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Abstract One of the bioinformatics purposes is data mining and integration to solve fundamental scientific chal-
lenges. We have been investigating biological systems including viruses, bacteria, fungi, protozoans, plants, insects,
and animals with such concern. Gradually, we moved from basic questions on genome organization to application in
infectious and chronic diseases by integrating interactome and RNA-seq data to modeling techniques such as Flux
Balance Analysis, structural modeling, Boolean modeling, system dynamics, and computation biology in a sys-
tem biology perspective. At the moment, we focus on the rational therapy of cancer assisted by RNA sequencing,
network modeling, and structural modeling.
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1 Introduction
Computational techniques and mathematical modeling have
been increasingly utilized to address complex biological in-
quiries arising from raw data generated by sequencing ma-
chines, mass spectrometers, and other high-throughput tech-
nologies [D’Argenio, 2018]. These datasets, processed by
bioinformatic pipelines, necessitated the creation of virtual
entities to represent the intricacies of biological structures
and processes. Consequently, programming languages and
databases were adapted to support object-oriented applica-
tions, which are now accessible via the internet [NRCC-
FICB, 2005; Kindler and Krivy, 2011; Grochowski et al.,
2019]. The continuous advancement in electronic device
performance has facilitated the emergence of new high-level
programming languages characterized by higher levels of ab-
straction. These languages are more user-friendly and can
seamlessly integrate with various libraries, enabling them
to execute intricate operations1. Consequently, bioinformat-
ics has established itself as an interdisciplinary domain dedi-
cated to the development of methods and software tools tai-
lored for comprehending extensive and intricate biological
datasets. This interdisciplinary field amalgamates principles
from biology, chemistry, physics, computer science, infor-
mation engineering, mathematics, and statistics to meticu-
lously analyze and interpret these datasets. It is within this
framework that the transition from traditional bench experi-

1https://en.wikipedia.org/wiki/History_of_programming_languages

mentation to a new experimental paradigm involving bioin-
formatics investigation and inference has taken place.
The primary objective of the Laboratory of Biological Sys-

tem Modeling is to serve as a bioinformatics platform, of-
fering services to the partners affiliated with the Center for
Technological Development in Health (CDTS2) at Fiocruz3.
CDTS was established in 2002, and although its main facil-
ity is currently under construction4, research and develop-
ment teams were established in 2009. CDTS is dedicated to
translational science, focusing on the development of health-
related products and processes. The competencies entrusted
to CDTS by Fiocruz encompass: (i) Facilitating coordina-
tion, management, and promotion of technological devel-
opment and innovation; (ii) Enhancing technological devel-
opment and innovation in health-related products and pro-
cesses; (iii) Providing services based on its platforms and
supporting laboratories within a flexible structure (product
incubator); and (iv) Prospecting, analyzing, and communi-
cating strategic investigations in technological development
and innovation in health. Initially, CDTS commenced its op-
erations with 11 technological platforms, which are detailed
on its portal5. In Rio de Janeiro, CDTS serves as a proto-
type institute, bridging the gap between the basic science
conducted by the Oswaldo Cruz Institute (IOC) and Fiocruz’
production units: Biomanguinhos (biopharmaceuticals) and

2https://www.cdts.fiocruz.br/
3https://www.fiocruz.br/
4https://paal.com.br/blog/portfolio/cdts-2/
5https://www.cdts.fiocruz.br/linhas-de-pdi
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Farmanguinhos (drugs). Notably, Fiocruz has recently un-
dergone significant geographic expansion, and CDTS is ex-
pected to collaborate with Fiocruz’s regional centers as part
of its extended responsibilities.

2 History of the group and its mem-
bers

Our Research Group6 is led by Nicolas Carels who started
its activities in Genomics in the early 1990s in the Jacques
Monod Institute (IJM7) under the Centre National de la
Recherche Scientifique (CNRS8). The primary objective was
to investigate the physical distribution of genes in animal
and plant systems. Initially, these investigations were con-
ducted through bench experiments. During that period, Gen-
Bank, established in 1979, had descriptions for only a limited
number of genes. Despite the limited data available, inte-
gration of the existing information was possible. Combined
with bench results, this integration enabled us to address var-
ious scientific challenges. This fusion of digital and bench
data marked the initiation of the bioinformatics era [Gauthier
et al., 2019]. The field of bioinformatics advanced in tandem
with high-throughput techniques for cloning, expressing, and
characterizing biological molecules [D’Argenio, 2018].With
the continual enhancement of electronic devices’ perfor-
mance, bioinformatics attained higher levels of complexity,
facilitating the integration of increasingly sophisticatedmath-
ematical tools [Motta and Pappalardo, 2013]. Since then, our
focus has been on data mining and integration to tackle fun-
damental scientific problems.

