an efficient method for mining
temporal exception rules that not only discover exceptional behaviors and their causative agents, but also identifies
how long consequences take to appear. We also present a new support measure to manipulate time series. This metric
considers the context in which a pattern occurs, thus incorporating more semantics to the results. We performed an
extensive experimental analysis in real multivariate time series to verify the practical applicability of TRiER. Our results
show TRiER has lower computational cost and is more scalable than existing approaches while finding a succinct and
relevant set of patterns.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

Keywords: Association Rule, Data Mining, Exception Rule, Time Series

1. INTRODUCTION

Time series occur in countless domains including economy, health and agribusiness. They are continu-
ously produced and stored, generating a large volume of data. This scenario motivates the development
of effective and efficient data mining methods to process, analyze and extract useful knowledge from
these data. We are particularly interested in association rule mining [Agrawal et al. 1993]. This task
has many practical applications since it expresses knowledge in an intuitive way for domain experts.
The common purpose is to discover frequent and reliable relationships, called strong rules. An ex-
ample of strong rule could be “with the help of antibiotics, the patient tends to recover” and it is noted
as antibiotics→ recovery. We call antibiotics as antecedent of the rule and recovery as consequent.

Although strong rules may be of interest to find unobserved frequent patterns, it is not applicable to
discover hidden infrequent ones. Few approaches deal with the extraction of infrequent knowledge. We
focus on those proposals that allow obtaining unusual and unexpected information, called exception
rules [Suzuki 1996; Hussain et al. 2000]. In general, an exception rule is related to an association rule
since for searching an exception we have to find an attribute, i.e. an agent, changing the consequent
of a strong rule. An example of exception rule could be “the use of antibiotics in a patient with
staphylococcus may lead to death” and can be noted as antibiotics and staphylococcus → death,
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where staphylococcus is the agent causing the exception. Mining strong and exception rules explains
the agents perturbing typical behaviors. As a result, previous control actions can be implemented in
scenarios where unexpected agents have critical consequences. An example of prior control action to
avoid staphylococcus is to properly maintain the patient hygiene in the hospital.

Existing methods for exception rule mining have some particularities that may not support the
characteristics of real, large and complex databases, such as time series. Specifically, such methods
only handle univariate data and consider exceptions are caused by a single agent (univariate agent).
Moreover, they manipulate Itemset databases, where transactions have no temporal organization.
However, temporality may be inherent to some real contexts and should be considered to improve the
semantic quality of results. Another limitation is the high computational complexity (of exponential
order) and the implementation of a non-selective support measure to estimate the relevance of a
pattern. In some cases, the number of mined patterns is so large that it requires a second-order data
mining task to select significant patterns and eliminate inconsistent and unnecessary ones.

Aiming to overcome these drawbacks, we propose TRiER (TempoRal Exception Ruler), a new method
for mining temporal exception rules. TRiER differs from existing methods on the following aspects:

(1) it handles multivariate time series and discovers exceptions caused by more than one agent (mul-
tivariate ones).

(2) it allows the agent causing the exception to occur in a time lag. A time lag indicates a delay, in
units of time, between the beginning of the antecedent and the end of the consequent of the rule.

(3) it proposes and implements a new support measure which is more selective than the classic one.
As a consequence, our method produces a succinct and relevant set of rules, thus facilitating the
understanding and interpretation of the domain experts.

(4) it is faster and more scalable than the current state of the art for exception rule mining, while
finding more semantically complete rules regarding temporality.

This work is an extension of the paper “TRiER: A Fast and Scalable Method for Mining Temporal
Exception Rules”, published in the 34th Brazilian Database Symposium (SBBD 2019). As main dif-
ferences we highlight an extended theoretical foundation about time series representation and further
details of the proposed method, focusing on a new support measure especially designed for temporal
data. In addition, we expanded our experimental analysis to validate our method in real datasets of
agrometeorology and El-Niño phenomenon. Our results reveal that TRiER is faster and more scalable
than related methods while finding a representative set of meaningful rules.

The remainder of the paper is organized as follows. Section 2 summarizes background concepts.
Section 3 presents related work and their characteristics. In Section 4 we describe TRiER and the
proposed support measure. Section 5 presents our experiments comparing TRiER with related methods.
Finally, Section 6 concludes with the main contributions of the paper.

2. BACKGROUND

2.1 Time Series

Time series is a sequence of time-ordered observations with regular time intervals between each pair of
observations [Mitsa 2010]. A time series is defined as S = {s1, s2, . . . , sm}, where si for i ∈ {1, . . . ,m}
corresponds to the occurrence of si at time ti. A univariate time series is created by only one underlying
variable, such as the dollar quote series. On the other hand, a multivariate time series is composed
of several variables at each time ti. An example is a weather time series with variables of rainfall,
maximum temperature and air humidity in each observation. We formally represent each observation
si of a multivariate time series as si = {si1, . . . , siD}, where si is a set with D variables.
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Time series can be rewritten in a more concise and manipulable representation for data mining
algorithms. There are several methods for time series representation, many of them with the objective
of discretizing the data. Discretization is the process of mapping continuous values into discrete ones.
Although discretization loses some details of the original data, discretized data can be more significant
and easier to interpret, contributing to a more consistent representation of the results in different data
mining tasks [Casanova et al. 2017].

