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Abstract. In traditional classification an instance is assigned to one class within a small set of classes. However, there
are problems where an instance is related to many classes hierarchically structured, known as Hierarchical Classification
(HC), which is present in many domains like Text Categorization, Music Genre Classification and Bioinformatics. A
topic that has gained attention recently is the classification of Transposable Elements (TEs), which are DNA sequences
capable of moving inside the genome. TEs have a great importance in the genetic variability of species, since they
can modify the functionality of host genes. Despite the research relevance, just a few tools perform its automatic
classification and most of them do not use more elaborated strategies, like using Machine Learning to learn models from
data. Moreover, the interpretability of these methods is still an issue. In this work, we extend the original study that
proposed the global method HC-GA, presenting some improvements such as new fitness functions which were compared
and analyzed per level and in the leaf nodes, as well as with respect to the interpretability of the rules generated.
Besides, we compare the new best results of HC-GA with the results of flat methods previously reported in the original
paper for the task of predicting the TEs leaf node classes. As experiments showed, flat methods do not performed
well for HC datasets, even ignoring the hierarchical relationships among classes. We believe this occurred due the high
imbalance of these datasets, which is something that flat methods do not handle well, unlike HC ones. HC-GA overcame
flat classifiers, presenting promising results for multiple class levels including leaf node classes, even though it was not
originally designed for this purpose, and considering the difficulty of predicting lower classes in a hierarchy.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining; I.2.6 [Artificial Intelligence]:
Learning

Keywords: Genetic Algorithms, Hierarchical Classification, Machine Learning, Rule Induction, Transposable Elements

1. INTRODUCTION

In Machine Learning (ML), most of the related works on classification tasks addresses Flat Classi-
fication, where an instance from a dataset is associated with one class within a usually small set of
classes [Mitchell et al. 1997]. However, there are more complex problems where instances can be
assigned to many classes simultaneously, within dozens or even hundreds of classes arranged in a hier-
archical structure, which has certain constraints. This kind of classification is known in the literature
of ML as Hierarchical Classification (HC) [Silla and Freitas 2011].

One of the major areas for applying HC methods is Bioinformatics, which as already pointed out
in the literature, when used in combination with ML often results in better predictions compared to
other approaches [Loureiro et al. 2013]. In this context, a topic that has gained attention in the last
years is the study of Transposable Elements (TEs), which are fragments of DNA capable of moving
within the genome of their hosts [Biémont 2010; Jurka et al. 2005; McClintock 1993]. According to
recent research, TEs are responsible for mutations in a variety of organisms, including the human
genome, being responsible for the genetic variability of many species [Kazazian 2004; Rebollo et al.
2012; van de Lagemaat et al. 2003]. Thus, the correct classification of these elements brings benefits to
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the understanding of several species as well as how their evolution has occurred, which are important
aspects for the field of Biology and Bioinformatics [Feschotte 2008; Wheeler et al. 2012].

Despite the relevance of creating classification models for TEs, there are just a few tools in the
literature which can actually perform their automatic classification [Altschul et al. 1990; Smit et al.
1996; Steinbiss et al. 2009; Abrusán et al. 2009; Feschotte et al. 2009; Hoede et al. 2014]. However,
most of these tools do not use more elaborated strategies, like using ML to generate models from data.
Also, none of them has treated the TEs classification task with HC, which can bring more semantics
to the classification problem, like in terms of classes relationships information, which is very useful
for biologists. Moreover, the lack of interpretability in these methods is still an open issue.

This paper presents an extension of the work proposed in [Pereira and Cerri 2017], which presented
a new global hierarchical method based on a Genetic Algorithm (GA) called HC-GA, that is capable
of generating and evolving HC rules. In this current work, we improve the HC-GA by implementing
a variety of new fitness functions that allow new best results for the TEs hierarchical datasets. In
addition, more elaborate experiments were performed as an analysis per level and an interpretability
analysis of the models generated by each fitness used. Besides, the results from the previous study were
included, like the ones with well established ML methods, the aim of which is to verify the potential
of flat strategies predicting the leaf node classes of TEs. Even though the hierarchical method HC-GA
was not specifically designed to predict leaf classes, we compare its performance with flat methods in
order to check if there are problems with these operations. Also, we verify the predictions made by
HC-GA in several levels of the TEs class hierarchy since in HC problems, obtaining good accuracy in
multiples levels is a challenging and important task.

To summarize, the contributions of this work are as follows:

—Implementation of a variety of new fitness functions in HC-GA, some of them more focused on
accuracy and others on the model’s interpretability;

—More experiments with HC-GA were performed using the new fitness functions, including an analysis
per level and for the particular case of leaf class prediction, besides the interpretability analysis of
the sets of rules generated;

—A comparison of the new best results for the proposed hierarchical method with some non-hierarchical
methods in the challenging task of predicting the leaf classes of a hierarchy.

2. BACKGROUND

Classification is a popular ML task whose goal is to assign instances to predefined categories. The
algorithms are given as input a set of N d-dimensional training instances X = {x1,x2, ...,xN}, as well
as their set of class labels C = {Cx1 , Cx2 , ..., CxN

}, in which Cxi ∈ {C1, ...Ck} in a k-class problem.
The majority of classification problems associates each instance to a single class within an often small
set of classes, meaning that Cxi

is a single categorical value in {C1, ...Ck}. This particular problem is
regarded as Flat or non-Hierarchical Classification.