2.1 Genome structure and organization
2.1.1 Genome organization and nucleotide bias

Initially, our research delved into gene distribution and nu-
cleotide biases in eukaryote genomes [Carels et al., 1998]. A
noteworthy discovery emerged when examining the regional
composition in guanine plus cytosine (GC). Surprisingly, the
genome heterogeneity of intergenic sequences in humans ex-
hibited greater diversity (5 compositional domains, [Costan-
tini et al., 2006]) compared to maize (2 compositional do-
mains, [Carels, 2005b]), despite both species having simi-
lar genome sizes ( 3 Gbp) and nucleotide biases in the third
position of codons (30%-100%). Compositional domains
(coined as isochores by Bernardi), defined as large genomic
regions (>1 Mbp) homogeneous in GC in the 4% interval,
illustrated that selective constraints applied differently to
the intergenic sequences of plants and warm-blooded ver-
tebrates [Carels, 2005a]. This observation indicated a dis-
tinctive genome phenotype resulting from different plants’
genomic strategies in response to environmental pressures.
Additionally, a compositional transition in coding sequences
of plants was noted, particularly between dicotyledons and
Poaceae [Carels et al., 1998]. Considering distinct genomic
strategies between plants and animals, a similar intron size

6http://dgp.cnpq.br/dgp/espelhogrupo/184801
7https://www.ijm.fr/en/3/home-page.htm
8https://www.cnrs.fr/en

and number bias was observed between GC-poor (numer-
ous long introns) and GC-rich (few short introns) genes in
both plants and vertebrates, with the contrast being more pro-
nounced in plants than in vertebrates [Carels and Bernardi,
2000]. The disparity in intron composition between GC-
poor and GC-rich genes was found to be linked with CpG
islands in gene promoter regions. GC-poor genes lacked
CpG islands, while GC-rich genes were with an observed
over expected frequency close to 1, indicating active mainte-
nance (positive selection) despite themutational bias of 5mC
into T [Carels, 2005a]. This finding led to the conclusion
that GC-poor and GC-rich genes were subject to different
types of regulation. Additionally, GC-rich genes tended to
be expressed at higher levels thanGC-poor genes, implying a
network of functional correlation between genome organiza-
tion and regional composition. These functional correlations
were further demonstrated on a larger scale in the vertebrate
model [Bernardi, 2021]. This research conducted at IJM and
Stazione Zoologica Anton Dohrn9 (Naples, Italy), prompted
a closer examination of nucleotide composition in coding se-
quences (CDS). The study was initiated at the Universidade
Estadual de Santa-Cruz10 (UESC, Bahia) and concluded at
Fiocruz (Rio de Janeiro).

2.1.2 Coding sequence validation

The universal correlation recognized a similar bias in the 2nd

and 3rd position of codons in prokaryotes and eukaryotes
[D’Onofrio et al., 1999]. Naturally, the guanine plus cyto-
sine level in the 3rd position of codons (GC3) increasesmuch
more rapidly than that ofGC2 due to the wobble nature of the
3rd position of codons. However, the analysis of nucleotide
composition revealed a periodic distribution of nucleotides
along CDSs following what has been termed the ancestral
codon, denoted by the Rrr pattern (R is for a large purine fre-
quency in 1st position of codons and r is for a low purine
frequency in the 2 other positions of codons) [Carels et al.,
2009; Carels and Frias, 2013a]. This structural pattern is non-
trivial as nucleotide distribution typically occurs randomly
within the codon table, raising questions about the existence
of such periodicity. This periodicity is induced by a network
of selective constraints on protein functionality that is univer-
sal across prokaryotes and eukaryotes [Ponce de Leon et al.,
2014]. However, the coexistence of the universal Rrr ances-
tral codon with the universal correlation, based on the S/W
ratio (S for strong or GC and W for weak or AT), implied a
complex network of correlation between nucleotide composi-
tion and their positions in codons, a phenomenon not present
in non-coding sequences such as introns [Carels and Frias,
2013b]. This led to the question: What constraints could be
shaping the structure of codons?
Upon comparing codons and amino acid frequencies, we

found that these constraints resulted from: (i) the energy cost
associated with amino acid synthesis, (ii) the spatial distri-
bution of turns and helices in contact with the solvent, and
(iii) the spatial distribution of β-sheets at the protein center
[Ponce de Leon et al., 2014]. The ancestral codon Rrr can
also be represented as RNY or RWY, and even Ggg. The