The simplest discretization methods apply the equal-width and equal-frequency approaches. Equal-
width methods divide the values so that all ranges have the same width. In contrast, equal-frequency
ones divide the values so that all ranges have the same frequency of values. Thus, for a total of P
data, ranging from a to b, equal-width discretization produces b−a

q size ranges, where q is the desired
number of ranges, while the equal-frequency approach creates ranges with P

q data in each of them.
Figure 1 shows an example of equal-width and equal-frequency discretizations for 155 days of rainfall,
in which the equal-width approach divides the data into 8 ranges of width 10. In the first range, for
instance, rainfall varied between 0 and 10mm during 5 days. In contrast, the equal-frequency approach
divides the data into 5 ranges of different widths, so that all ranges have the same frequency, which
is 31 days. Considering the first range, rainfall varied between 0 and 24mm during 31 days, while in
the second one rainfall varied between 24 and 38mm in the same period.

Rainfall

D
ay
s

Rainfall

D
ay
s

Fig. 1. Equal-width and Equal-frequency discretizations.

In the context of this work, the representation method must meet the following premises:

(1) Do not group infrequent patterns, as it distorts the frequency at which they occur. If it happens,
exceptional and frequent patterns will have the same probability of occurring, affecting the quality
and semantics of discovered rules.

(2) Do not compress time series observations, that is, avoid representing a set of observations by some
criterion, such as the average, in a single observation.

(3) Act independently on each variable, such that it is possible to discern the meaning of each symbol
for each variable of a multivariate time series.

The equal-frequency approach and classical methods dictated by the data, such as clipping [Mitsa
2010] tend to group infrequent and frequent patterns and do not meet the first premise. This grouping
assumes all values in the range have the same probability of occurring, thus diluting unusual patterns.
Non-adaptive methods, such as PAA [Keogh et al. 2001] and SAX [Lin et al. 2007], reduce the number
of observations in a time series, compressing them by some criterion and do not satisfy the second
premise. As the equal-width approach satisfies the three defined premises, it will be used in this work.
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Although there are other approaches that meet the premises described, equal-width stands out for
being intuitive and simple to implement.

2.2 Association Rules

Given a set I (set of items) and a database DB composed of a set of transactions T , each one being a
subset of I, association rules are implications in the form X → Y that relate the presence of Itemsets
X and Y in transactions of DB, assuming that X,Y ∈ I, X ∩ Y = ∅ and X,Y 6= ∅. We call X
as antecedent and Y as consequent of the rule. The classic measures to assess association rules
are support (supp) and confidence (conf). Support calculates the frequency a rule occurred (freq)
considering the number of transactions T in the database. Equation 1 defines the support of X → Y .

supp(X → Y ) =
freq(X ∪ Y )

|T |
(1)

Confidence measures the probability of the consequent occurring in transactions that also contain
the antecedent. Equation 2 represents the confidence of X → Y .

conf(X → Y ) =
freq(X ∪ Y )

freq(X)
(2)

Given the minimum thresholds of support (minsupp) and confidence (minconf) informed by the
user, we say X → Y is frequent if supp(X → Y ) ≥ minsupp and confident if conf(X → Y ) ≥
minconf . Moreover, X → Y is strong if it is frequent and confident. An alternative to support-
confidence was proposed in [Berzal et al. 2002] where the accuracy is measured by means of certainty
factor (cf). Certainty factor aims to solve some of the confidence drawbacks. In particular, the
support-certainty factor measures reduce the number of obtained rules, filtering those corresponding
to statistical independence or negative dependence. As a consequence, extracted rules are stronger
than those obtained with support-confidence.

Certainty factor ranges from −1 to 1 and measures how the probability of Y being in a transaction
changes when it is known that X also is. Positive values indicate our belief increases, negative values
mean it decreases and 0 means no change. Analogously, we say X → Y is certain if cf(X → Y ) ≥
mincf , where mincf is the minimum threshold for certainty factor informed by the user. Equation 3
defines the certainty factor of X → Y .

cf(X → Y )


conf(X → Y )− supp(Y )

1− supp(Y )
if conf(X → Y ) > supp(Y )

conf(X → Y )− supp(Y )

supp(Y )
if conf(X → Y ) < supp(Y )

0 otherwise

(3)

3. RELATED WORK

The task of association rules is based on finding frequent and reliable relationships in databases. In
this context, a database is defined as a collection of transactions, each one consisting of a set of items.
Thus, to discover an association rule it is necessary to find items that cause the presence of others
in the same transaction. Traditional methods for association rules relate items disregarding their
occurrence orders [Agrawal et al. 1993]. However, time information is relevant for some applications
and should be analyzed to better understand semantic issues. Thus, sequence mining was introduced
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in [Agrawal and Srikant 1995] to find sequences of items considering the order they occur. There are
several approaches for sequence mining in literature. We thus discuss some of the most explored ones
and those closely related to our work.

Classic sequence mining algorithms were based on Apriori [Agrawal et al. 1993], like GSP (Gen-
eralized Sequential Patterns) [Srikant and Agrawal 1996]. Apriori-like algorithms usually include
candidate generation and validation steps, performed with support and confidence counts. A limita-
tion of Apriori-like approaches is the need for support calculations through a complete database scan,
comparing each item with all transactions. Aiming to reduce the processing time, approaches based
on vertical format, as ECLAT [Zaki 2000] and SPADE [Zaki 2001], and on pattern growth concept,
as Prefix-Span [Pei et al. 2001], were proposed.

Prefix-Span (Prefix-projected Sequential Pattern Growth) [Pei et al. 2001], for example, does not
require a candidate generation step. The database is recursively projected into smaller parts and fre-
quent sequences are directly extended to create larger ones. In general, sequence mining methods look
for sequences considering the order in which items occur and do not establish cause and consequence
relationships. In addition, they are pseudo-polynomial in time complexity [Dong 2009] and implement
a non-discriminatory support measure. Therefore, when applied to mine sequences with low support
thresholds, these algorithms generate an overwhelming amount of sequences in unfeasible time.

