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Abstract Recent advances in biological and health technology have resulted in vast digital data. However, the
major challenge is interpreting such data to find valuable knowledge. For this, using computing is essential and
mandatory since quick data processing and analysis, allied with knowledge extraction techniques, enable working
effectively with large biological datasets. In this context, the ACDBio group works with the computational analysis
of biological data from different sources, aiming to find new information and knowledge in data or answer questions
that are not yet known. So far, the group has worked on several challenging topics, such as identifying significant
genes for cancer topological analysis of genes in interaction networks, among others. The group uses computational
techniques such as complex networks and their algorithms, machine learning, and topological data analysis. This
article aims to present the ACDBio group, and the main research topics worked on by its members. We also present
the main results and future work expected by the group.
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1 Introduction

A considerable amount of data has been generated in many
fields in recent years. In biology, especially in genomics,
data originate after the emergence of next-generation se-
quencing. Clinical data became available due to the increas-
ing deployment of information systems for health manage-
ment. There is the challenge of analyzing and interpreting
such data to obtain valuable information. Thus, the ACDBio
group emerged, whose main objective is to study biological
data in general, especially data related to cancer, epidemio-
logical diseases, and network data.
ACDBio is a research group that started its activities

in late 2015, where two members studied a classic prob-
lem in cancer genomics: the identification of significant
genes for cancer through computational methods. In 2017,
the group started to count on a member who is an expert
in Cancer Genomics. Currently, the group has nine peo-
ple, including professors, graduate students, and undergrad-
uate students. Furthermore, it is an inter-institutional group
with researchers from three institutions: University of Sao
Paulo (ICMC/USP), Federal Institute of Sao Paulo (IFSP),
and Barretos Cancer Hospital (HCB). The group still main-
tains partnerships with Federal University of Rio de Janeiro
(UFRJ). The group has been working on several research top-
ics: cancer genomics, dynamics of epidemics, topology and
resilience of complex biological networks, and topological
analysis of biological data. Figure1 presents an overview of

the research topics and the main computational approaches
used in investigating these topics.

We have developed studies with relevant results. Themain
contributions so far are: Identification of cancer driver genes,
using some types of data (e.g., gene interaction network and
mutation data) and cancer genomics pattern (e.g., mutual ex-
clusivity) and how different types of mutation can impact
and influence genes that are in the network neighborhood;
Detection of false-positive driver genes through the induc-
tion of supervised machine learning models that use as fea-
tures mutation data and centrality measures of genes in in-
teraction networks; Modeling Reactome’s Super Pathways
as networks and discovering topological distinction between
cancer driver genes and non-cancer driver genes that can be
explored to find new driver genes.

This paper is organized as follows: Section 2 presents the
main research topics in which ACDBio is involved. The
published works are described with the main obtained re-
sults. Section 3 describes the main datasets used in group
researches and analyses. Next, Section 4 shows research top-
ics that ACDBio is currently starting the research, or it is in-
terested in working in the future. Finally, Section 5 presents
the final considerations about ACDBio and this work.
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Figure 1. Group overview: In the left side is presented the main research topics covered by the group, while in the right side in presented the main
computational approaches used to work in the topics.

2 Research topics

In this section, we present the main research topics of ACD-
Bio. We describe concluded works with results, the pub-
lished article, and ongoing works. Overall, the studies ad-
dress cancer genes and other biological data analyses. The
works associated with cancer genes cover the discovery of
cancer driver genes using genes networks, an overview of
the computational methods for cancer genes, explore the
topological characterization of cancer genes in pathways net-
works, and the discovery of false-positive cancer genes. The
other works explore the differences in cancer datasets, the
Topological Data Analysis (TDA), and its application to bi-
ological data analysis. Lastly, we present epidemiological
data analysis concerning COVID-19 and Dengue.