However, there are more complex classification problems in which the classes are organized according
to a hierarchical structure, and each instance may be simultaneously associated to multiple classes
in this hierarchy. As an example, consider the hierarchy shown in Figure 1. Each node represents a
class, thus node “1/1/2” is a subclass of “1/1”, which in turn is a subclass of “1”, forming a complete
path through the hierarchy. This particularly task consists of assigning a hierarchical path to a given
instance and is known as Hierarchical Classification (HC).

The set of class labels for a HC problem can be represented as a matrix V = {vx1 ,vx2 , ...,vxN
}, in

which vxi is the c-dimensional binary class vector associated with instance xi, in a hierarchy with c
nodes (classes). Each position of the class vector vxi

represents a class, that is set to 1 in case of xi

is assigned to that respective class, or 0 otherwise.
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Fig. 1. Example of a tree class hierarchy.

Several other peculiarities compose this kind of classification, such as the type of the hierarchy struc-
tures used, the different depths in which a classification can be performed, the exploration strategies
applied to a class hierarchy and the evaluation metrics employed. Regarding the structures, two
commonly used ones are Trees and Directed Acyclic Graphs (DAG), differing from each other in the
number of paths that a classifier can explore in the structure. In respect of how deep a classification is
performed, there are two main categories: (i) Mandatory Leaf-Node Prediction, when the classifier’s
output is always a leaf node, and (ii) Non-Mandatory Leaf-Node Prediction, which the most specific
class predicted for a given example could be a node at any level of the hierarchy.

There also different exploration approaches to deal with HC problem, called local and global [Silla
and Freitas 2011]. In the training phase of a global approach, a single classifier is induced to deal
with an entire hierarchy of classes, while in the test phase, the classification of a new instance occurs
in a single step [Vens et al. 2008]. However, the local approach have a training modularity, which
means that local information about classes is continuously used to build the models, whilst the test
phase often follows a top-down strategy to classify new instances, in which the hierarchy is explored
towards the leaves, level by level [Costa et al. 2007]. Another difference between these strategies is
the type of algorithms used. In the local approach, flat (and well established) classification algorithms
such as Decision Trees, Bayes classifiers and Support Vector Machines can be trained, without any
adaptation, to produce a hierarchy of predictions. Although in the global approach, since it induces a
single classifier to handle all the particularities of a HC problem, it does not usually use conventional
algorithms, unless they are heavily adapted to consider a hierarchy of classes.

3. RELATED WORK

In [Ghazi et al. 2010], the HC task is explored in the context of automatic text classification through
emotions expressed in text. The authors propose a method that organizes hierarchically the emotions
presented in text according to their neutrality or polarity. This method is validated in two datasets
along with a flat method, which proved to be worse than the hierarchical one. Another interesting
analysis described in this work, was that the presence of a high imbalance in the datasets, which usually
has an important impact on the performance of classifiers, is smoothed in hierarchical approaches.
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In [Zimek et al. 2010], comparisons are made with multi-class classifiers that explore hierarchical
information and flat classifiers, such as SVMs, Decision Trees and Ensembles. The datasets adopted
are related to protein enzymes classification and synthetic data. Despite the hierarchical nature of the
problem addressed, experiments performed showed that the exploration of hierarchical information
does not always give better results. According to the authors, exploring class hierarchies improves the
prediction performance in case of synthetic data, which is not true for protein enzyme classification.

In [Silla and Kaestner 2013], authors address the HC of bird species using data about their audio
recordings. They apply three approaches, two hierarchical (local and global) and one flat classification
approach. For the flat and local approaches, a classic Naive Bayes was employed, while for the
global approach they used a global version of the Naıve Bayes algorithm. They employed a standard
scientific taxonomy of birds as the hierarchical structure, and the features from the bird songs were
obtained by computing several acoustic quantities from intervals of the audio signal. The experiments
were evaluated using the hierarchical F-measure metric, and results showed that the use of a global
hierarchical approach outperforms both flat and local approaches. For last, they recommend the use of
global models, which in their words, could be a feasible way to improve the classification performance
for problems with a large number of classes.

In [Pereira and Cerri 2017], a global hierarchical method is proposed, based on a Genetic Algorithm
to induce HC rules that classify Transposable Elements in multiple levels of their hierarchy. That
method is called HC-GA (Hierarchical Classification with a Genetic Algorithm), and along with
some popular flat classifiers, was applied to classify two new hierarchical TEs datasets suitable for ML
methods. The main purpose of that paper was to compare the power of non-hierarchical classifiers to
correctly predict TEs leaf node classes, comparing them with the proposed method.

4. GLOBAL RULE INDUCTION METHOD

In this section, the global method for HC proposed in [Pereira and Cerri 2017] which is called HC-
GA (Hierarchical Classification with a Genetic Algorithm), is presented with more details about
its genetic operators and the new fitness functions implemented. This method generates a set of
interpretable HC rules that classifies instances at multiples levels of a hierarchy. The evolutionary
process of inducing rules is detailed in Algorithm 1.

