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Abstract. Real-world applications generate large amounts of images every day. With the generalized use of social
media, users frequently share images acquired by smartphones. Also, hospitals, clinics, exhibits, factories, and other
facilities generate images with potential use for many applications. Processing the generated images usually requires
feature extraction, which can be time-consuming and laborious. In this paper, we present FeatSet+, a compilation of
color, texture and shape visual features extracted from 17 open image datasets reported in the literature. FeatSet+
provides a collection of 11 distinct visual features, extracted by well-known Feature Extraction Methods (FEMs) such as
LBP, Haralick, and Color Layout. We organized the available features in a standard collection, including the metadata
and labels, when available. Eleven of the datasets also contain classes, which aid the evaluation of supervised methods
such as classifiers and clustering tasks. FeatSet+ is available for download in a public repository as sql scripts and
csv files. Additionally, FeatSet+ provides a description of the domain of each dataset, including the reference to the
original work and link. We show the potential applicability of FeatSet+ in four computational tasks: multi-attribute
analysis and retrieval, visual analysis using Multidimensional Scaling (MDS) and Principal Components Analysis (PCA),
global feature classification, and dimensionality reduction. FeatSet+ can be employed to evaluate supervised and non-
supervised learning tasks, also widely supporting Content-Based Image Retrieval (CBIR) applications and complex data
indexing using Metric Access Methods (MAMs).

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous

Keywords: Dataset, image, visual features, color, texture, shape, CBIR, retrieval, analysis

1. INTRODUCTION

Images acquired from different application scenarios have been the focus of numerous studies for
decades now. Users and applications generate large amounts of images, sharing them over the internet,
mainly due to the widespread use of social networks, blogs, public repositories, and cooperative
research. Regular and surveillance cameras, mobile devices, microscopes, Magnetic Resonance Imaging
(MRI) machines, and X-Rays are just a few examples of simple and specialized acquisition equipment
capable of generating images in different contexts and resolutions.

Data management systems usually compare and query over scalar data, such as small strings, num-
bers, and dates. Order and equality operators (i.e., <, ≤, =, ≥, and >) are adequate for scalar data.
On the other hand, images are considered complex data that order operators cannot compare since
they do not possess the order property. Also, checking if a pair of images is equal or different brings
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too little semantics to the analysis. Accordingly, applications compare complex objects according to
their content, employing similarity operators such as the Range and kNN queries for Content-Based
Retrieval (CBR).

Feature Extraction Methods (FEMs) generate feature vectors as low-level representations of images
according to their visual content. The generated features can describe, among others, the color dis-
tribution of an image, the grayscale variation, the texture patterns, and the objects’ salient edges.
Similarity operators compare pairs of complex objects by employing distance functions to the cor-
responding feature vectors, measuring how dissimilar they are. Also, machine learning algorithms
employ feature vectors to train their model in supervised scenarios (for instance, when we have a label
for every image in the dataset) and in exploratory analyses. All of these analyses depend on extracting
the features from the image datasets, which can be both time-consuming and laborious due to the
necessity of implementing and/or setting up FEMs.

Many works from the literature have employed visual features for image analysis in different con-
texts. For instance, in the work [de Sousa Fogaça and Bueno 2020], the authors mapped color-based
features into the multidimensional space to estimate the trajectory of objects by simulating their evo-
lution over time. In [Pereira and Ribeiro 2021], the authors explored visual features extracted from
mammograms for the semantic annotation and classification of images using an ontology. Low-level
features have been widely applied to validate the indexing capabilities of Metric Access Methods [Zabot
et al. 2019; Moriyama et al. 2021]. Also, in [Maheshwari et al. 2021] the authors exploited several
visual features to identify COVID-19 in images. However, few existing studies make the employed
visual features available for download, e.g., [Chino et al. 2015; Rodrigues et al. 2020]. Such studies
usually limit the provided data to specific sets of images (e.g., [Oliveira et al. 2017; Cazzolato et al.
2017]), or provide extracted visual representations for a particular computational task or data domain
related to the images [Cazzolato et al. 2016]. However, most image- and feature-related studies pro-
vide the code or the reference for the specific FEM employed so that readers can extract the visual
features of the desired images on their own.