Low support thresholds concern the mining of infrequent patterns, that might be relevant to some
applications. We focus on those proposals that allow obtaining some unexpected and uncommon
information, called exception rules. In general, these approaches are able to manage rules that, being
infrequent, provide a specific domain usually delimited by a strong rule. Exception rules were first
defined as rules that contradict the user’s common belief. It means that for searching an exception we
have to find an attribute (also called agent) that changes the consequent of a strong rule. In general
terms, the kind of knowledge an exception rule discovers can be interpreted as follows.

“X strongly implies Y (and not E), but in conjunction with E, X does not imply Y ”.

Concepts and research work on exception rule mining are presented in [Suzuki 1996] and [Hussain
et al. 2000]. According to Suzuki, an exception rule is formally defined as:

X → Y (high supp and high conf − strong rule).
X ∧ E → ¬Y (low supp and high conf − exception rule).

X 9 E (high supp and high conf − reference rule).

X → Y is a strong rule and indicates a common behavior. X ∧ E → ¬Y is an exception rule and
shows that the presence of item E has modified the expected consequent of the strong rule, that is,
E is the agent causing the exception (¬Y ). X 9 E is a reference rule and determines the antecedent
of the rule should have no association with the agent causing the exception. A similar definition is
presented in [Hussain et al. 2000]. The difference lies in the reference rule, where the agent causing
the exception may have association with the unexpected behavior (E → ¬Y ).

Recalling staphylococcus example, a valid set of rules based on Suzuki’s definition would be:

Strong Rule: with the use of antibiotics the patient tends to recover.
Exception Rule: the use of antibiotics in patients with staphylococcus can lead to death.

Reference Rule: patients taking antibiotics do not acquire staphylococcus bacteria.

Considering Hussain’s definition, only the strong and exception rules would be the same. A valid
example of a reference rule in this application domain would be:

Reference Rule: patients taking antibiotics can acquire staphylococcus bacteria.
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Different definitions for exception rule mining focus only on finding unusual and contradictory
behavior [Daly and Taniar 2008], while Suzuki’s and Hussain’s also allow inferring the agent causing
the exceptional behavior.

The Exception Rule Search Algorithm (ERSA) [Calvo-Flores et al. 2011] is based on the definition
introduced in [Suzuki 1996] but it does not use a reference rule. Authors argue this rule does not offer
a semantic enrichment when defining exceptions and reformulate the definition as the pair of strong
and exception rules as follows.

X → Y (frequent and certain − strong rule).
E → ¬Y (certain in the domain of the strong rule antecedent − exception rule).

ERSA basic operation is described below. The transaction database is first converted into a binary
format to search the set of frequent items and select strong rules. ERSA maintains a single set with
all candidate rules. Thus, for each rule X → Y , ERSA completely scans this set (which tends to be
large) to search for a valid exception, that is, a rule whose antecedent contains X and the consequent
is different from Y . ERSA applies confidence or certainty factor to filter relevant rules. Its complexity
is O(Trl2l), where T is the number of transactions in the database, l is the quantity of items and r
is the number of discovered rules.

Recent methods for exception rules are based on fuzzy logic, as the Fuzzy Exceptional Rule Search
Algorithm (FERSA) [Ruiz et al. 2016]. Although it is similar to ERSA in development and imple-
mentation terms, fuzzy logic is applied to avoid problems of inaccuracy and data inconsistency.

To the best of our knowledge, there is no method in literature to find exception rules caused by
more than one agent. Recall staphylococcus example: although a combination of agents may cause
the patient death, related methods only recognize staphylococcus as causative agent. Moreover, those
methods do not consider temporality in the exception rule mining process.

4. THE PROPOSED METHOD

We propose TRiER (TempoRal Exception Ruler), a fast and scalable method for mining temporal
exceptions rules and their corresponding strong rules. Mining both rules allows a better understanding
of the agents that perturb the strong rule’s usual behavior. TRiER expands the state of the art on
exception rule mining by discovering unusual knowledge caused by multivariate agents and revealing
how long the consequences take to appear. The kind of knowledge TRiER discovers is described below.

“X strongly implies Y after a time t. But X and E (even if E occurs later) implies something
different from Y after a time v”.

Recall staphylococcus example, a valid set of rules considering TRiER’s definition is:

Strong Rule: with the use of antibiotics the patient tends to recover in two weeks.
Exception Rule: the use of antibiotics in patients who acquire staph bacteria after 5 days may

lead to death in the next month.

TRiER effectively deals with univariate and multivariate time series and implements the concepts
of window and time lag. A window (w) of a time series S is a sequence of events that occurs in a
continuous interval, starting at time tb and ending at time te, such that events tb and te belong to
w. The window is used to restrict the maximum size of the sequential pattern, that is, the maximum
number of consecutive observations the pattern can have. Time lag (tlag) is a delay between the
beginning of the antecedent and the end of the consequent. Time lag follows the temporal granularity
of time series, such as days, months or years.
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We divide our method in three main steps: (1) Sequence Mining, (2) Rules Discovery and (3)
Exception Rule Mining, as illustrated in Figure 2. Additionally, TRiER requires some representation
(discretization) method for continuous data and pre-processing activities to treat missing values and
noise, for example.

Strong 
rules

Infrequent 
rules

Exception

1 2 3

Sliding window
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B
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J
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L
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O
P
Q
R P P O P

I L G J 
E B E D

Pre-processing

Representation
Sequence Mining Rules Discovery

Exception Rules 
Mining

TRiER TRiER TRiER

Fig. 2. TRiER overview.