Along with the evolutionary process (lines 8 to 20), Algorithm 1 presents, on the top of it, a
sequential covering strategy to induce rules that classify instances from a hierarchical dataset (lines
2 to 7 AND lines 21 to 26). During this procedure, HC rules are induced (line 21) and used to cover
instances, which are immediately removed from the training set (line 22). This allows the generation
of new rules that will cover the remaining instances when the evolutionary process is restarted.

4.1 Solution Representation and Encoding

When GAs are adopted for rule induction, two frequently used approaches to represent rules are the
Pittsburgh [Smith 1980] and Michigan approaches [Holland 1986]. In the Pittsburgh approach, each
individual corresponds to a set of rules, whereas in the Michigan approach, each individual represents
a single rule, and a set of rules is represented by an entire population of individuals [Srinivasan and
Ramakrishnan 2011; Otero et al. 2013]. In this work, the Michigan approach is used.

An individual in HC-GA is a fixed-length coded vector containing real values that represents the
antecedent of a classification rule. Each test within the antecedent is related to an attribute from a
dataset, and its possible components are a FLAG, an operator (OP) and an attribute index or value
(values ∆). Thus, each set of four positions of this vector represents one test, being a 4-tuple{FLAG,
OP, ∆1, ∆2}. Figure 2 illustrates an individual and its 4-tuples.
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Algorithm 1 HC-GA main loop.
Require: Training dataset D, number of generations G, population size p, minimum number of cov-

ered instances per rule minCov, maximum number of covered instances per rule maxCov, maximum
number of uncovered instances maxUncov, crossover rate cr, mutation rate mr, tournament size
t, number of individuals selected by elitism e, probability of using a test in a rule pt.

1: Rules← ∅
2: while |D| > maxUncov do
3: currentPop← generatePopulation(D, p, pt)
4: currentPop← localSearch(minCov,maxCov, currentPop)
5: calculateF itness(currentPop,D)
6: bestRule← getBestRule(currentPop)
7: j ← 0
8: while j < G or ruleConvergence() do
9: newPop← ∅

10: newPop← newPop ∪ elitism(currentPop, e)
11: parental← tournamentSelection(currentPop, t)
12: offspring ← uniformCrossover(parental, cr)
13: offspring ← mutation(offspring,mr)
14: newPop← newPop ∪ offspring
15: newPop← localSearch(minCov,maxCov, newPop)
16: currentPop← newPop
17: calculateF itness(currentPop,D)
18: bestRule← getBestRule(currentPop, bestRule)
19: j ← j + 1
20: end while
21: Rules← Rules ∪ bestRule
22: Remove instances from D covered by bestRule
23: end while
24: if |D| > 0 then
25: Remove instances from D using the defaultRule
26: end if

Fig. 2. Example of an encoded individual. Adapted from [Cerri et al. 2014]

The FLAG gene in the encoded vector can receive the value 0 or 1, indicating the absence or
presence of the corresponding test in a rule’s antecedent, respectively (activated or not). That allows
rules to have different numbers of tests. The OP gene defines one of the possible operators to use in
the test of a given attribute (numerical/ordinal or categorical), which is set randomly. In turn, the
∆1 and/or ∆2 genes receive real numbers values used as test conditions.

HC-GA is capable of working with categorical and numerical attributes. Since in this work we
adopted datasets containing only numerical attributes, our method used only the operators ≤ and ≥.
In case of choosing randomly a value 0 for OP, the operator ≤ is used in the test, making ∆1 be set to 0
and ∆2 to receive the value of the attribute being tested. Otherwise, choosing the value 1 the operator
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≥ is used, and the opposite occurs with the ∆ genes. Also, it is possible to check whether a numeric
attribute value belongs to a certain range when a value 2 is chosen, such as ∆1 ≤ Ak ≤ ∆2, where
∆ values are the lower and upper bounds for numeric attributes in a test. In that case, the values
of ∆ are randomly chosen so that the value of the test condition satisfies the instance’s attribute. It
is important to emphasize that all the possible operators are previously indexed with fixed indexes,
enabling a test to be easily assembled through the corresponding indexes and operators.

4.2 Consequent Construction and Rule Format

Once an antecedent is built, is possible to calculate its mean class vector using the Equation 1. This
vector is obtained by dividing the set of instances covered by rule r that is classified in class i (Sr i)
by the set of instances covered by r (Sr). Thus, each of its ith positions is a real value between [0,
1] that represents the probability of a given instance belonging to a class i in the hierarchy. In other
words, for instances that satisfy the antecedent of r, this vector can be interpreted as the consequent
of r. Figure 3 shows an example of a consequent vector, where each position contains the real value
that represents the probability of association of a given class to an instance, always maintaining the
hierarchical consistency of the classes.

vr i =
|Sr i|
|Sr|

(1)

Fig. 3. Example of a rule’s consequent.

Moreover, a threshold is applied in the consequent vectors in order to obtain the final predictions
of HC-GA. We are using a threshold of 0.5, so if the ith value in the vector is higher than or equal to
0.5, it receives the value 1. Otherwise, the position is set to 0.

4.3 Population of Rules

A population of rules is created by a seeding process, in which training instances are randomly selected
and its attributes are used to create individuals. Each attribute from an instance has a pt probability
of being used in the antecedent that will be generated, meaning that this pt probability is used to
enable/disable the FLAG genes. Usually, a low value is chosen for both pt in the seeding process and
mutation of the FLAGs, since a high value would result in rules with many active tests which would
cover just a few instances or only the seed instance.