2.1 Cancer genes identification

Cancer is caused by the accumulation of genetic alterations
during an individual’s life. Such alterations, called genetic
mutations, can lead the cell to disordered and uncontrolled
growth, which can cause cancer. New genome-sequencing
technologies, called Next-Generation Sequencing (NGS), en-
able fast and cost-effective genomic sequencing. As a result,
a large volume of biological data, including cancer data, can
be processed and analyzed to find useful clinical informa-
tion. In this context, Cancer Bioinformatics develops compu-
tational methods to interpret cancer data and help with can-
cer understanding. One of the categories of computational
methods includes those that lead to the problem of identify-
ing significant mutations (driver mutations) and their associ-
ated genes (driver genes) for cancer development. This is a
challenging problem once most of the mutations are not re-

lated to cancer. In this context, the computational methods
employ several strategies to deal with this problem, e.g., gene
interaction networks.
In the following subsections is presented the main results

achieved by ACDBio on cancer genes identification research
topic.

2.1.1 Discovering cancer genes through gene network,
weighted mutations and mutual exclusivity pat-
tern

This work describes a computational method for prioritizing
related genes significantly mutated in cancer. First, the sem-
inal idea of the method was published as short paper at SB-
CAS (Simpósio Brasileiro de ComputaçãoAplicada a Saúde)
[Cutigi et al., 2019b]. After that, an extension of this pre-
vious publication was submitted and accept for publication
and presentation at BSB (Brazilian Symposium in Bioinfor-
matics) [Cutigi et al., 2019a]. This work presents a flexible
computational method named GeNWeMME (Gene Network
+WeightedMutations +Mutual Exclusivity). Such a method
has four steps, which is illustrated in Figure 2 (extracted from
[Cutigi et al., 2019a]).
The method uses mutation data, gene interaction networks

and mutual exclusivity patterns prioritizing groups of signif-
icant genes in cancer. All these aspects are used according
to the objective of the analysis by cancer genomics profes-
sionals, that can choose weights for each aspect. The priori-
tized related genes are mutated in most patients and present
a pattern of mutual exclusivity. Experimental validation
was conducted using four types of cancer. Such validation
showed that it was possible to identify known cancer genes
and suggest others for further biological validation. Also,
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Figure 2. An overview of the GeNWeMME method.

GeNWeMME could prioritize genes with a low frequency
of mutation.

2.1.2 Computational perspective of computational
methods

Many computational methods to discover significant genes
for cancer have been developed. Such computational meth-
ods are complex and their understanding is most of time dif-
ficult, especially for research from Computer Science. For
this, a tutorial was produced with details about some classi-
cal computational methods, from a computational perspec-
tive, with the transcription in an algorithmic format for easy
access by researchers. This work was published at the Jour-
nal of Bioinformatics and Computational Biology (JBCB)
[Cutigi et al., 2020a].
The paper describes some classical computational meth-

ods that identify driver mutations from a computational per-
spective. It focuses on algorithms that use gene networks
and mutual exclusivity patterns, in which the computational
and biological aspects of the methods are discussed and com-
pared. The methods were transcribed in an algorithmic for-
mat to facilitate their comparisons and understanding, focus-
ing on showing them from a computational perspective. The
paper briefly describes some other related works, thus sum-
marizing such methods. It also discusses their computational
complexity and how they can be evaluated and compared.
With this work, the expectation is to broaden researchers’
understanding of the computational aspects of important and
classicalmethods for identifying significantmutations in can-
cer.

2.1.3 Detecting possible false cancer genes

Although computational methods have been used to iden-
tify significant genes for cancer, they can misclassify some
genes as significant, thus requiring expert curation to filter
their findings [Bailey et al., 2018]. Such misclassification
is due to some genes (referred to as false-positive-drivers or
false-drivers) exhibiting characteristics of being significant
for cancer, despite not being involved in its initiation and
progression. To avoid misclassifying false drivers as drivers,
a computational method was proposed to classify possible
driver genes as real or false-driver.
The method was described in a paper published and pre-

sented at BSB (Brazilian Symposium in Bioinformatics)
[Cutigi et al., 2020b]. The classification of genes in possi-
ble false drivers is performed through a supervised machine-

learning approach. Random Forest (RF) and Support Vec-
tor Machine (SVM) models were induced by features ex-
tracted from mutation data and gene network interactions.
Both models were evaluated using machine learning classi-
cal metrics, and they achieved satisfactory classification per-
formance, benefiting from the combination of mutation and
gene interaction features. Figure 3 (extracted from [Cutigi
et al., 2020b]) shows the supervised machine learning pro-
cess to induce the classification models, followed by their
evaluation.

