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Abstract. Events can be defined as an action or a series of actions with a determined theme, time, and place.
Recently, event analysis tasks for knowledge extraction from news and social media have been explored. In particular,
agribusiness events have multiple components for a successful prediction model. For example, price trend predictions
for commodities can be performed through a time series analysis of prices. However, we can also consider events that
represent external factors during the training step of predictive models. This paper presents a method for integrating
agribusiness news events into trend prediction tasks. First, we propose to model events and time-series information
through heterogeneous information networks (HIN) that allow multiple components to be directly modeled through
multi-type nodes and edges. Second, we learn features from HIN through network embedding methods, i.e., network
nodes are mapped to a dense vector of features. In particular, we propose a network embedding method that propagates
the semantics of the pre-trained language models to a heterogeneous information network and evaluates its performance
in trend prediction for agribusiness commodities prices. Finally, we propose a second method that leverages the HIN
architecture to fine-tune a pre-trained language model before propagation. We show that using our proposed models
of language-based embedding propagation is competitive with state-of-art network embeddings algorithms. Moreover,
our proposal performs network embedding incrementally, allowing new events to be inserted in the same semantic space
without rebuilding the entire network embedding.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: agribusiness, event analysis, heterogeneous networks, network embedding, text mining

1. INTRODUCTION

Events can be defined as an action or a series of actions that occur at a specific time and place
[Allan 2012; Cordeiro and Gama 2016; Chen and Li 2020]. Different types of event analysis can allow
real-time monitoring for application domains like the economy, agribusiness, epidemics, medicine,
sentiment analysis, and many other social behavior studies [Marcacini et al. 2017]. Agribusiness
events are challenging to predict since they depend on (i) climate changes, (ii) historical data from
the market, (iii) supply and demand, (iv) aggregate demand, and (v) politics. Climate changes are
predictable through meteorologic data. Market history, as well as supply and demand data, are
obtained from temporal series. However, aggregate demand and politics are also available in text data
from the news or social networks. Since textual data is made for humans, text mining is a challenging
task that requires multiple steps of processing [Venter et al. 2013].

Event analysis is the computational task for automatically identifying related events through text
and other data such as timestamps, places, people, and entities involved [Hamborg et al. 2018; Xue
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et al. 2019]. The data extracted comes in 5W1H model which is described as [Chen and Li 2020]:
what happened; when it happened; where it happened; who is involved; why it happened; and
how it happened. Thus, these techniques can be used to explore useful agribusiness data for trend
prediction [Radinsky and Horvitz 2013; Ning et al. 2019], since they can be modeled as events. Event
analysis is challenging since different topics can be related at some level. For example, the corn value
can drop due to new exporting politics that lower international demand, and if identified earlier, a
producer might be able to close a better domestic deal [dos Reis Filho et al. 2020].

Recently, heterogeneous networks have been used successfully for modeling large event datasets
[Shi et al. 2016], since they model different components from events as nodes (e.g., when, where, who,
why, and how), and network links express different relationships between these nodes. Thus, we can
create a heterogeneous network, where each event is represented by itself and a set of components that
complete the 5W1H. The use of heterogeneous networks also allows network completion tasks. Network
completion tasks derive from link prediction. It is the task of estimating the connection between two
nodes based on observed links and node features. The main difference from link prediction is that the
method only tries to connect nodes of specific types in network completion. It can also be defined
as a simple binary classification problem [Shi et al. 2016]. Network completion can also be modeled
as a multi-class classification problem whenever a network node can be used as a label. Network
completion as a classification uses node features as data. There are many techniques for obtaining
node features from a network.

Network embeddings methods map each node into a low dimensional vector that represents the
network topology and node type information [Chang et al. 2015; Huang and Mamoulis 2017; Setty
and Hose 2018; Cui et al. 2018; Wu et al. 2020]. The recent literature has explored several methods to
solve this task, from random walks within the entire network to deep learning methods [Wu et al. 2020].
However, since events can be partially represented as texts, such as news headlines or social networks
posts, we can use neural language models, such as the Bidirectional Encoder Representations from
Transformers (BERT) [Devlin et al. 2018], to compute meaningful representations. Neural language
models are trained over large textual datasets, including news headlines, so they have valuable general-
purpose knowledge for event prediction. However, using just text embedding is not recommended since
it ignores essential component information [Chen and Li 2020], which may lead to deeper connections
between events, like location and actors involved.