9https://www.szn.it/index.php/en/
10http://www.uesc.br/
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reason R1 (frequency of A or G purines in 1st position of
codons) is larger than R2 or R3 is that the 1st position of
codons encodes for the energy cost of amino acid synthesis;
indeed, glycine, alanine, and valine are the amino acids with
the simplest moieties and are also the most frequent in turns,
helices and β-sheets, respectively. W2 represents weak, i.e.,
A2 or T2, because T2 is linearly correlated to hydropathy.
Large T2 values correspond to amino acids with hydropho-
bic moieties, which are typically much more expensive for a
cell to synthesize than the hydrophilic ones found more com-
monly in turns and helices [Ponce de Leon et al., 2014]. The
ancestral codon is characterized by a scarcity of purines in
the second position of codons (r2) with A2 compensing G2,
while C2 compensate for T2, allowing T2 to be correlated
with hydropathy. However, GC2 (S2) is smaller than AT2
(W2) regardless of the organism under consideration being
GC-poor or GC-rich. According to the RWY or Ggg pattern
of the ancestral codon, pyrimidines (Y ) are more frequent
in the 3rd position of codons. However, due to constraints
on r3 and T2, C3 compensates for base composition accord-
ing to the GC-rich bias (or T3 for the GC-poor bias, [Carels
and Frias, 2013b]). This codon structure is recognized by
Hidden Markov Model (HMM) models, but the Viterbi algo-
rithm typically has a 15% error rate in reading frame identifi-
cation because it does not includes any restriction for possi-
ble confusion of nucleotide probabilities between +1 and -1
(GC or CG: the condition G1 > G2 was true for all proteins
cristallized and whose models were deposited in PDB11 in
2013) or even between +1 and -2 (the condition A1>T2 was
true for all proteins from PDB) positions [Carels and Frias,
2013a]. Implementing these restrictions increased the pre-
diction rate of the coding frame among the six frames from
expressed sequence tags (EST) contigs above 95% in most
organisms, provide that the sequence size was at least 300 bp,
which is true for 95% of GenBank proteins [Carels and Frias,
2013a]. These rules were combined in a statistical measure
(UFM) that is independent of the nucleotide composition of
a sequence and does not require any previous training step
[Carels and Frias, 2013a]. This justifies why starting by an-
notating the exome is the first step to be performed when
describing a new genome. The term ”ancestral codon” origi-
nates from the facts that (i) a primeval codon system encod-
ing Gly, Ala, and Val was sufficient to produce catalytic pro-
teins with turns, helices, and β-sheets, provided that metallic
ions would be chelated, and (ii) these amino acids were avail-
able in the primeval Earth conditions, as proven by Miller
and successors (see in [Carels and Ponce de Leon, 2015]).

2.2 Plant genetics
The investigation into genome characterization led us to ex-
plore economically significant plant systems, such as Theo-
broma cacau (cacao for chocolate production), Jatropha cur-
cas (physic nut for biodiesel production) as well as plant tol-
erance to drought. Plant research also held importance for
medicinal purposes, an area of ongoing research at Farman-
guinhos (Fiocruz). Initially, due to historical reasons, we
commenced our bioinformatics research in plant systems in

11https://www.rcsb.org/

France and continued this work during our activities at UESC
and Fiocruz. This approach served as a means of comparison
with animal eukaryotes.