2.1.4 Topological characterization of cancer driver
genes using Reactome super pathways networks

The study of topological characteristics of genes in the net-
work and pathways is an important topic once it can con-
tribute to understanding the role of drivers and their genes
in the networks. The work of [Cutigi et al., 2020b] shows
that gene network centrality measures increase the potential
of detecting possible drivers and false drivers. Furthermore,
a great number of network-based methods use information
about networks to identify significant genes in cancer [Oz-
turk et al., 2018]. In this context, the ACDBio group pub-
lished in the proceedings of the BSB (Brazilian Symposium
in Bioinformatics) in 2021 a study on a topological char-
acterization of cancer driver genes using Reactome super
pathways networks [Ramos et al., 2021]. The study mod-
els super pathways as complex networks to observe the topo-
logical characteristics of driver genes and their central role
in such networks, aiming to investigate the hypothesis that
driver genes are topologically different from other genes in
the same pathway.
The paper shows significant differences in some central-

ity measures between drivers and non-drivers. For example,
the measures of betweenness and closeness play an essen-
tial role in characterizing the drivers. Also, concerning the
resilience of super pathways networks, drivers can help to
understand the impact of mutations in biological functions
and their influence on cancer. Considering Programmed
Cell Death Pathway, we observe the drivers’ central role in
maintaining the network’s topological integrity. In other net-
works, drivers’ behavior was similar to the random removal
of nodes. At the same time, some networks show remark-
able resilience even to hub attacks. These results show that
super pathways networks have distinct topologies and partic-
ular roles for drivers. Groups of pathways that share similar
results in centrality measures differ in the resilience of inten-
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Figure 3. An overview of the machine learning-based approach to detect false drivers.

tional attacks. These findings reinforce the need to diversify
the analysis of driver’s topology. Also, treating each super
pathway as an individual system may provide more reliable
results.

2.1.5 Discovering cancer genes using weighted muta-
tion and asymmetric spreading strength in net-
works

Recently, a new computational method, called DiSCaGe
(Discovering Significant Cancer Genes), was proposed by
the group and published at the Nature Scientific Reports
[Cutigi et al., 2021]. Figure 4 (extracted from [Cutigi et al.,
2021]) presents DiSCaGe overview.
DiSCaGe takes advantage of weightedmutation frequency

and network neighbors’ influence. The weighted mutation
frequency considers the mutations and the possible func-
tional impact for cell carcinogenesis. The network influence
is through an asymmetric spreading strength measure that
can quantify how amutation can affect the network neighbor-
hood. DiSCaGe was evaluated in six cancer types using their
mutation datasets and two gene interaction networks. The
results showed DiSCaGe’s potential for discovering known
cancer-related genes, including genes with low mutation fre-
quency, and cited in research papers as cancer-related genes.
Furthermore, DiSCaGe also suggests possible novel cancer
genes.

2.1.6 Investigation of the performance of driver muta-
tion identification methods using biological net-
works and enriched biological networks

Several computational methods allow identifying cancer-
related genes (driver mutation) through patient mutation data
and biological networks. Usually, networks are not built fo-
cusing on cancer-related biological activities because they
are designed for general use. In this study, we investigate
the performance of methods for identifying driver mutations
using biological networks and enriched biological networks,
applying a gene prioritization method to classify genes asso-
ciated with cancer understudy in the biological network. We
selected six types of cancer to be used as a case study, such
as: Bladder Cancer (BLCA), Breast Invasive Carcinoma

(BRCA), Glioblastoma (GBM), Pancreatic Adenocarcinoma
(PAAD), Prostate Adenocarcinoma (PRAD), and Stomach
Adenocarcinoma (STAD). The results indicated that the en-
richment method helped identify different driver genes in
all cases. This study was recently submitted to the SB-
CAS (XXII Simpósio Brasileiro de Computação Aplicada à
Saúde) and is currently under review.