Motivated by the potential applicability of image features and the difficulties of employing FEMs,
we propose the FeatSet+ dataset in this work. FeatSet+ is a compilation of widely-used visual
features extracted from public image datasets of different application scenarios. The contributions of
FeatSet+ are two-fold:

—The curation of 17 open image databases, organizing their main information in a single repository;
—Making it readily available visual features based on color, texture, and shape, extracted from the

images using 11 distinct FEMs, widely employed in the literature, including those from the MPEG7
Standard [Manjunath et al. 2002]. The feature vectors are organized into a standard model and
openly available.

We cast the using possibilities for FeatSet+, and show four examples of analysis of the available
data:

(1) Multi-attribute analysis and retrieval: we take advantage of subclasses available in the original
datasets to show how we can improve similarity queries with multi-attributes.

(2) Visual analysis: We show that the employed features present different distribution dispersion even
for a single dataset, regarding classes’ dispersion and two visual tools (Multidimensional Scaling
and Principal Component Analysis).

(3) Global feature classification: we employed off-the-shelf classification approaches to classify the 11
labeled datasets, showing opportunities of improvement in future work employing FeatSet+.

(4) Principal Component Analysis for dimensionality reduction: we show an example of approach
to reduce the dimensionality of the feature vectors and a combination of them (with color and
texture features).
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Previous use of data. A small part of FeatSet+ has been employed in the previous studies [Zabot
et al. 2019; Zabot et al. 2019]. In those studies, the authors explored different visual features to validate
a novel Multi-Metric Access Method, aimed at indexing complex objects based on images’ visual
characteristics and the correlation among the distance spaces. In a previous, shorter work [Cazzolato
et al. 2021] we presented FeatSet, a compilation of visual features extracted from 13 public image
datasets. In this work, we present an extended, and complete version of the data used in [Zabot
et al. 2019; Zabot et al. 2019; Cazzolato et al. 2021]. FeatSet+ is a superset of FeatSet with four
new datasets, composed of diverse visual features extracted from various public image datasets of
different application scenarios. It allows analysts to deeper evaluating machine learning approaches,
CBIR strategies, and related techniques. We further extend the presentation and discussion with two
new application scenarios for FeatSet+, including examples for multi-attribute queries, classification,
feature selection, and data visualization.

Paper outline. The remaining sections of this paper are organized as follows. Section 2 describes
FeatSet+. Section 3 discusses application scenarios and challenges for FeatSet+. Section 4 details
the steps to download FeatSet+, and describes the data organization and description of the dataset’s
public repository. Finally, Section 5 concludes this work.

2. FEATSET+: A COLLECTION OF VISUAL FEATURES FROM IMAGE DATASETS

In this section, we detail the process of acquiring the original images, extracting the visual features,
and composing FeatSet+, as Figure 1 illustrates. First (Step i), we looked for open image datasets to
extract features. We focused on literature papers proposing or using image data from open repositories
and websites for this task. We did not systematically search for existing image collections in the
literature. In turn, we included datasets focused on diverse applications (e.g., medicine, emergency,
object recognition) and of different sizes. We started the composition of FeatSet+ by including
image collections employed in previous works of our group (e.g., [Chino et al. 2015; Bedo et al. 2015;
Cazzolato et al. 2017; Oliveira et al. 2017]), and extracting their visual features. Then, we searched
complementary collections in the literature. The datasets had to be openly available, free of use, and
include the original image files to be considered. As a result, FeatSet+ is of general use as it provides
various visual representations of images from many applications.

Fig. 1. Steps carried to compose FeatSet+.

2.1 Data Collection and Preprocessing

Table I lists the datasets collected, as well as the specific reference, the number of available images,
and a brief description of each. Figure 2 shows examples of images acquired from each dataset. All 17
datasets were manually collected from their original sources, which are referenced in the repository,
as will be described in Section 4, with a “read me” file containing the original source, URL, date
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of collection, license, a brief description, and the corresponding reference. The Preprocessing step
ensures that every image will be in an image file format (i.e., .png, .jpeg, and .jpg), converting each
file using Python scripts and libraries (e.g. OpenCV) if necessary. For instance, the ds-MNIST dataset
provides the images as multidimensional matrices. We converted each image file from ds-MNIST to
.png, which is one of the image formats accepted by the implementation of FEMs employed in this
work. The script to convert the images from ds-MNIST is also available in our repository.