This paper presents the TrEnd pRediction on heteRogeneous InFormatIon nEtwoRks (TREN-
CHANT), a language model-based embedding propagation method for heterogeneous event networks.
While most existing network embedding methods mainly explore the network’s topology, our method
maps both (i) textual information about events; (ii) the complex relationships between events and
their components to a low-dimensional vector space; and (iii) a fine-tuning strategy that leverages
topological properties from the heterogeneous information network to enrich the textual embeddings.
Existing methods of network embeddings are offline, which requires repeating the entire process when
new nodes are added to the network. Some pipelines may include different techniques for dynamic
insertions [Deng et al. 2019; 2020], but they must be modeled apart from the network embedding. On
the other hand, our proposed method is naturally incremental. They use an initial neural language
model embedding, pre-trained and fine-tuned respectively, to maintain a fixed vector space propagated
to the entire network.

A preliminary version of our method was proposed in Carmo et al. [2021]. In this extended version,
we incorporate the BERT model fine-tuning strategy using topological properties of the event network,
as well as a more robust experimental analysis. Our main contributions are threefold:

—First, we propose a regularization framework for embedding propagation from a pre-trained BERT
language model to all nodes of a heterogeneous event network. Thus, all network nodes are mapped
to the same embedding space, allowing to compute similarities between textual and non-textual
nodes of an event dataset.
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—Second, we introduce a fine-tuning method of the BERT model from the topological properties
of the event network. Although the proposed method can handle general-purpose pre-trained
BERT models (TRENCHANT method), we discuss and evaluate scenarios in which fine-tuning
the initial embeddings before propagation in the heterogeneous network yields promising results
(FT-TRENCHANT method).

—Finally, we model the trend prediction problem as a classification task from the final embeddings
extracted from an event network. This is a practical solution that allows different well-known
classifiers, such as Long Short-Term Memory (LSTM) neural networks.

We evaluate the proposed methods with other information network embeddings methods on an
agribusiness news dataset. We consider corn and soybean prices for trend prediction. We also demon-
strate how enrolling the general knowledge of a pre-trained and fine-tuned neural language model
into a heterogeneous information network embedding method performs in trend prediction scenarios.
We show that using TRENCHANT and FT-TRENCHANT proposed methods is competitive with
state-of-art network embeddings algorithms. Moreover, our proposal performs network embedding
incrementally, allowing the insertion of new nodes in the same semantic space without rebuilding the
entire network embedding.

2. RELATED WORK

Commodities trend prediction is usually based on time series analysis techniques like Integrated Au-
toregressive Moving Average (ARIMA, [Darekar and Reddy 2017]) and Integrated Seasonal Autore-
gressive Moving Average (SARIMA [Adanacioglu et al. 2012]). With the advance in text mining
techniques, some works began to combine these text features with time series data for stock and
commodity prediction [Wang et al. 2019; Chen et al. 2016]. In dos Reis Filho et al. [2020] the au-
thors combine text and time-series data. The text was obtained from a bag-of-words model and
concatenated with a decision tree model based on time series data. They evaluate the models by
comparing the results from time series and the proposed model in a Support Vector Regression model
for commodity price prediction.