2.2 Biological data analysis
With the development of the ACDBio group, we branched
our work in areas beyond cancer genes. A study about can-
cer datasets served as a foundation for understanding the in-
put used in many computational methods exploring the dis-
ease and how different datasets from the same type of can-
cer can potentially modify the methods’ output. Topological
Data Analysis (TDA) is a recent field that extracts informa-
tion about the data structure and has been used to explore bi-
ological data. With the increased data about COVID-19, we
investigate how vaccines impact the survival rate among hos-
pitalized and ICU Brazilian patients. A partnership with Fed-
eral University of Rio de Janeiro motivated the creation of a
study of Dengue contagious dynamics with temporal data in
Rio de Janeiro.

2.2.1 Cancer mutation datasets analysis

There is a huge variety of mutation data in public databases.
However, it is not feasible to use all available data in ev-
ery analysis; thus, a data subset must be selected. Con-
sidering this context, the ACDBio group published in 2020
[Ramos et al., 2020] in the proceedings of the SBCAS (Sim-
pósio Brasileiro de Computação Aplicada à Saúde), a work
whose objective was to investigate and understand the muta-
tional characteristics presented in different cancer mutation
datasets of the same type of cancer. To achieve this goal, ex-
ploration and visualization of cancer mutation data were per-
formed. Several analyses were presented for three common
types of cancer: 1) Breast Invasive Carcinoma (BRCA); 2)
LungAdenocarcinoma (LUAD); and 3) Prostate Adenocarci-
noma (PRAD). For each cancer type, three distinct datasets
were analyzed to understand whether they have significant
differences or similarities. The analyses showed that BRCA
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Figure 4. An overview of DiSCaGe method.

and LUAD have evidence of similarity among their datasets,
while PRAD is likely heterogeneous.

2.2.2 Topological data analysis

Another interest in the ACDBio group concerns topological
data analysis (TDA) tools. TDA is a recent field that emerged
from the work of [Edelsbrunner et al., 2000] on persistent ho-
mology and was popularized in a reference article by [Carls-
son, 2009]. TDA is motivated primarily because topology
and geometry provide an approach to inferring qualitative
and sometimes quantitative information about the data struc-
ture [Chazal, 2016]. In that regard, TDA aims to develop
mathematical and statistical tools and algorithms to infer, an-
alyze, and explore the complex topology of data and its ge-
ometric structures. It has been used to reveal hidden sub-
groups of cancer patients, construct organizational maps of
brain activity and classify abnormal patterns in medical im-
ages. Some applications of TDA in biological data can be
seen in [Rabadan and Blumberg, 2019]. The ACDBio group
has been working with TDA in the context of cancer data,
such as studying the topological characteristics of disease-
associated pathways. Other applications of interest are gener-
ally related to biological data, such as COVID-19 or Dengue
virus data, to find patterns hidden behind the point cloud.

2.2.3 The survival rate among unvaccinated, first dose,
and second dose brazilian hospitalized and ICU
COVID patients by age group

The ACDBio group explored the lethality among hospital-
ized COVID-19 patients with one dose, two doses, and un-
vaccinated. We used a Brazilian nationwide surveillance
repository of severe acute respiratory disease for hospital-
ized patients with data for 1,177,151 hospitalized and ICU
COVID-19 patients in 2021. The data was preprocessed and

divided into age groups between hospitalized and ICU pa-
tients. The results showed statistical evidence for hospital-
ized patients that lethality increases with age and decreases
with vaccines, especially with the second dose. We also point
out a significant difference among age groups and between
hospitalized and ICU, indicating the need to separate these
groups when analyzing lethality and comorbidities. Further-
more, we also explore the dynamics of the symptoms over
time. This studywas recently submitted to the SBCAS (XXII
Simpósio Brasileiro de Computação Aplicada à Saúde) and
is currently under review.

3 Datasets
The ACDBio works with different and complementary
datasets. In this section, we present an overview of the most
used datasets.