The seeding process ensures that each individual covers at least one training instance (its own seed
instance), and an instance is considered covered if all the rule’s active tests are satisfied by the instance
attributes. This process is repeated until a population with the desired size is generated.

4.4 Fitness Function

A variety of fitness functions has been implemented and tested in HC-GA, such as the following:

1) Hierarchical Evaluation Metrics (hP , hR and hF ): The hierarchical versions of the conventional
Precision, Recall and F1 Score metrics, that were proposed to take into account the hierarchical
relationships among classes [Kiritchenko et al. 2005]. Their formal definition is shown in Equations 2,
3 and 4, where Ci and Zi are the sets of true and predicted classes for an instance i, respectively.

Journal of Information and Data Management, Vol. 9, No. 2, October 2018.



JIDM - Journal of Information and Data Management · 169

hP =

∑
i |Zi ∩ Ci|∑

i |Zi|
(2)

hR =

∑
i |Zi ∩ Ci|∑

i |Ci|
(3)

hF =
2 . hP . hR

hP + hR
(4)

2) Area Under the Precision Recall Curve (AU(PRC)): For each class, HC-GA outputs real values in
the interval [0, 1] that can be interpreted as the probability of assignment. This allows the calculation
of Precision-Recall curves (PR-curves) [Davis and Goadrich 2006], which are obtained by applying
multiple threshold values in the outputs of HC-GA, resulting in different Precision and Recall values
(one for each threshold), in other words, points within the PR space. Thus, the union of these points
forms a PR-curve, making possible to calculate the Area Under the Curve (AUC).

To calculate the area under the PR-curve, an interpolation of the Precision-Recall points (PR-points)
and posterior connection is required. Connecting the points without interpolation would artificially
increase the AUC. Applying a threshold, a PR-point is obtained through Equations 5 and 6, which
are the micro-average of Precision and Recall. In these equations, i ranges from 1 to number of classes
|C|, whereas the number of True Positives, False Positives, and False Negatives are represented by
TP , FP , and FN , respectively. With the PR-points, it is possible to calculate the AU(PRC) [Vens
et al. 2008], where its value ranges between [0, 1] which the higher, the better.

P =

∑
i TPi∑

i TPi +
∑

i FPi
(5) R =

∑
i TPi∑

i TPi +
∑

i FNi
(6)

3) Percentage Coverage (PC): As its name suggests, this fitness measures the percentage of instances
covered by a given rule. Thus, this value is obtained by Equation 7, where Sr is the set of instances
covered by a rule r and S is the total set of instances.

PC(r) =
|Sr|
|S| (7)

4) Variance Gain (V G): This fitness measures the decrease of variance achieved among instances
that are covered by a rule and instances that are not. This means that V G partitions the set of
instances in sets of similar instances. The V G formula [Vens et al. 2008] is shown in Equation 8.
According to this equation, the training set S is divided into two subsets: (1) the set of instances
covered by rule r (Sr) and (2) the set of instances not covered by rule r (S¬r). The V G of a rule r is
then calculated with respect to set S. The calculation also involves the Variance (var) of the set of
instances covered and not covered by rule r, which its formula is presented in Equation 9.

V G(r, S) = var(S)− |Sr|
|S| · var(Sr)−

|S¬r)|
|S| · var(S¬r) (8)

var(S) =

∑|S|
k=1 weightedEuclideanDistance(vk,v)2

|S|
(9)
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Variance is defined as the mean square distance between two mean class vectors, being that from
each of the training instances and from the set of instances being considered (S, Sr or S¬r). To
calculate this distance, the weighted Euclidean Distance presented in Equation 10 is used, which
adopts a weighted scheme to handle the particularities of a hierarchical structure. In this equation,
wi corresponds to the weight associated to the ith class in the hierarchy, while v1i and v2i are the
values associated to the ith position in the mean class vectors v1 and v2, respectively. Weights are
associated to all classes at all levels, because, in the context of HC, similarities between classes at
higher levels are often more relevant than the ones at deeper levels of a hierarchy.

weightedEuclideanDistance(v1,v2) =

√√√√ |C|∑
i=1

wi · (v1i − v2i)2 (10)

wi = w0 ×
Pi∑
j=1

w(pj)/Pi (11)

We use the same weighted scheme adopted in [Vens et al. 2008], where, after experiments, the
authors reported that the best scheme is defined according to Equation 11. The weight w0 associated
to a class at the first level is defined as 0.75, whereas the weight of a class i is recursively defined as
the multiplication of w0 and the mean weight of all its ancestor classes Pi.

These fitness functions were chose for many reasons. Using hP , hR and hF metrics as functions,
our aim was to directly maximize the performance of these hierarchical metrics in the final results.
Regarding the use of AU(PRC), this is justified by reason of the many possible threshold values that
can be applied to the final outputs of HC-GA. During the search for good rules it is often difficult
to evaluate rules based on a fixed threshold, since a bad choice for a threshold may lead to many
rules with a poor performance. Since finding an “optimal” threshold is a difficult task, in which a
low threshold leads to many classes being assigned to instances, and this results in a high recall and
low precision, occurring the opposite when a threshold is high, we chose AU(PRC) to overcome this
problem and avoid losing good rules during the search.