TRiER does not restrict a representation method, but the application user must consider the infre-
quent nature of the patterns to be mined in order to choose an appropriate method, i.e., a method
that fulfills the three premises presented in Section 2.1. We also suggest to apply a missing value
treatment method, such as interpolation. Otherwise, there may be a semantic loss in the patterns
obtained. Once pre-processing and representation activities are performed, the TRiER steps can be
effectively started, as described in the following sections.

4.1 Sequence Mining

In Sequence Mining we create sequences that will generate strong and infrequent rules. It is the most
expensive step, as it consists of a combinatorial process. We apply two parameters in the discretized
dataset: the window size (w) and the minimum support for a sequence to be considered frequent.

One of the main contributions of TRiER is the proposal of a new support measure. The classic
support measure (Equation 1) is not intended for manipulating time series and, therefore, it may
generalize information about the pattern’s occurrence. In order to better understand the context in
which a pattern occurs, the measure we propose considers two scenarios:

(1) Number of times a pattern occurs.
(2) Number of time series containing the pattern.

The classic measure makes no distinction from the first scenario. It means that if a pattern occurs
numerous times or only once in a time series, it will have the same contribution in support calculation.
This assumption represents a semantic loss, because when manipulating temporal data it is relevant
to understand how the pattern occurs at different observations of a time series.

The second scenario allows to understand how the pattern occurs in the entire database. Specifically,
if a pattern occurs numerous times in a single series, but does not occur regularly in the database, it
may indicate a very specific behavior in that time series. Therefore, considering it as a pattern may
be inconsistent.

Thus, our new measure (suppTRiER) considers these scenarios to establish a more comprehensive
view of the occurrence of the pattern. Equation 4 formalizes our measure: L is the number of time
series in the database, P is the number of observations in the database (the sum of the observations
of each time series that makes up the database), j is the number of time series in which a sequence
occurs and f is the number of times a sequence appears.
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suppTRiER =
f

P
· e(

j
L−1) (4)

The factor f
P represents the probability of the pattern occurring in the database, while the expo-

nential varies according to the probability of the pattern occurring in a time series. As the function
ex is strictly increasing, suppTRiER increases as the number of series in which the pattern occurs also
increases, that is, if two patterns have the same probability of occurring in the database, the pattern
with the greatest support will be the one that appears in more time series.

Algorithm 1: TRiER sequence mining
Input : Discretized data, Window (w), Minimum support (minsuppTRiER)

Output:
Frequent Sequences (SeqFreq)

1 begin
2 foreach (discretization symbol α) do
3 Support calculation
4 if (α support ≥ minsuppTRiER) then
5 SeqFreq ← α

6 foreach (sequence seqi ∈ SeqFreq) do
7 foreach (sequence seqj ∈ SeqFreq with the same number of variables as seqi) do
8 seqnew ← seqi ∪ seqj
9 if (total of variables of seqnew = total of variables of seqi + 1) then

10 Support calculation
11 if (seqnew support ≥ minsuppTRiER) then
12 SeqFreq ← seqnew

13 foreach (sequence seqd+1 ∈ SeqFreq) do
14 foreach (sequence seqo+1 ∈ SeqFreq with the same number of observations as seqd+1) do
15 seqnew ← seqd+1 + seqo+1

16 if (total of observations of seqnew = total of observations of seqd+1 + 1) then
17 Support calculation
18 if (seqnew support ≥ minsuppTRiER) then
19 SeqFreq ← seqnew

Algorithm 1 describes Sequence Mining step, which is composed of three tasks: (1) mining sequences
with one variable (lines 1 to 5), (2) mining sequences with n variables and one observation (lines 6
to 12) and (3) mining sequences with n variables and p observations (lines 13 to 19). In the first
task, we calculate the support of each representation symbol, selecting those that meet the minimum
support threshold (minsuppTRiER). In the second task, we create sequences with one observation and
n variables. To create a frequent sequence with n variables, we join two frequent sequences seqi and
seqj with n−1 variables, so that the intersection of such sequences has n−2 variables. Specifically, the
junction of seqi and seqj will compose the set of frequent sequences (SeqFreq) if seqnew is frequent
and has the number of variables of seqi +1.

In the last task, we obtain sequences with multiple observations and variables. We thus join two
frequent sequences seqd+1 and seqo+1 with p−1 observations to form a candidate with p observations,
so that the first p − 2 observations of a sequence match the last p − 2 observations from the other
sequence. This task ends when we reach the window size.

As mentioned earlier, Sequence Mining is a costly step. In our Java implementation of TRiER, our
strategy to improve the efficiency of this step is described as follows. Initially, time series are stored
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in a map structure, called Hash Map. This structure is composed of key and value sets that permit
to return objects quickly, with constant complexity. Keys are formed by items and an item indicates
an observation in a time series. The value of each key is a Tree Set composed of pairs in the format
(i:j), where j is a time series identifier containing the key in the instant i. Tree Set implements a red
black tree to sort (i:j) pairs and performs the most common operations in logarithmic complexity.

The Sequence Mining step is O((wLmDw)2log(Lm)), where w is the window size, L is the number
of time series in the database, m is the number of observations in a time series and D is the number
of variables in each observation. Although it is a high complexity, TRiER is exponential in relation
to the window size, while related works are exponential in relation to the number of items/sequences
discovered, a potentially much larger number.