Network embedding methods allow for node feature extraction on local and global levels. From
Perozzi et al. [2014], the DeepWalk is a Word2Vec-based information network embedding method
that executes multiple random walks to sample data for skip-gram model training. Node2Vec from
Grover and Leskovec [2016] is an extension of the DeepWalk method that allows the user to choose
between two parameters p and q that control how much of the random walk will follow breadth or
depth search, respectively. Metapath2Vec was proposed by Dong et al. [2017] and is another extension
of the DeepWalk designed for heterogeneous networks. It transforms the random walks into meta
path-biased walks, i.e., the user defines a set of node types the algorithm should follow to explore the
heterogeneous network. Struc2Vec [Ribeiro et al. 2017] aims to generate a representation that is aware
of the network structure by constructing a multi-layer graph to encode the structural context through
the hierarchy of paths and then applies random walks like DeepWalk. LINE was proposed by Tang
et al. [2015], a network embedding method for very large information networks using edge sampling
walks for local and global neighbors separately and unifying them through negative sampling. The
authors Kipf and Welling [2017] proposed the Graph Convolutional Network (GCN) method based
on the assumption that the 1-hop connections between nodes might not always indicate they have
the same label. They modeled a neural network model to learn the graph correlations within some
labeled nodes and then propagate these relations throughout the network to overcome this problem.

In Deng et al. [2019] the authors developed a dynamic vocabulary graph and modeled a GCN to
identify key events and understand their evolution. Their proposal was evaluated within protest events
datasets. Models like these can also be used for many forecasting problems, such as the multi-event
and multi-actor forecasting tackled by Deng et al. [2020] with dynamic knowledge graphs and graph
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completion techniques, which are derived from link prediction. However, even though these methods
successfully introduced structures for multi-typed events, they lack general information that we believe
can be obtained through the propagation of pre-trained neural embeddings on top of an event HIN
architecture.

Alongside network embedding and graph neural networks, pre-trained language models on billions
of text data can be used to obtain dense vectors directly from textual data [Mikolov et al. 2013;
Radford et al. 2018; Devlin et al. 2018]. Although they allow obtaining meaningful representations
from event texts, they cannot extract embeddings from non-textual event components or consider more
complex relationships. Neural language models like BERT also allow embedding fine-tuning of specific
domain knowledge. Many authors explore BERT’s fine-tuning capabilities and how this process affects
its transformers [Hao et al. 2020; Merchant et al. 2020]. The authors in Sun et al. [2019] explored
different approaches for fine-tuning BERT to different tasks and provided vital insights on what affects
this process the most. In Peters et al. [2019], authors demonstrate that fine-tuned and other more
specific models outperform their pre-trained counterparts, and they also provided recommendations
for fine-tuning NLP tasks.

Information networks can be used to organize heterogeneous data from multiple contexts. They can
also provide different features to extract knowledge from data, like the number of nodes, edges, and
common neighbors. In this paper, we innovate them by leveraging information network topological
properties to fine-tune a pre-trained BERT neural language model. Thus, we introduced a new
approach to take advantage of the BERT model fine-tuning for applications involving event analysis
from heterogeneous networks.

3. TREND PREDICTION ON HETEROGENEOUS INFORMATION NETWORKS

3.1 Event Modeling with Heterogeneous Networks

Events extracted from news data act as digital sensors, as they are published around the time they
happened and contain information. This information can be extracted directly from the text, and
its metadata [Hamborg et al. 2018]. We chose to extract a 4W1H variation without the when char-
acteristics since it is not as good data as the publication date. We also consider metadata from
commodities prices to generate the trend indicators of the temporal series. The trend labels are cal-
culated according to the [week|month]/year period and commodity they represent. With the news
features extracted and trend labels calculated, we can model different heterogeneous networks to each
combination (Figure 1).

A heterogeneous event network is formally defined as a triple N = (O,R,W ), where O is the set of
object nodes, R is the set of connections between objects, and W is the weight of those connections
[dos Santos et al. 2020]. Heterogeneous event networks are information networks with the set O > 1,
meaning they have more than one object node type. This allows the representation to adapt to
various real-world data and event analysis, in particular events represented by multiple components,
such as places, time, names of people, and organizations. In this case, the set of objects is defined as
O = {Oe∪Od∪Ow∪Ol∪Oa∪Oy∪Oh∪Ot}, where the subset Oe represents event nodes, Od represents
date nodes, Ow represents what nodes, Ol represents location nodes, Oa represents actors nodes (e.g.
people or organizations), Oy represents why nodes, Oh represents how nodes and Ot represents trend
nodes (our desired labels).