At UESC, our research focused on cacao, where we inves-
tigated simple sequence repeats (SSR) markers derived from
ESTs of tissues infected byMoniliophthora perniciosa, a fun-
gus causing witches’ broom disease (WBD) in cacao. We
compared the polymorphism of these EST-SSR with classi-
cal neutral SSR markers. Our study revealed several of these
EST-SSR markers that are applicable for selective breeding
of cacao [Lima et al., 2010].
In our research on physic nut, initiated at UESC, we con-

ducted sequencing and characterization of a cDNA library
from J. curcas L seeds at three stages of fruit maturation be-
fore yellowing occurred. The obtained sequences exhibited
minimal redundancy, providing extensive metabolic cover-
age when compared through homology analysis with Gene
Onthology (GO, [The Gene Ontology Consortium, 2008]).
By comparing these ESTs and those available from Gen-
Bank with the Kyoto Encyclopedia of Genes and Genomes
(KEGG12) [Kanehisa and Goto, 2000], we identified tags
with nucleotide variations among J. curcas accessions for
genes involved in fatty acid, terpene, alkaloid, quinone, and
hormone biosynthetic pathways. Specifically, we assessed
the expression levels of four genes (encoding palmitoyla-
cyl carrier protein thioesterase, 3-ketoacyl-CoA thiolase B,
lysophosphatidic acid acyltransferase, and geranyl pyrophos-
phate synthase) using real-time PCR. These genes exhib-
ited significant differences in expression between leaves and
fruits. Given that nucleotide polymorphisms in these genes
are associated with higher expression levels in fruits com-
pared to leaves, we proposed this approach for generating
genetic markers to expedite the identification of quantitative
traits (QTL) in selective breeding of J. curcas [Gomes et al.,
2010].
Our research on plant drought tolerance is still in its early

stages and mainly consists of a literature review. This re-
view prompted the proposal of apomixis to stabilize epige-
netic traits in wheat, an important feeding resource world-
wide [Adel and Carels, 2023]. However, this topic is gain-
ing global significance due to climate change, particularly in
vulnerable regions.

2.3 Host pathogene interactions
2.3.1 The system ofMoniliophthora perniciosa vs cacao

M. perniciosa is a fungal parasite of cacao that belongs to Ba-
sidiomycota. Studying the molecular relationship between
the fungal parasiteM. perniciosa and its host, Theobroma ca-
cau, posed significant challenges. M. perniciosa infects the
intercellular spaces of cacao meristematic tissues, with a ra-
tio ofM. perniciosa to T. cacau not exceeding 5%. This ratio
approximates the error rate of a 5’-3’ directional cloning kit,
implying that under optimal conditions, not all ESTs could
be expected to be cloned in the 5’-3’ orientation. Moreover,
these kits were costly, and most EST libraries did not con-
sider the 5’-3’ orientation [Gesteira et al., 2007]. Conse-
quently, any read sequence might be coding or not, on the

12http://www.genome.jp/kegg/
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leading or lagging strand, indicating that if they were coding,
they were in one of the six frames. It was not feasible to em-
ploy the same algorithm to determinewhether a readwas cod-
ing, identify its coding frame, and ascertain whether it orig-
inated from cacao or M. perniciosa, as genomic sequences
for either organism were unavailable at that time. In addi-
tion, the use of a subtractive library did not seem to solve the
problem [Garcia et al., 2011].
The resolution adopted involved classifying reads as ei-

ther coding or non-coding and identifying their coding frame,
if applicable, using the universal ancestral codon as a basis
[Carels and Frias, 2013a]. Subsequently, a classifier was
trained utilizing a ninth-order Markov model. The observed
frequency was then compared with the expected frequencies
derived from two matrices of 9-mers (one specific to cacao
and the other to M. perniciosa) as references in the training
sets. This system had an approximate error rate of 10% (un-
published data).

2.3.2 The system of Fusarium oxysporum vs plants

Continuing the exploration of potential molecular targets in
fungal plant diseases, our focus shifted to the genus Fusar-
ium, which comprises some of the most extensively stud-
ied and economically impactful plant pathogenic species
in global agriculture and horticulture [Burgess and Bryden,
2012]. Fusarium spp. are widespread fungi [Agrios, 2004],
found in soil, plants, various organic substrates, and are also
recognized as opportunistic human pathogens [Zhang et al.,
2020]. We hypothesized that pinpointing specific enzymes
vital to Fusarium spp.’s metabolism might yield potential
molecular targets for controlling the diseases they inflict on
their hosts. Employing conventional methods such as se-
quence homology comparison through similarity search and
Markov modeling, we characterized enzymatic functionali-
ties associated with protein targets, which could be potential
candidates for controlling root rots caused by Fusarium oxys-
porum. By comparing F. oxysporum’s specific enzymes with
the genomes ofArabidopsis thaliana, Brassica rapa,Glycine
max, J. curcas, and Ricinus communis, we identified a lim-
ited number of key enzymes. Inhibiting these enzymes was
expected to significantly impact the fungus’s development
[Catharina and Carels, 2018]. The application of Flux Bal-
ance Analysis (FBA) modeling enabled the identification of
a set of critical F. oxysporum enzymes essential for biomass
production, implying that inhibiting them could potentially
disrupt the fungus’s metabolic network in vivo. Among
these pivotal genes, F9F4G5 and F9FSB6 were identified
as counterparts analogous to those in A. thaliana. Notably,
only one pair’s 3D structure could be modeled (F9F4G5 vs.
Q8GWP5). Consequently, the enzyme F9F4G5 emerges as
a promising target for inhibiting F. oxysporum since it plays
a role in fungal growth and the regulation of key biological
processes [Catharina, 2017]13.