Table I. List of datasets composing FeatSet+, with the corresponding reference, the number of available images, and a
brief description of the application scenario.

Dataset #Images Application Scenario

ds-BoWFire [Chino et al. 2015] 226 Images of fire incidents in emergency situations, labeled fire
and non-fire.

ds-Flickr-Fire [Bedo et al. 2015] 1,984 Images acquired from Flickr, using tags related to fire to
filter the information.

ds-Mammoset [Oliveira et al. 2017] 3,457 Regions of Interest obtained from mammograms, with tissue
labels such as benign and malignant.

ds-LibraGestures [Bastos et al.
2015]

4,800 Images of hand gestures representing the Brazilian Sign Lan-
guage (Libras).

ds-Food5k [Singla et al. 2016] 5,000 Images of food (2,500) and non-food (2,500).
ds-FlickrFireSmoke [Cazzolato
et al. 2017]

5,556 Images acquired from Flickr, using tags related to fire and
smoke to filter the information.

ds-Covid19 [Cohen et al. 2020] 5,933 Chest X-Rays and Computed Tomographies, taken from pa-
tients which are positive or suspected of COVID-19 or other
viral and bacterial pneumonias.

ds-COIL100 [Nene et al. 2020] 7,200 Images of objects depicted at angles in a 360 rotation, at
every 5 degrees.

ds-CUB-200-2011 [Wah et al. 2011] 11,788 Images of 200 bird species acquired from Flickr, where each
species is associated with a Wikipedia article and organized
by a scientific classification among order, family, genus, and
species.

ds-Letters [Hajder 2020] 15,340 Images of standard fonts from Windows, where each letter
is organized in classes by typeface.

ds-Cars [Krause et al. 2013] 16,185 Images of cars from 196 classes, including annotations.
ds-Food-11 [Singla et al. 2016] 16,643 Images of food, grouped into 11 categories.
ds-Dogs [Khosla et al. 2011] 20,580 Images of dogs of 120 breeds from around the world.
ds-DeepLesion [Yan et al. 2017] 33,334 Image Slices extracted from Computed Tomographies.
ds-AwA [Xian et al. 2019] 37,322 Images of 50 animals acquired from Flickr, also containing

80 attributes of predicates (e.g., domestic, forest, and arc-
tic).

ds-MNIST [Lecun et al. 1998] 70,000 Images of 10 handwritten digits (0 to 9).
ds-CompCars [Yang et al. 2015] 164,344 Depicts images of cars, taken from two scenarios: web-

nature and auto parts.

2.2 Feature Extraction and Vectorial Representation

After curating every dataset, organizing the files and available metadata, we employed feature ex-
traction methods (FEMs) to obtain the visual features from the acquired images. Figure 1 (Steps ii
and iii) illustrates this task. Each FEM receives as input an image file and generates a d-dimensional
vector, where the features are represented as an array of floats.

We employed the FEMs listed in Table II with the corresponding acronyms, number of dimensions,
and types. Notice that every employed FEM generates a specific number of features (dimensions),
and corresponds to a specific type T of visual feature, where T ∈ {Color, Texture, Shape}. In the case
of NCH, we generated six histogram variations, with 8, 16, 32, 64, 128, and 256 features. As a result,
we have 11 distinct FEMs, which can generate 16 different feature configurations.
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Fig. 2. Examples of images from the public datasets contained in FeatSet+.

Table II. Feature Extraction Methods (FEMs) employed, the corresponding acronyms, number of dimensions, and
feature type.

FEM Acronym #Dimensions Type

Color Temperature CT 3 Color
Texture Spectrum TS 8 Texture

Color Layout CL 16 Color
Haralick Hr 24 Texture

Color Structure CS 128 Color
Edge Histogram EH 150 Shape

Local Binary Pattern LBP 177 Texture
Scalable Color SC 256 Color

BIC Histogram BIC 512 Color
Total Color Histogram TCH 768 Color
Normalized Histogram NCH 8, 16, 32, 64, 128, 256 Color
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The implementations of FEMs used in this work are from the Arboretum library, available at the
Database and Image Group (GBdI) website1. Each FEM receives as the input an image file collected
and/or converted during the Preprocessing step. The output is the vectorial representation of the
extracted features, composed of real-valued attributes, each one representing a feature of the specific
FEM. Most of the Arboretum’s available FEMs are from the MPEG-7 Standard [Manjunath et al.
2002], proposed by ISO/IEC JTC1, which aims at building an efficient way to search, filter, and
identify multimedia content, defining the expected representations for the images in terms of color,
texture, and shape. In this article, we employ the following MPEG-7 extractors: Color Layout, Color
Structure, Scalable Color, Color Temperature, Edge Histogram, and Texture Browsing. Briefly, they
work as the following:

—Color Layout: Describes the image color distribution considering spatial location [Kasutani and
Yamada 2001]. It splits the image into squared sub-regions and labels each square with a few
nonlinear quantized DCT coefficients of grid-based average colors.

—Scalable Color: A color histogram in the HSV color space, which is encoded by a Haar transform
and is intended to capture the prominent color distribution [Manjunath et al. 2001].

—Color Structure: Aims at capturing both the color content and information about the spatial
arrangement of that color content [Sikora 2001]. It works like a histogram that counts how many
times a color is present in structures with fixed-size windows. Each fixed-size window selects equally
spaced pixels to represent the local color structure. The window size and the number of local
structures are parameters of the Color Structure descriptor.

—Edge Histogram: Represents the spatial distribution of five types of edges, Vertical, Horizontal, 45
degree, 135 degree and non-directional, regarding N ×N blocks, where N is an extractor parameter
[Park et al. 2000], which we employed as N = 4 (i.e., 16 blocks). Each block is constructed by
partitioning the original image into squared regions and consists of local histograms of these edge
directions, which may optionally be aggregated into global or semi-global histograms.

—Texture Browsing: This extractor is obtained from the same parameters used in the Gabor filters
applied to the images [Lee and Chen 2005]. Its vector consists of 12 positions: 2 for regularity, 6
for directionality, and 4 for coarseness.

—Color Temperature: Is based on the hypothesis that there is a correlation between the illumina-
tion properties of the image and its “feeling of temperature”. CT represents the feature vector as
the linearized pixels in the XYZ color space, discarding the luminance of Y channel that is above
a given threshold parameter. CT averages the color coordinate in XYZ and converts it to UCS.
Finally, CT calculates the two-color isotemperature lines from the color diagrams [Bedo et al. 2015].

BIC (Border/Interior Pixel Classification) [Stehling et al. 2002], TCH, and Normalized histograms
describe the grayscale color distribution of the pixels in the image. Haralick is a texture FEM that
computes the image dimensions as variances and moments based on co-occurrence matrices. Texture
Spectrum and LBP describe the local correlation among grayscale values within pixels.

2.3 Data Description

After curating the public datasets and extracting the visual features, we organized the FeatSet+
repository (Step iv of Figure 1). Figure 3 shows the generic FeatSet+ schema, which is similar for
every one of the 17 datasets. Figure 3(a) is the metadata table, which includes the object identifier
(OID) for each complex object in the dataset, employed as the primary key (PK), the filename of
the original image, and the set of classes, if any. The image filename is the same used in the original
dataset, allowing reproducibility. The reference to the original images also admits data scientists to
download the original images and perform further analysis, such as noise reduction and segmentation.

1The Arboretum library is available at https://gbdi.icmc.usp.br/, under the “Projects” menu.
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Table III details the existing set of classes on FeatSet+. The datasets ds-BoWFire, ds-Flickr-Fire,
ds-LibraGestures, ds-Food5k , ds-CUB-200-2011 , ds-Letters, ds-Food-11 , ds-Dogs, ds-AwA, and ds-
MNIST have a single set of classes, represented by the column class in the metadata table. Dataset
ds-FlickrFireSmoke has two sets of classes, one to denote the presence or absence of fire in the image
(column class_0), and the other to determine if the image has or not smoke in it (column class_1).
The remaining datasets do not have classes. Figure 3(b) illustrates the set of FEM tables originated
from Section 2.2. Each FEM table has the OID column as a foreign key (FK) to the respective
metadata table, and every dimension of the feature vector is stored in a column named feature_i,
for 0 ≤ i ≤ d, where d is the number of dimensions of the current FEM, given by Table II. Figure 3(c)
shows the feature reference table FeatureEquivalence, which contains the name of each of the d features
generated by the employed FEMs. The table has the FEM name, feature ID, and the description of
every feature.