3.2 Event Embedding Propagation

Network embeddings methods map each node in a low dimensional vector that represents network
topology and node type information [Chang et al. 2015; Huang and Mamoulis 2017; Setty and Hose
2018; Cui et al. 2018; Wu et al. 2020]. Formally, network embedding generates a function g : N → Rd,
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Fig. 1: Visual representation of the proposal. The event components are extracted from news headlines and metadata,
while the trend symbolizes the fluctuation of a commodity price.

where the nodes N are represented in a d-dimensional space. Each node n ∈ N has an embedding
fn ∈ Rd.

Our paper investigates network embedding through embedding propagation [Yang et al. 2019],
where we can take advantage of initial event embeddings using a BERT-based pre-trained neural
language model. The general problem for embedding propagation proposed in this paper is presented
in Equation 1, inspired by a general graph regularization framework [Ji et al. 2010]. It can be solved via
minimization with quadratic programming or through iterative methods based on label propagation
[Belkin et al. 2006; Zhu et al. 2003]. The first term determines that neighboring nodes ni and nj in
the network have similar embedding vectors fni

and fnj
, where Ω is a distance function, and wni,nj

indicates the weight of the connection between the nodes ni and nj . In the second term, the objective
is that the initial embeddings gni of the event nodes Oe are preserved according to a µ factor (with
µ > 0). In this case, gni

∈ Rd are d-dimensional embeddings obtained by pre-trained language models
from the texts of the event node ni, where ni ∈ Oe.

Q(F) =
1

2

∑
ni,nj∈N

wni,nj
Ω(fni

, fnj
) + µ

∑
O(ni)∈Oe

Ω(fni
,gni

) (1)

Using the initial BERT embeddings strategy for events is potentially promising for network event
analysis. In particular, trend prediction is a challenging repeatable task. Pre-trained embedding allows
new nodes to be added and used in the network immediately after an incremental embedding propa-
gation. The embedding propagation maintains the same original semantic space of the BERT model.
In contrast, other implementations of network embedding may require recreating the embeddings for
the whole network.
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3.3 BERT Fine-tuning using Event Network Topological Properties

The pre-trained embeddings of the BERT language neural model are often obtained using two ap-
proaches. The first approach involves extracting embeddings from a pre-trained model from general-
purpose texts, such as news and Wikipedia. The second approach focuses on fine-tuning the neural
language model considering the textual dataset available from the downstream task. Although BERT
fine-tuning is a promising alternative to extract better initial embeddings to our proposed method,
the success of this approach depends on a large volume of texts and labeled data. Such dependencies
often make fine-tuning in real-world applications unfeasible.

Since our proposed method assumes a pre-trained language model, both approaches (general-
purpose or fine-tuned) can be employed. However, in addition to using pre-trained general-purpose
BERT models to generate initial event embeddings, our proposed method also allows a BERT fine-
tuned model. Therefore, we propose a fine-tuning strategy by leveraging the event network topology
to learn better embeddings for the downstream trend prediction task without relying on a human-
labeled event dataset for embeddings learning. We claim this is relevant to fine-tuning language
models for event analysis, as we incorporate complex relationships between event components into
BERT embeddings.

Fig. 2: Fine-tuning

Figure 2 shows an overview of our fine-tuning pipeline, the BERT model using topological properties
of the event network. Let ni and nj be two event nodes. Remember that event nodes have associated
textual data. Moreover, event nodes are connected with nodes representing components of geographic
information, person names, places, and others. Equation 2 defines the Shared Nearest Neighbors
(SNN) measure, which calculates the similarity between event nodes from the network topology,
measuring the number of shared component nodes,

SNN(ni, nj) =
S(ni) ∩ S(nj)