2.3.3 The system of Leishmania major vs humans

Subsequently, our focus shifted to human parasites, specif-
ically Leishmania major. Our objective was to identify

13https://www.arca.fiocruz.br/handle/icict/37782

enzymes unique to Leishmania major compared to Homo
sapiens, with the potential to be considered targets for fa-
cilitating drug development. This approach relied on con-
ventional techniques such as sequence homology compar-
ison using similarity search (BLAST) and Markov model-
ing. Markov modeling provided the advantage of integrating
the characterization of enzymatic functionality, secondary
and tertiary protein structures (3D), protein domain archi-
tecture, and metabolic context. Through the identification
of 42 enzymatic activities specific to L. major in compari-
son to H. sapiens, as classified by the Analogous Enzymes
Pipeline (AnEnPi) [Otto et al., 2008], we pinpointed sterol
24-C-methyltransferase, pyruvate phosphate dikinase, try-
panothione synthetase, and RNA-editing ligase as four essen-
tial enzymes for L. major. These enzymes could potentially
serve as targets for drug development efforts [Catharina et al.,
2017].

2.3.4 In silico structural characterization of protein tar-
gets from Trypanosoma cruzi

In our exploration of Trypanosomatidae family parasites, we
turned our attention to T. cruzi, which is a significant hu-
man protozoan parasite in Brazil. Despite numerous exper-
imental studies, effective treatments for Chagas disease re-
mained elusive. Therefore, we conducted in silico predic-
tions of the 3D structures of T. cruzi sequences that were
either analogous to human proteins or unique to T. cruzi.
These sequences were potential candidates for drug devel-
opment. The identification of these protein targets was ac-
complished using the AnEnPi pipeline in a prior investiga-
tion [Gomes et al., 2011]. Analogous enzymes in T. cruzi
were associated with trypanothione reductase, cysteine syn-
thase, and ATPase, while sequences specific to T. cruzi, i.e.,
absent in H. sapiens, were associated with 2,4-dienoyl-CoA
reductase and leishmanolysin activities. Our refined models,
scrutinized through atomisticmolecular dynamics (monomer
or dimer) simulations in aqueous or bi-membrane solutions
in silico, indicated that all protein targets, except cysteine
synthase, warranted further investigation [Lima et al., 2016].

2.3.5 The system of T. cruzi in triatomines

At that time, extensive research had been conducted on T.
cruzi in humans, but very limited information was available
regarding its interaction with bacteria in the digestive tract of
triatomines (DTT), its insect vectors. As T. cruzi was known
to reside within the DTT without breaching its cell boundary,
we posed a question: could the composition of the triatomine
bacterial microbiota influence its population? Given the in-
sufficient description of this system and the scant available
data, which indicated the prevalence of Serratia marcescens
in in vitro culture, we opted to explore its microbial composi-
tion by sequencing 16S rDNA. This choice was motivated by
the potential presence of bacterial species that might be un-
culturable. We deemed it crucial to investigate the triatomine
microbiota because the triatomine gut serves as one of the
factors that could impact the transmission and virulence of
T. cruzi in humans. Understanding the microbiota composi-
tion, particularly in different triatomine species, could prove
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instrumental in devising strategies for biological control of
T. cruzi.