Fig. 3. Schema for FeatSet+.

Table III. Existing set of labels (classes) in FeatSet+.

Dataset Set of Labels (Classes)

ds-BoWFire [Chino et al. 2015] Presence/Abscence of Fire
ds-Flickr-Fire [Bedo et al. 2015] Presence/Abscence of Flame
ds-LibraGestures [Bastos et al. 2015] Gesture translation
ds-Food5k [Singla et al. 2016] Food or Non-Food
ds-FlickrFireSmoke [Cazzolato et al. 2017] Presence of Fire and/or Smoke
ds-CUB-200-2011 [Wah et al. 2011] 200 classes of birds (e.g., Blue Grosbeak, Sayornis, and Bohemian

Waxwing)
ds-Letters [Hajder 2020] Letter’s Font
ds-Food-11 [Singla et al. 2016] 11 categories of food: Bread, Dairy product, Dessert, Egg,

Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup, and Veg-
etable/Fruit

ds-Dogs [Khosla et al. 2011] Dog’s breed
ds-AwA [Xian et al. 2019] 11 animals (e.g., dalmatian, fox, bobcat, and dolphin)
ds-MNIST [Lecun et al. 1998] A digit from 0 to 9

Both metadata and FEM tables in FeatSet+ are organized in separated Structured Query Language
(SQL) scripts to create and populate those tables. We decided to maintain the separated tables for
each dataset within FeatSet+ because this organization allows users to select only the scripts from
the datasets that they want to work with. We also provide Comma-Separated Values (CSV) files for
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Fig. 4. Multi-attribute Analysis: among the animals containing the predicate “bipedal”, we posed a similarity query to
check the most similar images. The first image of the sequence was the object used as the query center.

every dataset and FEM, allowing users to input the data into machine learning libraries, manage the
features outside the Database Management System (DBMS), and also concatenate the desired files
whenever necessary.

3. APPLICABILITY AND CHALLENGES FOR FEATSET+

FeatSet+ opens research opportunities regarding various Computer Science tasks, such as evaluating
Content-Based Image Retrieval (CBIR) approaches, machine learning methods, data visualization,
and information prediction. As FeatSet+ constitutes a compilation of public datasets acquired from
various application contexts, the visual features are well-suited for multidisciplinary studies. In this
section, we discuss potential research opportunities. We make the scripts used to generate all analyses
described in this section available in the FeatSet+ repository (as detailed in Section 4). Table II
describes the acronyms of FEMs mentioned in this section.

3.1 Multi-Attribute Analysis and Retrieval

Several of the available datasets covered by FeatSet+ provide additional information that can be em-
ployed as subclasses of the images. For instance, ds-Mammoset has, for a set of images acquired in the
subset of DDSM repository [Oliveira et al. 2017; Oliveira et al. 2019], four categories based on the view
of the breast image, which are: LCC (Left CranioCaudal), RCC (Right CranioCaudal), (iii) LMLO
(Left MedioLateral Oblique), and (iv) RMLO (Right MedioLateral Oblique) [Oliveira et al. 2017].
In a transactional database, we can organize the working data with scalar and complex attributes,
allowing users to pose queries over them and obtain complementary information. Accordingly, users
can filter the view of mammograms from ds-Mammoset that they want to analyze (e.g., LMLO), and
perform the similarity-based analysis over the filtered set. Another example is the ds-AwA dataset,
which provided 80 additional attributes, that are predicates regarding the 11 animal categories. For
instance, we can filter the objects of the dataset to select only images depicting animals that are
“bipedal”, resulting in 3,706 tuples. In the next step, we can query over the filtered objects consid-
ering the similarity between the images. Figure 4 shows an example of a query posed over images of
animals filtered with the predicate “bipedal”. The first image was selected as the query center of a
kNN search, with k = 8 and using the CL FEM.
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3.2 Visual Analysis