However, unlike hierarchical metrics and AU(PRC) whose aim is the rule’s accuracy, functions V G
and PC were adopted in order to generate a small set of rules, maximizing the models interpretability.
As shown, V G measures the decrease of Variance achieved among instances that are covered by a rule
and instances that are not, this means that V G partitions the data into similar sets. We chose this
function in order to guide the search for rules with high cohesion. Regarding the PC function, the
purpose of its use was to search for more general rules that cover large portions of a dataset.

4.5 Genetic Operators

In this sub-section we describe the genetic operators applied during the evolution of HC rules. After
calculating the population fitness (Algorithm 1, line 5) and starting the evolutionary process (Algo-
rithm 1, lines 8 to 20), an Elitism operator is applied to the best e rules from the current population
(Algorithm 1, line 10), saving and passing them directly to the new population. Thus, a set of p− e
parent rules (where p is the population size) is selected using Tournament Selection [Wetzel 1983]
(Algorithm 1, line 11), which enables the Uniform Crossover (Algorithm 1, line 12) to be applied
between these rules, thus generating the offspring rules. This crossover is presented in Algorithm 2,
being a specialized crossover created to combining similar rules.

The idea behind this operator is that similar rules probably cover instances close to each other in
the search space, meaning that they are probably classified in the same classes too, then combining
them could lead to rules with high cohesion and more accuracy being generated. This operator
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Algorithm 2 Specialized crossover.
Require: Parent rules R, crossover rate cr.
1: offsprings← ∅
2: while |R| >= 2 do
3: parent1 ← R[0]
4: R← R− parent1
5: parent2 ← getMostSimilarRule(parent1, R)
6: R← R− parent2
7: offsprings← offsprings ∪ UniformCrossover(parent1, parent2, cr)
8: end while
9: return offsprings

takes the distances between the mean class vectors of two rules to determine if they are similar or
not (Algorithm 2, line 5), which the lower the Euclidean distance, the more similar are the rules.
After that, a conventional uniform crossover is applied to those rules according to a crossover rate cr
(Algorithm 2, line 7). This process is repeated until a whole new generation of rules is obtained.

Once the crossover is finished, a new population of rules is submitted to a mutation operator
(Algorithm 1, line 13). The mutation applied in HC-GA is known in the literature of GAs as Bit-flip,
and is widely used for binary encoded individuals. This operator consists of changing the binary genes
according to a mutation rate mr, determining which instances will have, at a certain chosen gene, a
“0” value changed to “1” and vice-versa [De Castro 2006]. Algorithm 3 shows the mutation process
along with the related generalization and restriction operations.

Algorithm 3 Mutation and generalization/restriction operations.
Require: Population P, mutation rate mr, probability of using a test in a rule pt.
1: mutationPop← mutationSelection(P,mr)
2: remainingPop← P −mutationPop
3: for each individual from mutationPop do
4: number ← randomRealNumber(0, 1)
5: if number <= 0.5 then
6: individual← flagMutation(individual, pt)
7: else
8: for each activeTest from individual.activeTests do
9: operation← randomIntNumber(0, 1)

10: if operation = 0 then
11: activeTest← numericGeneralization(activeTest)
12: else if operation = 1 then
13: activeTest← numericRestriction(activeTest)
14: end if
15: end for
16: end if
17: end for
18: mutationPop← mutationPop ∪ remainingPop
19: return mutationPop

4.6 Local Search

Both after a population is first generated (Algorithm 1, line 3) and when a new one is obtained by mu-
tation (Algorithm 1, lines 13 and 14), these populations are submitted to a local search (Algorithm 1,
lines 4 and 15). In HC-GA, a Min-Max Local Search is applied, as presented in Algorithm 4.
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Algorithm 4 Min-Max local search.
Require: Population P, minimum number of covered instances per rule minCov, maximum number of covered

instances per rule maxCov, maximum number of attempts to pass maxAttempt.
1: for each individual from P do
2: attempt← 0
3: convergence← 0
4: while convergence = 0 and attempt < maxAttempt do
5: attempt← attempt+ 1
6: if coveredInstances < minCov then
7: if |individual.activeTests| > 1 then
8: individual← disableTestRandomly()
9: else if |individual.activeTests| = 1 and individual.activeTests[0].isNumeric() then

10: newTest← generalizationOperator(individual.activeTests[0])
11: individual← updateTest(individual.activeTests[0], newTest)
12: end if
13: else if coveredInstances > maxCov then
14: if |individual.activeTests| < |datasetsAttributes| then
15: individual← enableTestRandomly()
16: end if
17: else
18: convergence← 1
19: end if
20: end while
21: end for
22: newPopulation← P
23: return newPopulation

This local search aims to ensure that generated rules will cover between a minimum and a maximum
of instances, being used to prevent the generation of rules which are too general or very specific, which
could compromise the model accuracy and interpretability.

5. MATERIALS AND METHODS

This section presents the hierarchical datasets adopted along with their pre-processing, the literature
ML classifiers implemented and moreover, the chosen hierarchical and conventional evaluation metrics.