4.2 Rules Discovery

In this step we extract strong and infrequent rules with time lag (if any) from sequences previously
mined. From a sequence with p observations it is possible to extract rules with time lag ranging
from 1 to p − 1. If time lag is 1, the antecedent and the consequent of the rule occur in subsequent
observations, respectively. If time lag is p − 1, the antecedent is in the first observation and the
consequent in the last observation. For each time lag possibility, potential rules are generated. From
sequence P S, P L,E, P R, for example, it is possible to extract the following rules:

—P S, P L,E → PR (rule with time lag 1, since P R occurs immediately after P S, P L,E).
—P S, P L→ P R (rule with time lag 2, because P R occurs two units of time after P S, P L).
—P S → P R (rule with time lag 3, since P R occurs three units of time after P S).

Traditional measures for rules validation (confidence and certainty factor) are composed of the sup-
port metric. Since TRiER proposes and implements a new support measure, confidence and certainty
factor implemented by our method follow the new measure and are respectively called confTRiER and
cfTRiER. Thus, rules possibilities are evaluated with the following parameters:

(I) Minimum support of the strong rule (minsuppTRiER−str).
(II) Minimum support of the infrequent rule (minsuppTRiER−inf ).
(III) Maximum support of the infrequent rule (maxsuppTRiER).
(IV) Minimum confidence (minconfTRiER).
(V) Minimum certainty factor (mincfTRiER)

Figure 3 illustrates how we classify strong and infrequent rules. A rule is strong if its support-
confidence or support-certainty factor meets these minimum thresholds (parameters I, IV or V).

Strong rule: frequent and confident/certain

Minimum support for strong rules.

Maximum support for infrequent rules.

Minimum support for infrequent rules.

Infrequent rule: infrequent and confident/certain

Su
pp

or
t

Fig. 3. Classification of strong and infrequent rules.
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In addition, a rule is infrequent if it meets a minimum support threshold for infrequent rules
(minsuppTRiER−inf ) and its support is less than a maximum support (maxsuppTRiER). We ap-
ply a maximum support threshold to assure the support of infrequent rules does not exceed the
minsuppTRiER−str of strong rules.

4.3 Exception Rule Mining

Once the rules are classified in strong and infrequent we start the Exception Rule Mining step, where
we consider a different definition for exception rules. The main difference of our definition to literature
ones is that we consider an exception rule as infrequent. We argue those rules are naturally atypical
and indicate an unusual behaviors, so the maximum support of exception rules should not exceed the
minimum support of a strong rule. Thus, an exception rule is formalized as follows.

X → Y (frequent and confident/certain − strong rule)
X ∧ E → ¬Y (infrequent and confident/certain − exception rule)

For each strong rule found, the set of infrequent rules is analyzed to identify a rule that meets
the following restrictions: (1) The antecedent of the infrequent rule must contain the antecedent of
the strong rule and (2) the consequent of the infrequent rule must not contain or be included in the
consequent of the strong rule. The infrequent rule satisfying those constraints indicates an exception
to the analyzed strong rule.

We remark the agent causing the exception may occur in a time lag, as long as it occurs before
the rule consequent. We also enable exceptions to be caused by more than one item. Algorithm 2
summarizes the main idea of Rules Discovery and Exception Rule Mining steps.

Algorithm 2: TRiER rules discovery and exception rule mining
Input : Frequent sequences, minsuppTRiER−str, minsuppTRiER−inf , maxsuppTRiER, minconfTRiER or

mincfTRiER

Output: Temporal exceptions and their corresponding strong rules

1 begin
2 foreach sequence seq ∈ freqSequences do
3 for (p = 0 to p ≤ seqsize− 2) do
4 generate rules from the current sequence with time lag tlag
5 filter generated rules using mincfTRiER or minconfTRiER

6 if (rule support ≥ minsuppstr) then
7 strong rules ← rule

8 else if (rule support ≥ minsuppinf ∧ rule support ≤ maxsupp) then
9 infrequent rules ← rule

10 foreach strong rule str ∈ strong rules do
11 foreach infrequent rule inf ∈ infrequent rules do
12 if (str antecedent ⊂ inf antecedent ∧ str consequent ⊂/ inf consequent) then
13 exception rules ← strong rule and its exception rule

The resulting complexity of Rules Discovery and Exception Rule Mining steps is O(yw)2, where y
is the number of mined sequences and w is the window size. As the number of frequent sequences
is reduced due to the new support measure, these steps are performed quickly and this is the main
difference in terms of efficiency and effectiveness between TRiER and competing methods.
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5. EXPERIMENTAL ANALYSIS

Our experimental results on real data show the usefulness, effectiveness and efficiency of TRiER when
compared to related methods. We first analyze the relevance of sequences mined by TRiER and Prefix-
Span, one of the most efficient methods of sequence mining. Finally, we compare TRiER with the state
of the art method for exception rules, ERSA. Experiments were performed on an Intel Core i7, 3.40
GHz computer with 16 GB of RAM and a SATA hard disk.

5.1 AgroData and El-Niño Datasets

The experimental study in real data aims to investigate whether TRiER and related methods can offer
effective and efficient support for discovering knowledge in agrometeorology and climate. We thus
performed experimental analysis on two datasets, namely AgroData and El Niño. This study can help
domain experts gain new insights into common and exceptional behaviors.

For our first dataset we chose data from agrometeorology, since agriculture plays a fundamental
role in the economy of several countries. In Brazil, for example, agribusiness accounts for 23% of
GDP and 40% of the labor. Mining exception rules in agrometeorology may help us to identify which
climatic conditions most affect crops and how quickly implications arise. As a result, previous control
actions could be carried out in regions with similar characteristics to minimize severe impacts caused
by extreme weather, as droughts. Our analysis focus on sugarcane, due to its importance for ethanol
production and Brazil’s economy.