3.1 Molecular datasets

With the advancements in NGS technologies, many
databases make available data concerning cellular function
and cancer mutation. This data makes possible the study of
complex diseases through computational approaches. Here
we present three types of molecular datasets that ACDBio
often uses.

3.1.1 Mutation Annotation Format

Cancer studies, such as [Ciriello et al., 2015], made available
many data files. One of these files is the Mutation Annota-
tion Format (MAF), a tab-delimited file containingmutations
found in samples. Each patient in the study has one or more
samples, and each sample has one or more genes with one or
more alterations (mutations).
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The Genomic Data Commons, from the National Can-
cer Institute (NCI), defines the pipeline used to create the
MAF and the 126 columns found in the file1. Many of these
columns store duplicate information that used to be indexed
by different systems and databases, as well as some meta-
data fields. Of the 126 fields present in the file, nine are
frequently used in computational methods:

• Hugo Symbol: Gene symbol following the Human
Genome Organisation (HUGO) standards.

• Chromosome: The affected chromosome.
• Start Position: The mutation start to coordinate.
• End Position: The mutation end coordinate.
• Reference Allele: The strand reference allele includes
the deleted sequence for a deletion or ”-” for an inser-
tion.

• Tumor Seq Allele: Primary data genotype for tumor se-
quencing (discovery) allele

• Variant Classification: The translational effect of vari-
ant allele, example: Missense, Silent, frameshift dele-
tion.

• Variant Type: The mutation type, for example, TNP (tri-
nucleotide polymorphism), DNP (di-nucleotide poly-
morphism), ONP (oligo-nucleotide polymorphism).

• Tumor Sample Barcode: The barcode for the tumor sam-
ple. It is a unique identifier for the sample and the pa-
tient.

3.1.2 Protein networks

Agene establishes complex interactions with other genes and
their produced proteins. These interaction can be modeled
as networks, a natural way to represent complex biological
systems [Kim et al., 2016]. Protein interaction networks are
used mainly in Cancer Genomics. In this case, proteins are
nodes, and edges connect proteins that interact in some as-
pect.
Many databases are sources of information about net-

works, e.g., Human Protein Reference Database (HPRD)
[Peri et al., 2003; Keshava Prasad et al., 2009], High-quality
INTeractomes (HINT) [Das and Yu, 2012], Reactome Func-
tional Interactions (ReactomeFI) [Jassal et al., 2020], andHu-
man Reference Interactome (HuRI) [Luck et al., 2020].

3.1.3 Pathways

Pathways are sets of genes that interact and are responsible
for the emergence of specific biological functions. Each path-
way works as building blocks of a cell’s complex system.
Some examples of pathways are: Circadian Clock, DNA Re-
pair, and Programmed Cell Death [Jassal et al., 2020].
The pathways are considerably smaller than the protein

networks and are associated with specific molecular func-
tions. Using pathways in computational methods decreases
the complexity and increases the significance compared to
the whole protein network. While this approach has ad-
vanced, it lacks the generality found when using protein net-
works. The ACDBio group aim to combine pathways and
protein network in its methods.

1https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/

3.2 COVID dataset
There is a worldwide interest in studying COVID-19 data,
with led to the creation of public databases. Brazil has
a database called SIVEP-Gripe, a nationwide surveillance
repository of severe acute respiratory disease for hospitalized
patients. Considering only 2021, the SIVEP-Gripe store data
for 1,177,151 hospitalized and ICU COVID-19 patients.
For each hospitalized patient, the dataset covers personal

and regional information (e.g., age, gender, race, city, state,
and hospital name). It also presents information about symp-
toms (e.g., fever, cough, saturation) and comorbidities (e.g.,
heart disease, pulmonary disease, asthma, kidney disease).
There is also temporal information like date evolution (dead
or alive), date hospitalization, date of first symptoms, and
date of vaccine doses.

4 Future directions
The studies presented in the last section opened opportuni-
ties for new researches the ACDBio group will develop in
the second half of 2022. This section presents two future
works related to cancer that will deepen the understanding
of cancer genes: clonal expansion and mutual exclusivity.
This section also presents future work regarding the spread
of Dengue contamination over more than ten years in Rio de
Janeiro state. This study will be executed in partnership with
the Universidade Federal do Rio de Janeiro since they have
the data and specialized researchers in epidemiology.