S(ni) ∪ S(nj)
(2)

where S(ni) returns the set of neighboring nodes to ni. The SNN measure varies in the range [0, 1],
meaning the more shared neighbors, the closer to 1 and the greater the topological similarity between
the two nodes.
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We extend the well-known Siamese Neural Networks framework for BERT fine-tuning in the context
of sentence similarity [Reimers and Gurevych 2019]. Siamese networks use two different input vec-
tors (e.g., initial BERT event embeddings) to compute comparable output vectors (fine-tuned event
embeddings). While the existing approaches use predefined manual scores between pairs of texts as
similarity ground truth (which may be unfeasible in real-world applications), we propose using the
SNN measure as a target for fine-tuning. In this case, we fine-tune the embeddings of the event texts
so that the cosine similarity cos(gni

,gnj
), where gni

and gnj
are the BERT embeddings of event nodes

ni and nj respectively, is approximated by SNN(ni, nj) — which represents topological properties of
the event network. The loss function for the proposed fine-tuning is the MSE function (mean squared
error), according to Equation 3,

MSE =
1

k

k∑
i=1

(cos(gni
,gnj

)− SNN(ni, nj))
2 (3)

where k is the number of event pairs extracted from the event network for the BERT fine-tuning
process. After the fine-tuning process, such embeddings can be used in the embedding propagation
function described in Equation 1.

3.4 Trend Prediction

With the network embeddings calculated, we must apply the data collected to a machine learning
algorithm. In this paper, we have chosen a long-short term memory (LSTM) for supervised multi-
class classification with the network embedding data. The LSTM we used accommodates memory
units. The memory units are composed of three smaller units (u, cin, cout). The units u (Equation 4
(i)) apply a weighted sum, where w represents the weight, for each value y, and its result is outputted
through an activation function. These units are limited by control units cin (Equation 4 (ii)) and cout
(Equation 4 (iii)) that control when the iteration t will go forward or keep recurring. The initial value
y inserted to the LSTM comes from the propagated embeddings f and changes throughout training.

(i) uu
(t) =

∑
u wuy

u(t−1)

(ii) cin
(t) =

∑
u winjuy

u(t−1)

(iii) cout
(t) =

∑
u woutjuy

u(t−1)

(4)

These units must learn the correct weights to predict trends from an embedding vector. Thus the
LSTM is trained by a process called back-propagation. A back-propagation optimizer uses a gradient
(e.g. Equation 5) that calculates the error E between the actual label from a training to the time step
T

′
, T and generates a ∆ to update each weight wij from the LSTM network.

∆wEtotal

(T
′
, T ) =

T∑
t=T i+1

∆wE(t) → ∆wij = −α
∂Etotal(T

′
, T )

∂wij
(5)

The LSTM used in this proposal has: (i) a dense layer with as many units as the input (512)
that uses a relu activation function (Equation 6), allowing the optimization process to turn units off
when necessary; (ii) we mini-batch experiments and determined 64 memory units were the optimal
number for these experiments; (iii) the last layer calculates the probabilities of each class since it uses
a SoftMax [Goodfellow et al. 2016] activation function; and (iv) it uses the Adam optimizer during
training. With this LSTM, we can leverage the data represented by the embeddings in a neural
classification, allowing non-supervised methods to compete with graph neural networks.
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f(u) = max(0, u) (6)

4. EXPERIMENTAL EVALUATION

4.1 Datasets

We use a dataset related to agribusiness news to evaluate the trend prediction. It contains news related
to the corn and soybean commodities extracted from Soybean & Corn Advisor1 and the historical
prices from CEPEA2 (Centro de Estudos Avançados em Economia Aplicada). This dataset allows us
to extract the events and components from the news text. We calculate Trends’ classes in four ways,
generating four networks as shown in Table I. Each network has the same events and components but
generates trends’ labels nodes by different commodities and time windows. In addition, we use the
DistilBERT-Multilingual3 model to generate the initial embedding for each event headline text.

Table I: Overview of heterogeneous event networks used in the experimental evaluation.