We then constructed AgroData, a multivariate time series dataset combining climatic and vegeta-
tive index variables. We collected climatic time series from the National Institute of Meteorology1

(INMET) and they are composed of rainfall, maximum and minimum temperatures variables.

Vegetation index data were obtained with SATVeg2, a tool maintained by Embrapa3 that extracts
NDVI time series from TERRA/MODIS satellite images. NDVI (Normalized Difference Vegetation
Index) is a widely used index in agricultural research that represents the soil vegetative vigor. NDVI
ranges from −1 to 1: values close to 1 indicate strong vegetative activity while negative or close to 0
values describe regions where there is weak or no chlorophyll activity. We collected NDVI time series
of sugarcane from 2014 to 2018. Time series are composed by 60 monthly observations from the state
of Sao Paulo, the largest sugarcane producing state in Brazil.

In order to compose AgroData dataset, the climatic data were associated with NDVI ones con-
sidering the restriction a sugarcane record must be at most 70 km distant (geodesic distance) of a
meteorological station. The resulting dataset is multivariate and composed of 60 monthly observations
of NDVI, rainfall, maximum and minimum temperatures (MaxTemp and MinTemp, respectively),
from 2014 to 2018. Figure 5.1 illustrates the mapping for AgroData, in which sugarcane regions are
highlighted in green and the weather stations monitoring them are symbolized by purple stars.

Our second dataset includes the El Niño data available in Kaggle4. The dataset is originally com-
posed of daily ocean and meteorological readings salted by buoys positioned throughout the equatorial
Pacific from 1980 to 1998 and has the information of intensity of southern winds, relative humidity, air
temperature and sea surface temperature. In our experiments we remodeled the temporal granularity
of the data to monthly, since cause and consequence relationships in climatic data are not instanta-
neous. We selected the period from 1997 to 1998 as research period because of the strong intensity
of the phenomenon in these years. The resulting dataset is composed of 12 monthly observations

1http://www.inmet.gov.br/portal/
2https://www.satveg.cnptia.embrapa.br/satveg/
3https://www.embrapa.br/
4https://archive.ics.uci.edu/ml/datasets/El+Nino
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Fig. 4. Weather stations and sugarcane areas in Sao Paulo.

of intensity of southern winds V entMer, humidity Umid, air temperature TemSup and sea surface
temperature TempMar. Table I describes AgroData and El-Niño datasets.

Table I. Datasets descriptions.
Dataset Time series size (m) Variables (D) Dataset size (L)
AgroData 60 monthly observations MaxTemp, MinTemp, NDV I and rainfall 24, 420 time series
El-Niño 12 observations V entMer, Umid, TempMar, TempSup 71, 885 time series

5.2 Sequence Mining

This experiment aims to investigate the efficiency of Prefix-Span and TRiER in the most costly phase
of the mining process, i.e. sequence mining. Accordingly, we measure running time as we increase the
window size (w) and the minimum support threshold. As the temporal granularity of series is monthly,
the window size is given in months (w = 1, for instance, means one month). The implementation of
Prefix-Span used is available in SPMF5 tool, where the method is implemented in Java. This tool is
a reference in pattern mining, specifically in Sequence Mining and Itemsets [Gan et al. 2019].

Each algorithm was executed 5 times and Table II summarizes their average time in minutes for
AgroData. The green data represent the method which performed better and the red data indicate
the opposite. The maximum window size evaluated is 5 due to an efficiency bottleneck of Prefix-Span,
as after this threshold its processing time grows abruptly. Thus, the evaluation of larger windows
would make the execution of this experiment unfeasible.

As we increase the window size the performance of Prefix-Span degrades, as shown in Figure 5. The
reason is that Prefix-Span implements a non-discriminatory support measure and if an item occurs
only once or countless times, it has the same contribution in support calculation. As a consequence,
it generates an overwhelming number of sequences, which include a large amount of irrelevant and
unnecessary information. The increase in the window size is directly related to the sequence size. As
Sequence Mining is a combinatorial task, larger sequences require more execution time.

5http://www.philippe-fournier-viger.com/spmf/
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Table II. Time spent in sequence mining for AgroData dataset, in minutes.

w = 2 w = 3 w = 4 w = 5Minimum Support
Prefix-Span TRiER Prefix-Span TRiER Prefix-Span TRiER Prefix-Span TRiER

0.05 0.067 7.416 1.494 19.166 34.324 26.5 811.613 29.75
0.1 0.066 3.5 1.428 6.916 34.319 8.583 806.415 10.2
0.15 0.066 2.25 1.427 3.833 33.906 4.333 784.452 6.3
0.2 0.065 1.116 1.421 1.916 33.346 1.935 735.166 3.383
0.3 0.065 0.75 1.352 0.8 32.744 0.816 648.352 1.25
0.4 0.064 0.383 1.319 0.416 32.380 0.4666 565.446 0.65
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Fig. 5. AgroData dataset: time spent in sequence mining, in minutes.

For small windows, TRiER mines sequences at a viable run time, although it does not achieve the
performance of Prefix-Span, which uses a database projection approach. However, when the window
size increases, TRiER’s growth rate of time spent is more stable and considerably less than the one of
Prefix-Span. The efficiency bottleneck of Prefix-Span is in mining larger sequences (as size 4) with
low support thresholds. Mining of larger sequences are relevant in domains where long-term analysis
is desired. Mining low support sequences is useful where it is intended to discover atypical patterns.
TRiER, on the other hand, has superior performance in these cases, because it implements a selective
support measure that limits the number of mined sequences and, consequently, minimizes the time
needed to generate combinations of larger sequences.