4.1 Analysis of clonal evolution in cancer
Drivermutations provide the cell inwhich they occurredwith
an evolutionary advantage over other cells, making it better
suited to its local micro-environment, enabling it to prolifer-
ate quicker than other cells and generate more daughter cells.
This process is called “clonal expansion” [Greaves and Carlo,
2012; Vogelstein et al., 2013; Dujon et al., 2021]. Most can-
cers evolve from a single cell with driver mutations through
a series of clonal expansions.
As the tumor develops, the cells continue to acquire more

driver and passenger mutations. A tumor cell that acquires
an additional driver mutation that causes clonal expansion
will generate a subpopulation of cells with mutations that
are not present in all cells in the tumor. This population
of subclonal cells can be identified through a set of shared
mutations. Clonal expansions can lead to several coexisting
subclones sharing subsets of mutations. Cancers are increas-
ingly recognized as mixtures of competing subclones [Nik-
Zainal et al., 2012].
In this context, there are studies on the clonal evolution of

cancer to infer the subclonal composition of a tumor by iden-
tifying cell populations with shared mutations. The applica-
tion of subclonal reconstruction methods provides important
information about tumor evolution, identifying subclonal
driver mutations, patterns of parallel evolution, and differ-
ences in mutation signatures between cell populations, and
characterizing the mechanisms of therapy resistance, propa-
gation, and metastases [Dentro et al., 2017].
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Future directions include analyzing the main methods of
clonal evolution analysis from a computational and biologi-
cal perspective to identify improvements in existing methods
and, eventually, propose a new method to infer the structure
of the clonal population.

4.2 Mutual exclusivity

Driver mutation in pathways responsible for cell prolifera-
tion and survival is frequently associated with cancer devel-
opment. It is intuitive to think that the more mutations a tu-
mor has, the faster it progresses. However, large-scale ge-
nomics studies show otherwise: driver oncogenes often are
mutually exclusive [Cisowski and Bergo, 2017]. Albeit this
phenomenon is not entirely understood, recent studies point
out that mutual exclusivity may be associated with tumor
type and interactions between drivers’ genes. A review pa-
per on 21 computational methods for mutual exclusivity ad-
dresses key features that can cause false-positive discovery:
cancer sub-type, intra-tumor heterogeneity, and imbalance of
mutual exclusivity [Deng et al., 2019]. Most of the reviewed
methods do not consider any of these key features and thus
are prone to false-positive discovery.
One hypothesis for mutual exclusivity is Functional Re-

dundancy [Deng et al., 2019]. This hypothesis is based on
pathway topology and the downstream effect, where a mu-
tation in one gene on the stream is enough to corrupt the en-
tire pathway. Following this hypothesis, identifying mutated
genes that corrupted the pathway can help understand which
biological function corruption leads to cancer.
The ACDBio group will work on the hypothesis that a

computational method to find mutual exclusivity, which con-
siders qualitative and quantitative data of patients and tu-
mors, can generate more significant results with fewer false
positives.

4.3 Topological analysis on dengue contamina-
tion in the state of Rio de Janeiro

The ACDBio is starting a partnership with the Universidade
Federal do Rio de Janeiro, collaborating with a biomathe-
matical group. We will analyze temporal data for more than
ten years about Dengue proliferation concerning aspects be-
yond heat and humidity, adding information about state sub-
regions, socioeconomics and transport.

5 Conclusion
This paper describes ACDBio, an inter-institutional research
group that studies biological data in general through compu-
tational analysis. Since its creation, the group has investi-
gated various related topics, such as cancer genomics, epi-
demiological diseases, and network data. In these topics,
some interesting results were achieved that were described
in papers published in conferences and journals.
In future work, it is expected the study new research topics,

such as clonal evolution, and mutual exclusivity in cancer,
among others. Additionally, new collaborations with other

research groups could be achieved, in order to expand the
interdisciplinarity of the group.
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