1. Microbiota of digestive tract in Triatomines:
In our analysis of the predominant bacterial species
within the digestive tract (DTT) of Rhodnius, Triatoma,
Panstrongylus, and Dipetalogaster genera using 16S
rDNA sequencing, we observed a limited diversity
of bacterial species, with fewer than 20 predominant
species, as indicated by the Chao index. The composi-
tion of these species varied among different triatomine
species. Specifically, our findings revealed that (i)
Serratia was prevalent in Rhodnius, (ii) Arsenophonus
was prevalent in Triatoma and Panstrongylus, while
(iii) Candidatus Rohrkolberia was the primary species
in Dipetalogaster. Unlike certain insect systems such
as termites, the bacterial microbiota in triatomines
exhibited a low complexity, with its structure differing
based on the vector genus. Similar conclusions were
drawn by other researchers studying hematophagous
insects like mosquitoes [da Mota et al., 2012]. In a
subsequent study, we examined triatomines captured
in Ceará. The bacterial community in the gut of these
peridomestic triatomines, identified as Triatoma pseu-
domaculata and Triatoma brasiliensis through COI
sequence comparison, was predominantly composed
of Proteobacteria and Actinobacteria. Additionally,
Firmicutes and Bacteroidetes were present, although in
lower proportions. The predominant genus remained
Serratia, with members of Corynebacterinae, a subor-
der of Actinomycetales, forming the next significant
group [Gumiel et al., 2015].

2. Metagenomics:
Based on the preceding reports, the following
hypothesis-consequence relationships were formulated:
(i) Considering the DTT as an ecological niche support-
ing microbiota adapted to specific substrate availability,
we investigated the molecular enzymatic properties
favoring bacterial prominence in this environment; (ii)
Utilizing the microbiota composition of DTT from
previous 16S rDNA analyses and whole sequenced
genomes of bacteria within the same genera available
in GenBank, we calculated the GC content of rare
and prominent bacterial species in the DTTs; and (iii)
Recognizing the conservation of genome GC content
within bacterial genera [Takahashi et al., 2009], we
compared the enzymatic reactions encoded by CDSs
of both rare and common bacterial species, elucidating
key functions explaining the competitive advantage of
certain genera in the DTT.
Therefore, we examined the composition of DTT mi-
crobiota by conducting shotgun sequencing of DNA ex-
tracted from bacteria cultured in liquid Luria-Bertani
broth (LB) medium. The findings revealed that bacteria
with a high GC content effectively outperformed those
with a low GC content, establishing their dominance
within the DTT microbiota.
The comparison of genes sequence from the bacteria
previously listed with KEGG showed that oxidore-

ductases were the main enzymatic components of
DTT microbiota. Specifically, nitrate reductases
(involved in anaerobic respiration), oxygenases (for the
catabolism of complex substrates), acetate-CoA ligase
(related to the tricarboxylic acid cycle and energy
metabolism), and kinase (associated with signaling
pathways) were the predominant enzymatic determi-
nants. These enzymes were accompanied by a variety
of minor enzymes, including hydrogenases involved
in energy and amino acid metabolism. We concluded
that bacteria from GC-rich genera outcompete those
of GC-poor ones due to their specific enzymatic
capabilities, providing them with a selective advantage
in the DTT for the catabolism of complex molecules
such as hemoglobin [Carels et al., 2017].

3. Metabolomics:
As mentioned earlier, the composition of microbiota
differs not only between triatomine species but also
across different blood meals. Consequently, the
dynamic nature of the DTT, where T. cruzi resides,
can significantly impact its development. Recognizing
this, we embarked on a study to explore the chemical
composition of the DTT using a metabolomics ap-
proach. Utilizing Direct Infusion Fourier Transform
Ion Cyclotron Resonance Mass Spectrometry, we
analyzed fecal samples from three triatomine species
(Rhodnius prolixus, Triatoma infestans, Panstrongylus
megistus) following rabbit blood meals. Subsequently,
we identified clusters of metabolites that were either
consistently present in all species (contingent core) or
specifically enriched in each species (specific core). By
querying the Human Metabolome Database14 [Wishart
et al., 2007], we determined putative identities for
these metabolites of interest. Our findings revealed
that approximately 80% of the detected molecules
constituted a fundamental set of metabolites present
uniformly across all species, while the remaining 20%
exhibited variations among the triatomine species. The
contingent core set of metabolites encompassed diverse
categories such as fatty acids, steroids, glycerolipids,
nucleotides, and sugars, among others. Neverthe-
less, the metabolic signature of triatomine feces
also exhibited variations among the specific species
under consideration. The contingent core primarily
comprised prenol lipids, amino acids, glycerolipids,
steroids, phenols, fatty acids and derivatives, benzoic
acid and derivatives, flavonoids, glycerophospholipids,
benzopyrans, and quinolines. Our findings lead us to in-
fer that the abundant and diverse chemical components
within the DTT milieu are likely to influence the devel-
opment and infectivity of T. cruzi. The intricate nature
of the fecal metabolome in triatomines implies that it
could impact the vector competence of triatomines for
specific T. cruzi strains. Understanding the chemical
environment of T. cruzi within its invertebrate host
holds the potential to reveal novel insights into the
factors influencing parasite proliferation and provide

14https://hmdb.ca/
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strategies for Chagas disease control [Antunes et al.,
2013].