5.1 Data Preparation

The two hierarchical datasets chosen are composed by TEs sequences collected from two public repos-
itories, they are PGSB 1 and REPBASE 2. The PGSB database [Nussbaumer et al. 2012] contains
a compilation of plant repeat sequences, whilst REPBASE [Jurka et al. 2005] presents sequences of
repetitive DNA from different eukaryotic species. Both repositories are reference databases being used
in projects worldwide and do not contain the same sequences.

These datasets were organized according to a TEs hierarchical taxonomy proposed by [Wicker
et al. 2007], which contains four hierarchical levels with many examples of TEs classes. Since this
taxonomy is still under development and has been continuously adopted by the scientific community,
it is expected that some TEs databases would not cover this entire taxonomy, as is the case for PGSB
and REPBASE. Table I shows some statistics about these datasets. The number of features are the
same for both bases which consists of k-mers quantified in the biological data with sizes of 2, 3 and 4.
We chose K-mers is reason of being a popular feature used in Bioinformatics [Melsted and Pritchard

1http://pgsb.helmholtz-muenchen.de/plant/
2http://girinst.org/repbase/
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2011]. The number of instances presented in the table column refers to the total number of instances,
without division of train and test. For last, the remaining columns show the number of classes for
each level of the TEs class hierarchy and the number of classes that are leaf node classes.

Table I. Datasets statistics.
Dataset Attributes Instances Classes per Level Leaf Classes

PGSB 336 18678 2 / 4 / 3 / 5 11
REPBASE 336 34559 2 / 5 / 12 / 9 24

5.2 Baseline Methods

Concerning the classifiers used in the experiments, our aim was to include at least one example of each
classification paradigm, such as C4.5 (Symbolic), SVM (Probabilistic), KNN (Based on Examples)
and the proposed method HC-GA, which follows an evolutionary approach. These methods were
implemented using Python Scikit-learn [Pedregosa et al. 2011], a popular python-based library for
ML, which its hyperparameters defined according to the official documentation 3. Regarding the HC-
GA, we built it from scratch using Java without any evolutionary framework. For last, the HC-GA’s
hyperparameters obtained by grid search and used in both datasets are shown in Table II.

Table II. HC-GA parameters.

Parameter Value

Number of Generations 100
Population Size 100
Minimum No. of Covered Instances per Rule 10
Maximum No. of Covered Instances per Rule 6800 / 9000
Maximum No. of Uncovered Instances 10
Crossover Rate 90%
Mutation Rate 30%
Tournament Size 3
No. of Individuals Selected by Elitism 2
Probability of Using a Test in a Rule 3%

Even these final hyperparameters were obtained by fine-tuning, some of them were initially defined
based on some assumptions that proved to be true after tuning. For example, a higher value for
population size helped our method to find better rules, once more candidates for good rules were
available. Concerning the high crossover rate, we realized this made it difficult to lose good rules and
getting stuck in local optimal, since it makes the search more broad within the search space and, with
combination of elitism, it also prevents the search from becoming random or going to bad regions.
Also to avoid local optimal, we defined a low value for minCov and a high value for maxCov (see
Algorithm 1), otherwise it would make the search too limited. It is appropriate to point out that
minCov and maxCov are relative, defined according to the dataset used, in our case, minCov is
roughly the number of instances for the minority class whereas maxCov is equal or less to the number
of instances for the majority class. We used these criteria either to not losing rules that generalize
well and to avoid limiting the search for good rules, since a short range of upper and lower bounds
could lead to very specific rules with no interesting information about the data.

Regarding the tournament size and elitism rate, we chose to keep it small to avoid premature
convergence and loss of variability. About the probability of using a test in a rule, a small value was

3http://scikit-learn.org/stable/supervised_learning
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defined since many active tests would make a rule too specific or, otherwise, too general. This same
logic was applied to the mutation rate. Thus, we defined a moderate value which made HC-GA found
new good solutions in the decision space without being too sparse. Finally, the number of generations
was set according to a gain versus runtime analysis.

5.3 Evaluation Metrics

As well as HC uses some data structures and specific approaches for training models, these problems
require special evaluation metrics to proper analyze the performance of hierarchical classifiers [Costa
et al. 2007]. This is due to the fact that traditional metrics employed in flat classification do not
take into consideration the predictions at several levels of a hierarchy. Two popular metrics used in
HC literature, coming from adaptations of traditional metrics, are the hierarchical Precision (hP )
and hierarchical Recall (hR) [Kiritchenko et al. 2006]. Also, there is a metric that combines the
previously mentioned, called hierarchical F-Measure (hF ), which is the harmonic mean of hP and
hR [Kiritchenko et al. 2006]. These metrics were presented in Equations 2, 3 and 4 in Section 5.3.

6. RESULTS AND DISCUSSION

This section presents experiments with the previously mentioned flat ML methods and HC-GA, ex-
ecuted in the same two TEs datasets, and which in order to present results with more statistical
significance, were conducted using a 10-cross validation strategy. The analysis of the results is di-
vided into HC experiments with some fitness implemented in HC-GA and the flat analysis comparing
HC-GA with the other classifiers. The averages for the evaluation metrics adopted, along with their
standard deviation values, are reported as follows.