Network #Nodes #Events #Dates #Whats #Wheres #Whos #Whys #Hows Time window Commodity

#1 4348 2322 380 48 115 9 244 1226 weekly corn
#2 4348 2322 380 48 115 9 244 1226 weekly soybean
#3 4056 2322 89 48 115 9 244 1226 monthly corn
#4 4056 2322 89 48 115 9 244 1226 monthly soybean

4.2 Evaluation criteria and experiment setup

We use traditional metrics to evaluate the multi-class classification scenario: macro precision, macro
recall, and macro F1. Another important metric to evaluate these methods is the F1 for the big_down
and big_up classes. We consider it essential because these classes indicate a critical market tendency
transition. It is important to know the performance of the methods on them. The evaluation scenarios
consist of two windows for obtaining trends and two splits for predicting them on all four networks.
We also evaluate average execution times. In Table II we present class numbers for training examples
for each scenario.

Table II: Overview of scenarios configurations with train and test sizes.

Scenario Time window Commodity #Weeks #Months Train size Test size

#1 weekly corn 24 - 2196 126
#2 weekly corn 48 - 2037 285
#3 weekly soybean 24 - 2196 126
#4 weekly soybean 48 - 2037 285
#5 monthly corn - 6 2203 119
#6 monthly corn - 12 2029 293
#7 monthly soybean - 6 2203 119
#8 monthly soybean - 12 2029 293

With the experiment scenarios displayed, we also need to account for class imbalance between all
four labels (big_down, down, up, and big_up). Table III presents all class distributions for each
scenario train/test split

1Available at: http://soybeansandcorn.com
2Available at: https://www.cepea.org.br
3Available at: https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2
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Table III: Overview of class balance for each scenario on train/test splits.

Scenario big_down(train/test) down(train/test) up(train/test) big_up(train/test)

#1 97/5 999/57 977/57 123/7
#2 83/19 964/92 887/147 103/27
#3 189/12 918/63 898/41 191/10
#4 155/46 888/93 838/101 156/45
#5 28/0 1006/38 1093/81 76/0
#6 28/0 973/71 952/222 76/0
#7 26/23 1096/15 1000/61 81/20
#8 26/23 1096/15 846/215 61/40

We compare TRENCHANT and FT-TRENCHANT with state-of-art network embeddings meth-
ods: DeepWalk, Node2Vec, Metapath2Vec, Struc2Vec, LINE, and GCN. We use the parameters rec-
ommended by the authors in the respective original papers for each baseline method. Regarding the
number of dimensions of the embeddings, we used 512 for all methods since it is the dimension used
by the DistilBERT language model. All experimental data, source code, and networks are available
at the GitHub repository https://github.com/PauloRVdC/TRENCHANT.

4.3 Results and Discussion

Considering the experiment setup explained previously, we will present results for each scenario,
pointing out relevant overall and specific class performance results. We will also evaluate the models
considering stability through box plot variations on scenario results.

In Table IV we present the results for the odd number scenarios (#1, #3, #5 and, #7), which
represent the smallest splits. We can see TRENCHANT and FT-TRENCHANT are the best per-
formers on most scenarios and metrics. More specifically, FT-TRENCHANT is best in both scenarios
constructed with soybean trends. At the same time, TRENCHANT has the best F1 and better recall
for scenario #1, which is the smallest split for corn trends. We can also observe that TRENCHANT
had worst performance than baseline methods on scenario #3, and FT-TRENCHANT managed to
beat them with some margin. These results show that our fine-tuning pipeline adds some knowledge
to the representation. However, it also shows that our fine-tuning pipeline does not help all scenarios
since performance has decayed in all corn scenarios.

Table IV: Trend prediction performance for scenarios #1, #3, #5 and, #7 on three metrics (macro F1, macro precision
(pre) and, macro recall (rcl)). Highest scores are in bold.