Figure 6 illustrates the significant growth in the number of sequences mined by Prefix-Span as the
window size increases. For small windows (2 and 3) the number of sequences is feasible, 1397 and
50515 respectively. When the window size increases (4 and 5), the number of sequences is immense,
1693404 and 52520544 respectively. As the rules will come from this volume, they will also be huge.
Thus, instead of creating knowledge to facilitate expert analysis, this amount of information will
require a second-order data mining task to weed out irrelevant patterns and filter necessary ones.
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Fig. 6. Sequences generated by TRiER and Prefix-Span for 5% of minimum support for AgroData dataset.

Figure 7 presents the time spent for Prefix-Span and TRiER in Sequence Mining for El-Niño data.
Similarly to the AgroData data, results show large window sizes and low thresholds of support are
efficiency bottlenecks for Prefix-Span method.

Minimum supportMinimum support

Minimum supportMinimum support

Time Analysis in Sequence Mining Time Analysis in Sequence Mining

Time Analysis in Sequence MiningTime Analysis in Sequence Mining

Ti
m

e 
in

 m
in

ut
es

Ti
m

e 
in

 m
in

ut
es

Ti
m

e 
in

 m
in

ut
es

Ti
m

e 
in

 m
in

ut
es

Fig. 7. El-Niño dataset: time spent in sequence mining, in minutes.

The main difference in sequences volume mined by related works and our method is the support
measure. The support measure we propose is more selective and significantly reduces the number of
mined patterns. The advantage is the knowledge discovered is feasible to manipulate and analyze.
Specifically, the new support measure is based on discovering relevant knowledge instead of an over-
whelming volume of patterns, which potentially contains a large number of redundant and unnecessary
information. Figure 8 shows the number of patterns generated by TRiER with the traditional support
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measure (dark blue) and the proposed measure (light blue) for the AgroData dataset from 2017 to
2018 using different window configurations for 5% of minimum support.

2 3 4
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Comparison between the new support measure and the traditional one

Fig. 8. AgroData dataset: Mined sequences with the traditional support measure and the new one.

We can note the proposed measure generates significantly fewer patterns than the traditional mea-
sure. For window 5, for example, the new support measure generates 936 sequences while the tradi-
tional measure discovers 45328 sequences.

5.3 Rules Discovery and Exception Rule Mining

This experiment aims to investigate the effectiveness and usefulness of TRiER and the state of the
art method for mining exceptions, ERSA. We analyze results from two perspectives: the time taken
to discover rules and their semantic relevance. Figure 9 illustrates time spent by TRiER and ERSA
to discover exception rules in AgroData dataset and Figure 10 represents the results for the El-Niño
dataset. TRiER was tested with different windows w = {2, 3, 4, 5} to analyze how this parameter
influences on the rule discovery step. Although ERSA generates all the possibilities of frequent
Itemsets, we restricted the maximum Itemset size to 5 so that the time taken was not impractical.
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Fig. 9. AgroData data: Time spent by ERSA and TRiER to discover exception rules, in minutes.
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Fig. 10. El-Niño data: Time spent by ERSA and TRiER to discover exception rules, in minutes.

As ERSA generates a huge number of rules, we measured times with 60% of certainty factor for
both algorithms. Rules generated only by confidence or lower values of certainty factor exceeded
the computational resources available to perform the experiment. Unlike TRiER that deals with
multivariate data and understands a time series is composed of 60 observations and each observation
has 4 variables, ERSA does not make this distinction and considers a time series as one Itemset with
240 items, that is, 60 observations of each variable (dimension).

To discover exception rules, ERSA first generates frequent Itemsets. The way it was planned ERSA
would generate 2x candidates, where x is the number of symbols used in representation. For that
reason we limited the maximum Itemset size to 5. Then, the number of possible candidates is the
number of sets with up to 5 elements we can form with the number of symbols used in representation.

Another problem that degrades ERSA performance is the way it searches for exceptions. The rules
are stored in a single set, without distinction of strong and infrequent rules. Thus, for each strong
rule, the set is scanned again to identify an exception rule. This step is one of ERSA’s efficiency and
effectiveness bottlenecks. Efficiency bottleneck because the set tends to be large and is wholly scanned
every time a strong rule is found. Effectiveness bottleneck because many unnecessary and irrelevant
rules can be interpreted as an exception, which can hinder and confuse the expert’s analysis.

In contrast, TRiER classifies discovered rules between strong and infrequent. Thus, for each strong
rule the set of infrequent rules is analyzed to discover an exception that meets the premises defined in
Section 4. Specifically, TRiER does not scan the whole rules set but only those classified as infrequent, a
much smaller set. In order to base the semantic analysis of discovered rules, we present some examples
of rules generated by TRiER and ERSA. Table III presents examples of rules mined by TRiER.