6.1 Evaluation with Hierarchical Metrics

Since it is not possible to fully evaluate the performance of flat classifiers in a HC task, once they only
make predictions in leaf levels (unless an adaption is made), results for the HC of TEs were obtained
using only HC-GA. Table III shows the averages for the hierarchical F-Measure (hF ) metric along
with the respective standard deviation values. Its lines show the fitness functions employed and the
columns present the results for each level of the TEs classes hierarchy, the leaf classes and the overall
performance achieved by each function. It is worth noting that some values, as in Level 3 and Level
4, appear as “-”, which means that no prediction was made for that particular level.

Table III. Results using hierarchical metrics
Level 1 Level 2 Level 3 Level 4 Leaf Classes Overall

PGSB

hP 0.95 ± 0.006 0.92 ± 0.009 0.78 ± 0.013 0.46 ± 0.055 0.84 ± 0.011 0.88 ± 0.008
hR 0.94 ± 0.005 0.91 ± 0.007 0.77 ± 0.008 0.41 ± 0.047 0.83 ± 0.007 0.87 ± 0.005
hF 0.93 ± 0.005 0.91 ± 0.006 0.77 ± 0.011 0.43 ± 0.056 0.83 ± 0.009 0.87 ± 0.007
AU(PRC) 0.93 ± 0.005 0.90 ± 0.006 0.73 ± 0.012 0.24 ± 0.091 0.80 ± 0.008 0.85 ± 0.007
PC 0.54 ± 0.239 0.53 ± 0.230 0.08 ± 0.162 - 0.53 ± 0.085 0.43 ± 0.208
V G 0.90 ± 0.016 0.88 ± 0.011 0.63 ± 0.084 0.07 ± 0.043 0.74 ± 0.041 0.81 ± 0.016

REPBASE

hP 0.90 ± 0.005 0.86 ± 0.004 0.68 ± 0.008 0.35 ± 0.015 0.71 ± 0.007 0.79 ± 0.004
hR 0.89 ± 0.007 0.85 ± 0.007 0.68 ± 0.007 0.36 ± 0.026 0.69 ± 0.007 0.78 ± 0.006
hF 0.89 ± 0.007 0.85 ± 0.008 0.68 ± 0.008 0.36 ± 0.019 0.69 ± 0.007 0.78 ± 0.007
AU(PRC) 0.86 ± 0.012 0.77 ± 0.020 0.40 ± 0.098 0.24 ± 0.024 0.45 ± 0.075 0.68 ± 0.031
PC 0.27 ± 0.153 0.22 ± 0.137 - - 0.17 ± 0.051 0.18 ± 0.109
V G 0.81 ± 0.045 0.74 ± 0.043 0.43 ± 0.083 0.01 ± 0.011 0.50 ± 0.073 0.65 ± 0.033

Basically, there are two groups of functions in these experiments, the one whose the main objective
is to maximize the accuracy and the other that aims to achieve a better model interpretability. The
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first group is composed by hP , hR, hF and AU(PRC), whereas PC and V G composes the other one.
As shown in Table III, functions from the first group are very superior compared with the second,
which in turn overcomes them in interpretability performance, as will be further discussed.

For both datasets, the hP function showed better or competitive results at all levels (except for
Level 4 in REPBASE), including the leaf node classes and the overall performance. However, functions
hR and hF obtained very close results to that optimal in the four levels, being slightly superior to
hP at Level 4 in REPBASE, although, for that same level in PGSB, the differences were higher,
so it is fair to consider that the performance of hP was superior in general. In addition, the last
function of this previously called “first group”, the AU(PRC) function, has shown inferior results in
comparison with others, presenting also higher standard deviation values. An explanation for the
accuracy deterioration from a higher to a lower level, is that usually there are fewer instances at
the lower levels of a hierarchy, which often hinders the classifier predictions. Considering the results
presented in Table III, it is possible to conclude that some functions are more sensitive to the imbalance
of instances at each level, as is the case of AU(PRC).

Regarding the functions of the “second group”, the PC and V G functions, were overcome by func-
tions from the first group in all criteria evaluated and in both datasets. Although, these functions
have contributed to interesting observations about the limitations of building interpretable models for
HC problems. For example, considering the results obtained by PC, it is possible to note the difficult
to made predictions at lower levels. Moreover, PC shows a high variation in performance when its
standard deviation values are taken into account. In case of V G, the average results are better and
closer to that obtained by the first group, showing also lower standard deviation, but still, higher
values compared with others. We believe that more experiments could lead to improving the accuracy
of such functions and even obtain models with a good trade-off between interpretability and accuracy.

Another analysis performed in this work is concerned with the interpretability of the models, shown
in Table IV. Here we evaluate some features observed in the final models, such as the number of rules
(Rules), number of active tests in a whole set of rules and the average of tests per rule (Tests and
perRule), and the average of instances covered per rule (Coverage). The values presented below are
the respective averages and standard deviation values for the functions implemented.