The Multidimensional Scaling (MDS) method represents the (dis)similarity among objects onto a
projection of the data in a low-dimensional space [Borg and Groenen 2005]. Here, we employed MDS
to show the advantage of representing the image datasets using diverse visual representations. The
color represents the label of the images (“Fire” and “Not Fire”). Figure 5(a) shows the distance space
distribution formed by an image sample from ds-BoWFire, using the different visual features provided
by FeatSet+. We observe major differences in the data dispersion from the generated distance spaces.
For instance, CL shows objects dispersed almost homogeneously, while CT depicts the objects in
a “line-shaped” dispersion. In contrast, Figure 5(b) shows the 1st and 2nd Principal Components
(PCs) obtained by applying the Principal Component Analysis (PCA) over the dataset. The two
PCs capture most of the data variance, and the visualization shows the data dispersion on a lower-
dimensional projection. Both plots (a) and (b) consider the same image sample, and we observe
distinct class dispersions. This result highlights that further opportunities exist for further analysis
targeting to find better separations between the classes of data. Next, we further analyze the first
eight representations of ds-BoWFire in the classification task.

3.3 Global Feature Classification

We selected a set of off-the-shelf classifiers to evaluate the impact of different feature representations
in the classification precision. Figure 6 shows the precision results for 14 conventional classifiers. We
observe that the features CS, Hr, TS, TCH, and LBP achieved the highest classification results among
the employed FEMs. We also observe cases with high variation results for different classifiers in the
same FEM representation with SC.

Figure 7 shows the precision results when classifying the different datasets covered by FeatSet+,
when employing the CL FEM. In (a), we can observe the variation of the precision obtained by each
classifier regarding every dataset. In (b), we identified that the datasets presenting large sets of
labels (such as ds-AwA, ds-CUB-200-2011 and ds-Dogs) presented poor precision results. The results
indicate the need of further analysis, such as feature selection, to improve the classification quality.

3.4 Principal Components Analysis

Many of the employed FEMs, such as BIC, TCH, and NCH, produce high-dimensional feature vectors
(see Table II). Also, in many application scenarios, the analyst may opt to combine features of
different visual characteristics to improve the semantics of the image representation. For example,
if we consider ds-Mammoset , microcalcifications can show different color and texture patterns that,
when combined, allow a more profound pattern recognition. Feature concatenation can improve data
representation but has the cost of increasing the data dimensionality, which can be approached in
different manners. One example is the application of the Principal Component Analysis (PCA) to
reduce data dimensionality.

Figure 8 shows the proportion of explained variances according to the principal components gener-
ated by PCA. In the examples, we selected four datasets from FeatSet+, and explored three single
feature representations (a, b, and c) and the combination of LBP with CL (d). To improve the visu-
alization, we plotted a maximum of 30 principal components. The dashed horizontal lines represent
curve elbows, visually observed in the plots. The curve elbow can be used as a heuristic to select
the number of principal components to employ in data analysis, selecting the position where the
curve stops decreasing and flattens out. Using this criterion, in (a) we could use 7 or 10 principal
components, in (b) 6 or 13, in (c) 7, and in (d) 8 principal components. One can also consider the
dimensions whose sum is at least a threshold, for example, 70% of the entire variance. In this case,
in plot (a), we would select the first 18 principal components, in (b) the first 8, in (c) the first 6, and
in (d) the first five principal components. Regardless of the employed heuristic, the selected visual
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(a) MDS distribution of ds-BoWFire: the spatial distance among objects is preserved.

(b) 1st x 2nd Principal Components (PCs) of ds-BoWFire: the data dispersion was generated based on the
lower-dimensional projection considering the two PCs that capture most of the data variance.

Fig. 5. Comparing the visual analysis of the class distributions in ds-BoWFire: (a) The MDS plot depicts the dispersion
of objects within the various (original) distance space distributions, generated with different visual features. (b) Two-
dimensional plots of PCA showing different distance dispersion obtained over the same set of images.
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Fig. 6. Comparison of the precision results for 14 different approaches of classification techniques, considering the
ds-BoWFire dataset, for all available FEMs.
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Symbols and colors represent the dataset as shown in (b).

Fig. 7. Comparison of the precision for 14 different approaches of classification techniques, considering the set of 11
labeled datasets within FeatSet+ (see Table III), using Color Layout visual features.

features can be used to further analyze the complex objects by employing CBIR or machine learning
methods. Although PCA was used here as a dimensionality reduction technique when concatenating
feature vectors, it is also an example of how feature analysis layers can be stacked to develop deep
learning models for image feature engineering.