Table III. Rules discovered by TRiER for AgroData and El-Niño datasets.
Rule X Z ¬Y Y tlag supp conf cf

1 MinTemp[18, 20] rainfall[0, 50] NDVI [0.2,0.4] NDVI [0.6, 0.8] 1 5.09% 74.38% 69.17%

2 MaxTemp[28, 30] rainfall[450, 500] NDVI [0.6, 0.8] NDVI [0.4, 0.6] 1 9.82% 84.53% 70.96%

3 MinTemp[20, 22]
MaxTemp[32, 34] and
rainfall[100, 150]

NDVI [0.8, 1.0] NDVI [0.6, 0.8] 1 14.25% 85.47% 79.63%

4 V entMer[8, 10] V entMer[2, 4] TempSup[27.5, 29.5] TempSup[23.5, 25.5] 3 8.13% 81.34% 76.45%

5 V entMer[10, 12] Umid[15, 30] TempMar[26.5, 28.5] TempMar[22.5, 24.5] 2 8.25% 82.30% 76.71%

Values are presented in intervals, due to the discretization process. Temperatures are measured
in degree Celsius, rainfall in millimeters and time lag in months. Support, confidence and certainty
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factor relate to exception rules. Recall exception rules definition: X is the rule antecedent, Z is the
agent causing the exception, ¬Y is the exceptional consequent and Y is the expected consequent.
Rules presented in Table III can be respectively described as follows:

— Rule 1

Strong rule: If the minimum temperature varies between 18◦C and 20◦C, NDVI remains between
0.6 and 0.8 in next month.

Exception Rule: If the minimum temperature remains with this value and rainfall varies between
0 and 50mm, NDVI decreases to 0.2 and 0.4 in next month.

— Rule 2

Strong rule: If the maximum temperature varies between 28◦C and 30◦C, NDVI remains between
0.4 and 0.6 in next month.

Exception Rule: If the maximum temperature remains with this value and rainfall varies between
450 and 500mm, NDVI increases to 0.6 and 0.8 in next month.

— Rule 3

Strong rule: If the minimum temperature varies between 20◦C and 22◦C, NDVI remains between
0.6 and 0.8 in next month.

Exception Rule: If the minimum temperature remains with this value, maximum temperature
varies between 32◦C and 34◦ and rainfall varies between 100 and 150mm, NDVI increases to 0.8 and
0.1 in next month.

Rule 1 shows that periods of low rainfall (causative agent) contributed to the decrease in NDVI
(exceptional behavior). This rule can be validated by studies conducted by Embrapa6, in which
experts state that periods of low rainfall damage sugarcane crops and are responsible for reducing
NDVI [Lucas and Schuler 2007]. In contrast, experts say that periods of intense rainfall are related
to the increase in NDVI (Rule 2) and periods with regular rainfall are ideal for sugarcane (Rule 3).

— Rule 4

Strong rule: If the southern winds vary between 8m/s and 10m/s, the surface temperature varies
between 23.5◦C and 25.5◦C after three months.

Exception Rule: If the southern winds remain at this value, but decrease after two months and
vary between 2m/s and 4m/s, the surface temperature increases and varies between 27.5◦C and
29.5◦C after three months.

— Rule 5

Strong rule: If the southern winds vary between 10m/s and 12m/s, the sea surface temperature
varies between 22.5◦C and 24.5◦C after two months.

Exception Rule: If the southern winds remain at this value and the air humidity varies between
15% and 30%, the sea surface temperature increases and varies between 26.5◦C and 28.5◦C after two
months.

6https://www.embrapa.br/
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These rules are corroborated by the existing knowledge about the El-Niño phenomenon which states
that low intensity winds are associated with the increase in the Earth’s surface temperature (Rule 4).
Also, when low intensity winds are combined with low air humidity, sea surface temperature increases
(Rule 5) [Marcuzzo and Romero 2013].

Rules discovered by ERSA are semantically restricted since they only allow inferring about rela-
tionships and do not consider the temporal aspect. Examples of rules mined by ERSA for AgroData
and El-Niño datasets are:

— Rule 1

Strong Rule: If the minimum temperature varies between 18◦C and 20◦C, NDVI varies between
0.4 and 0.6. Support: 58.53%, confidence: 61.20% and certainty factor: 60.43%.

Exception Rule: If the minimum temperature remains at this value and rainfall varies between
200mm and 250mm, NDVI varies between 0.6 and 0.8. Support: 54.13%, confidence: 65.78% and
certainty factor: 59.58%.

— Rule 2

Strong Rule: If the surface temperature varies between 23.5◦C and 24.5◦C, the sea surface temper-
ature varies between 22.5◦C and 24.5◦C. Support: 55.12%, confidence: 66.22% and certainty factor:
62.17%.

Exception Rule: If the surface temperature remains at this value and the air humidity varies
between 30% and 45%, the sea surface temperature varies between 26.5◦C and 28.5◦C. Support:
63.56%, confidence: Support: 61.28% and certainty factor: Support: 60.45%.

6. CONCLUSION

In this paper we proposed TRiER, the precursor in the area of Exception Rule Mining with support
for multivariate time series. Our method applies the concept of window as a constraint in sequence
mining process. Such window enables to discover rules and exceptions that occur in a time lag.

In this context, TRiER not only discovers common behaviors (strong rules) and their contradictions
(exception rules), but also identifies how long consequences take to appear and the multiple agents that
may have caused the exceptional behavior. Identifying temporality in patterns increases semantics to
the results and allows a better understanding of the circumstances in which a pattern occurs. Our
method enriches the state of the art by discovering rules with greater semantic relevance, in addition
to being faster and more scalable than the main competing method for exception rule mining, ERSA.

We also presented a new support measure (suppTRiER), which significantly reduces the number of
mined patterns, resulting in a manipulable set of rules for domain experts. The proposed measure
can also be reused by other methods that manipulate time series. Besides support-confidence, TRiER
implements support-certainty factor. We apply certainty factor as an alternative to confidence to filter
rules corresponding to statistical independence or negative dependence.

Finally, the computational complexity of our method is lower when compared with related methods
for Sequence Mining. While TRiER is exponential in relation to the window size, competing methods
are exponential in relation to the number of items/sequences, a potentially much larger number.
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