Table IV. Interpretability analysis
PGSB REPBASE

Rules Tests (per Rule) Coverage Rules Tests (per Rule) Coverage

hP 1180 ± 15.47 8749 (7) ± 137.2 14 ± 0.316 2507 ± 27.88 19889 (7) ± 300.8 12 ± 0.000
hR 1154 ± 18.78 8376 (7) ± 117.3 14 ± 0.000 2424 ± 22.72 18914 (7) ± 165.0 12 ± 0.316
hF 1156 ± 18.12 8366 (7) ± 0.000 14 ± 0.000 2411 ± 34.80 18676 (7) ± 315.0 12 ± 0.422
AU(PRC) 367 ± 13.63 2257 (6) ± 108.0 45 ± 1.829 204 ± 43.91 1251 (6) ± 306.2 162 ± 53.06
PC 4 ± 0.699 15 (4) ± 2.898 4819 ± 863.8 4 ± 0.000 23 (6) ± 4.442 7775 ± 2.214
V G 23 ± 6.683 117 (5) ± 29.05 802 ± 286.1 27 ± 8.044 143 (5) ± 52.95 1275 ± 405.6

As expected, functions V G and PC obtained the best interpretable models, the latter being the
best one in the whole experiments performed. An important observation about this analysis together
with that presented in Table III is that function V G is the most balanced function with respect to the
accuracy and interpretability performances. In relation to the functions that obtained the best hF
values in the previous analysis, here they had the worst performances regarding model interpretability,
being much inferior to the others verified. This contributes to the affirmation of how difficult is to
obtain interpretable models with good accuracy, and how these are contradictory objectives.

6.2 Evaluation with Non-Hierarchical Metrics

Table V shows the results for the flat classification task obtained by HC-GA and the flat classifiers,
evaluated according to Precision (P ), Recall (R) and F1 score (F ). The HC-GA fitness used here is
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hP , given its best results compared to other functions. These experiments were performed in order to
answer two research questions: (i) How good is HC-GA in predicting the leaf node classes of TEs; and
(ii) How are flat classifiers able to make predictions for hierarchical datasets and which one presents
the highest accuracy in predicting the leaf classes of TEs.

Table V. Results using non-hierarchical metrics

C4.5 NB KNN SVM MLP HC-GA

PGSB

P 0.66 ± 0.011 0.45 ± 0.041 0.80 ± 0.009 0.68 ± 0.022 0.41 ± 0.141 0.84 ± 0.011
R 0.66 ± 0.011 0.20 ± 0.009 0.80 ± 0.009 0.69 ± 0.012 0.30 ± 0.110 0.85 ± 0.014
F 0.66 ± 0.011 0.28 ± 0.016 0.80 ± 0.009 0.68 ± 0.017 0.32 ± 0.072 0.84 ± 0.011

REPBASE

P 0.46 ± 0.008 0.38 ± 0.111 0.69 ± 0.006 0.56 ± 0.013 0.24 ± 0.086 0.72 ± 0,007
R 0.46 ± 0.007 0.11 ± 0.003 0.68 ± 0.007 0.49 ± 0.004 0.22 ± 0.056 0.70 ± 0.010
F 0.46 ± 0.007 0.16 ± 0.014 0.69 ± 0.006 0.52 ± 0.008 0.22 ± 0.051 0.71 ± 0.007

As result, KNN obtained the best averages including low standard deviations among the flat classi-
fiers, being superior to others in the three metrics and in both datasets. Although, HC-GA presented
the best results among all ML classifiers, even that was not been designed for this purpose. In addi-
tion, it is worth noting that the performance of all methods is enough decreased in REPBASE when
compared with the one obtained in PGSB. We believe this was caused in reason of the imbalanced
nature of these datasets, which is even more present in REPBASE. Because of this particularity, we
can conclude that this may lead to the bad performance of the flat classifiers, that are even more
sensitive to imbalanced classes. In general, flat classifiers do not perform well predicting classes for
hierarchical datasets, even ignoring hierarchical relationships among classes.

7. CONCLUSIONS AND FUTURE RESEARCH

This work presented an extension of the original paper where HC-GA, a global hierarchical method
capable of generating HC rules with good accuracy and interpretability, was proposed. As in the
previous study, the HC-GA was compared with some traditional flat classifiers in the prediction of
TEs leaf classes. As seen in the Results and Discussion section, the improved HC-GA overcame the
flat methods’ prediction of the leaf node classes in both datasets for the three evaluation metrics
applied. In a HC problem, the task of predicting classes at multiples levels of a hierarchy presents
an increasing difficulty as this hierarchy is explored towards the leaves, since it is common that fewer
examples of leaf classes are available, in contrast to the greater variety of examples at higher levels.
This particularity of HC problems usually makes classifiers present poor performance in the lower
levels, which was the case for flat classifiers, even though they ignore the relationships among classes.
We performed some experiments with a variety of new fitness functions with the objective of verifying
the quality of the HC-GA predictions not only in general but also in all levels including leaf node
classes. We believe that our method presented a good variety of functions that are alternatives with
different accuracy and interpretability performances to be applied for other HC problems in many
domains. For future research we intend to continue with the experiments of different functions in HC-
GA, making combinations of functions aiming to explore their different aspects, such as those of the
two groups that we presented. Therefore, the next step in the research is to perform experiments with
Multi-Objective GAs. Also, we plan to compare the global method HC-GA with other HC methods,
both global and local, to validate more properly the results obtained. Besides, more analysis aiming
to investigate the weaknesses of HC-GA will be conducted, such as collecting and comparing the
runtimes required for each fitness.
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