3.5 Challenges and Opportunities of Analysis

FeatSet+ comprises small and large datasets (ranging from 226 to 164,344 objects), and FEMs of low
and high dimensionality (from 3 to 768 dimensions). The variation in size and dimensionality can
support the validation of techniques focused on content-based retrieval and diversity, complex data
indexing with metric access methods, and similar methods. Similarity-based comparisons of complex
objects can also support the identification of near-duplicate images through feature-matching.

The dataset organization allows straightforwardly employing machine learning methods since they
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The dashed horizontal lines indicate the visual curve elbows.

The dashed horizontal lines indicate the visual curve elbows.

Fig. 8. The scree plots show the proportion of explainable variances according to the principal components generated
by PCA.

already are in the input format of many existing analysis libraries, such as Scikit Learn2 for Python.
Users can perform classification and clustering methods, compute correlations among the different
data representations, perform object recognition, among others. FeatSet+’s schema also allows users
to work with the visual features inside the Database Management System (DBMS) by loading the
available database files provided in the Git repository.

FeatSet+ can be further extended by extracting new visual features with other FEMs reported in
the literature. Finally, users can include new image datasets into FeatSet+, extracting their features
using the FEMs reported in this work, which are openly available at the Arboretum library.

4. PUBLIC REPOSITORY AND CITATION REQUEST

FeatSet+ is publicly available for research use under the Creative Commons license. All data and
additional information are organized in the Git repository https://github.com/mtcazzolato/featset/.
The repository is organized as follows:

—FeatSet+/
—README.md : Read me file with FeatSet+ description, citation instructions for every part of

the dataset, and other relevant information.
—SQL-Scripts-Link : Link to download the SQL scripts used to load the data.
—CSV-File-Link : Link to download the CSV files with the data.

2The Scikit Learn Python library: https://scikit-learn.org/stable/
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—python-scripts/: Folder with the three python scripts that generate:
—The application analyses of Section 3; the plots presented in Figures 4, 5, 6, 7, and 8; and the

images of the ds-MNIST dataset.
—schema.png : The database schema.

Each one of the 17 datasets presented in Table I follows the schema illustrated in Figure 3. The
metadata of each dataset is stored in an SQL file with the dataset name (e.g., ds-CompCars.sql ),
every FEM is inside of a file with the same name plus its respective acronym as a suffix (e.g.,
ds-CompCars_CL.sql for Color Layout). The file FeatureEquivalence is the reference table to de-
scribe the features of the available FEMs, containing the columns FEM_name, Feature_ID, and
Feature_description. All SQL scripts start with the CREATE TABLE statement, followed by the INSERT
INTO statements to populate those tables.

Additionally, the FeatSet+ repository also provides a Comma-Separated Values (CSV) file alter-
native for every single table from the 17 datasets and the feature reference table FeatureEquivalence.
FeatSet+ is available for researchers and data scientists under the Creative Commons License. In
case of publication of any work derived from any of the datasets from FeatSet+, we ask the authors
to acknowledge the original image dataset owners and us by citing both the image dataset reference
and this paper, following the instructions of the provided README.md file of our repository.

5. CONCLUSION

In this work, we proposed the FeatSet+ dataset, a compilation of visual features extracted from public
image datasets of different application scenarios. FeatSet+ is composed of 17 datasets and has 11
visual features representing the images. We provided four examples of how the feature vectors can be
explored for different computational tasks. Also, the public datasets inside FeatSet+ are from diverse
application domains, which can aid analysts in the evaluation of their techniques in a wide range of
examples. FeatSet+ is organized in a public repository and is available in SQL scripts to load the
database in a DBMS and in CSV files to be used directly in existing data analysis libraries.

As future work, we intend to (i) perform hyperparameter tuning over off-the-shelf classifiers explored
in Figure 6 to improve the overall precision results. The obtained results can work as starting points
for users of FeatSet+, in case they want to improve classification results. Also, since FeatSet+ is
limited to the provided 17 datasets and 11 visual features, we intend to (ii) create an automated
process to include novel open image databases into FeatSet+ while reducing manual effort. At the
same time, we intend to (iii) add other embedding approaches employing Deep-Learning techniques
for transfer learning, such as VGG-16 [Simonyan and Zisserman 2015]. Finally, it is worth mentioning
that our Preprocessing step does not enhance image quality (e.g., brightness, contrast, noise removal).
To overcome this limitation, users must preprocess the original images and then extract the wanted
visual features.
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