Scenario #1 Scenario #3 Scenario #5 Scenario #7
F1 pre rcl F1 pre rcl F1 pre rcl F1 pre rcl

DeepWalk 0.24 0.24 0.26 0.23 0.23 0.26 0.48 0.48 0.48 0.13 0.12 0.21
Node2Vec 0.27 0.30 0.27 0.23 0.23 0.25 0.24 0.25 0.24 0.18 0.22 0.25
Metapath2Vec 0.22 0.32 0.27 0.20 0.28 0.26 0.11 0.29 0.08 0.15 0.21 0.23
Struc2Vec 0.17 0.22 0.22 0.20 0.23 0.23 0.18 0.29 0.14 0.19 0.21 0.27
LINE 0.24 0.25 0.24 0.25 0.26 0.26 0.31 0.32 0.31 0.18 0.21 0.25
GCN 0.27 0.32 0.30 0.21 0.22 0.23 0.39 0.42 0.45 0.14 0.12 0.24
TRENCHANT 0.29 0.30 0.30 0.21 0.22 0.24 0.23 0.24 0.23 0.21 0.30 0.24
FT-TRENCHANT 0.21 0.22 0.21 0.33 0.34 0.34 0.26 0.27 0.26 0.25 0.31 0.35

In Table V we present the results for the even number scenarios (#2, #4, #6 and, #8), which rep-
resent the largest splits. Compared to the smallest scenarios, TRENCHANT and FT-TRENCHANT
have lacked some performance, going from being the best in most scenarios to having the best F1 and
precision on scenario #8. Nevertheless, this shows us that the fine-tuning process adds some knowl-
edge that helps discriminate trends for the soybean commodity. We can also see that TRENCHANT
is the second-best on scenario #2, which aligns with its good performance on scenario #1.
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Table V: Trend prediction performance for scenarios #2, #4, #6 and, #8 on three metrics (macro F1, macro precision
(pre) and, macro recall (rcl)). Highest scores are in bold.

Scenario #2 Scenario #4 Scenario #6 Scenario #8
F1 pre rcl F1 pre rcl F1 pre rcl F1 pre rcl

DeepWalk 0.24 0.26 0.27 0.20 0.27 0.24 0.36 0.40 0.39 0.16 0.20 0.24
Node2Vec 0.24 0.25 0.26 0.22 0.23 0.26 0.24 0.27 0.26 0.17 0.24 0.25
Metapath2Vec 0.19 0.25 0.20 0.30 0.35 0.32 0.10 0.28 0.07 0.13 0.19 0.24
Struc2Vec 0.20 0.23 0.22 0.22 0.24 0.24 0.16 0.28 0.12 0.17 0.22 0.22
LINE 0.24 0.26 0.25 0.22 0.23 0.24 0.25 0.28 0.27 0.17 0.26 0.25
GCN 0.26 0.31 0.31 0.19 0.17 0.24 0.37 0.38 0.40 0.16 0.24 0.32
TRENCHANT 0.25 0.26 0.27 0.19 0.18 0.20 0.22 0.25 0.23 0.18 0.38 0.28
FT-TRENCHANT 0.23 0.23 0.24 0.20 0.20 0.22 0.20 0.23 0.20 0.20 0.39 0.25

In Table VI we present the results specific for the critical classes (big_down and big_up). We
can observe that even though TRENCHANT and FT-TRENCHANT only achieve the best results
on scenarios #1 and #3, respectively, the overall performance guarantees a result throughout all
scenarios. Another takeaway from these results is that Metapath2Vec achieves the best performance
in most scenarios, showing us that the meta-paths allow for good coverage of unbalanced class features.

Table VI: Trend prediction performance for all scenarios on two metrics (big_down F1 (bd), big_up F1, (bu)). Highest
scores are in bold.

Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5 Scenario #6 Scenario #7 Scenario #8
(bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu) (bd) (bu)

DeepWalk 0.00 0.00 0.01 0.01 0.01 0.00 0.03 0.03 - - - - 0.00 0.00 0.00 0.00
Node2Vec 0.07 0.02 0.02 0.01 0.03 0.03 0.04 0.02 - - - - 0.00 0.05 0.01 0.03
Metapath2Vec 0.07 0.00 0.01 0.12 0.07 0.10 0.29 0.25 - - - - 0.28 0.16 0.27 0.14
Struc2Vec 0.04 0.10 0.08 0.12 0.09 0.13 0.16 0.20 - - - - 0.05 0.21 0.04 0.20
LINE 0.00 0.09 0.02 0.07 0.07 0.05 0.09 0.07 - - - - 0.01 0.04 0.01 0.05
GCN 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 - - - - 0.00 0.00 0.00 0.00
TRENCHANT 0.07 0.12 0.00 0.05 0.06 0.04 0.06 0.02 - - - - 0.02 0.09 0.04 0.07
FT-TRENCHANT 0.00 0.02 0.00 0.07 0.23 0.01 0.03 0.02 - - - - 0.04 0.09 0.07 0.10

In Figure 3 we present five box plots from scenario #3 that showcase the stability of methods
through five variations of the F1, precision, and recall metrics. The first box plot (Figure 3a) shows
that FT-TRENCHANT not only has the highest average of the macro metrics but is also the most
stable, followed by TRENCHANT and LINE. Another standout is that box plots for specific classes
(Figures 3b, 3c, 3d, 3e) show that different methods get better results on different classes. Most
methods have a good performance on the up class, but FT-TRENCHANT is among the best, while
TRENCHANT is among the methods that managed big_down class performance on some runs.
Overall, FT-TRENCHANT has good performance throughout the macro and class-specific metrics
and manages to edge out TRENCHANT and the baselines in most metrics.

We also evaluated average execution times for all algorithms on all executions for all scenarios.
In Figure 4 we present the average seconds for each algorithm. It is important to denote that:
(i) GCN is a semi-supervised graph neural network that is parallel on GPU; (ii) LINE is a neural
network embedding method that is parallel on GPU; (iii) Struc2Vec is an extension of DeepWalk
parallel on CPU; (iv) DeepWalk, Node2Vec, Metapath2Vec, TRENCHANT and, FT-TRENCHANT
are sequential; and (v) all methods, except GCN, execution times include training and prediction
with the LSTM. With that in mind, GCN has the fastest execution times, followed by TRENCHANT
and FT-TRENCHANT. These results can be explained for two reasons: (i) they are linear methods
considering nodes and edges of the network; and (ii) their stable embeddings allowed the LSTM loss
to be stable sooner, resulting in a shorter training, specially FT-TRENCHANT, which has fine-tuned
initial embeddings.

Overall, TRENCHANT and FT-TRENCHANT are methods competitive with the state-of-art net-
work embedding methods. Also, an initial embedding ensures that all nodes will be in the same vector
space. This single vector space allows new nodes added to the network to receive a final embedding
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(a) macro F1, precision and recall.
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(b) big_down F1, precision and recall.
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(c) down F1, precision and recall.
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(d) up F1, precision and recall.
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(e) big_up F1, precision and recall.

Fig. 3: Box plots for scenario #3 with the metrics: macro and class-specific F1, precision, and recall.
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Fig. 4: Average execution times for all algorithms on all executions for each scenario in seconds.

with a few iterations on top of the existing embedding. It also provides a more stable performance
since all executions will have the same starting point.

5. CONCLUSION

This paper introduces an embedding propagation method of pre-trained neural language models. It
also proposes an extension that leverages the heterogeneous network architecture for fine-tuning a
neural language model. Furthermore, we propose a pipeline for trend price prediction of agribusiness
commodities prices and evaluate our proposed models against network embedding models. Finally,
our experiment results show that using an embedding propagation technique from a BERT-based
model allows network embedding without recalculating the entire network. We also show that the
use of text information, combined with simple network topology, is competitive against state-of-art
topology network embeddings algorithms when the text database is well-curated. The results with
the fine-tuned extension also show that graph data can be incorporated into BERT embeddings.

We plan to incorporate weights on the different types of relations for future work, thereby allowing
the embedding propagation to consider more topology information. We also want to investigate
semi-supervised embedding propagation methods to incorporate the existing labels into the resulting
embeddings. Finally, Attention mechanisms in place of an LSTM is another scenario we can evolve
this work.
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