4. Proteomics:
As mentioned earlier, R. prolixus, P. megistus, T. infes-
tans, and D. maxima are all triatomines and potential
vectors of T. cruzi, the causative agent of human Cha-
gas’ disease. Recognizing that the life cycle of T. cruzi
unfolds within the DTT, we deemed it imperative to an-
alyze the protein profile of the DTT as a crucial step
in comprehending the physiology of the DTT during
T. cruzi infection. To delineate the protein profile of
DTT in D. maxima, P. megistus, R. prolixus, and T. in-
festans, we conducted a comprehensive analysis using
shotgun liquid chromatography-tandemmass spectrom-
etry (LC-MS/MS). The majority of identified proteins
were closely associated with metabolic pathways such
as gluconeogenesis/glycolysis, citrate cycle, fatty acid
metabolism, oxidative phosphorylation, and immune re-
sponses. This novel proteomic dataset was annotated
and integrated with previously published data in align-
ment with Gene Ontology (GO) and KEGG classifica-
tions. Enzymes were categorized based on class, ac-
ceptor, and function, while proteins related to the im-
mune system were annotated with reference to path-
ways including humoral response, cell cycle regulation,
Toll, IMD, JNK, Jak-STAT, and MAPK, as available
from the Insect Innate Immunity Database (IIID). The
identified pathways were further categorized into recog-
nition, signaling, response, coagulation, melanization,
and non-specific categories. Additionally, phylogenetic
relationships and gene expression patterns of annex-
ins were examined to comprehend their role in safe-
guarding and maintaining the intestinal epithelial cells
against inflammation [Gumiel et al., 2020]. Through
these comprehensive approaches encompassingmetage-
nomics, metabolomics, and proteomics, we have signif-
icantly contributed to illuminating the environment in
which T. cruzi thrives in its invertebrate hosts. This
study has given rise to numerous questions, inspiring
our colleagues to delve deeper into the relationship be-
tween T. cruzi and DTT. Consequently, this enhanced
understanding represents a significant stride toward ad-
vancing the control measures for Chagas’ disease.

3 Present times

3.1 Viral diseases

The investigation of viral diseases commenced with the anal-
ysis of mutation rates among dengue strains. It was observed
that dengue 2 exhibited a higher mutation rate, determined by
aligning numerous sequences of the four types [de Araújo
et al., 2007]. During the COVID-19 pandemic, in collabora-
tion with the research teams of Thiago Moreno L. Souza and
Salvatore Giovanni De-Simone (Fiocruz/CDTS), our focus
returned to viral diseases, this time concentrating on in sil-
ico protein modeling utilizing structural biology techniques
(biophysics). Through in silico, structural analyses, we char-

acterized the interaction between heme-binding motifs and
hemin in several proteins, including the nucleoprotein (N),
spike (S), core membrane protein (M), and non-structural
proteins (Nsp3 and Nsp7) of SARS-CoV-2 [Lechuga et al.,
2021].
We also conducted an investigation on the major protease

(Mpro) of SARS-CoV-2, recognized as a promising drug tar-
get. We compared the in silico compatibility of atazanavir,
lopinavir, and ritonavir (three antiretrovirals) with this pro-
tein. These analyses provided valuable data to supplement in
vitro studies, leading to the suggestion that atazanavir and the
combination of atazanavir with ritonavir should be regarded
as potential candidate drugs for repurposing in the ongoing
clinical trials against COVID-19 [Fintelman-Rodrigues et al.,
2020].

3.2 Cancer diseases
With the improvement of economic conditions in Brazil, the
health issues prevalent among its population are shifting
from dysregulations caused by parasites to dysregulations in-
duced by physiological changes, notably cancer. The increas-
ing incidence of cancer is anticipated to significantly impact
the healthcare system, particularly due to the costly palliative
cares. As a result, our research focus has transitioned from
parasitic diseases to cancer-related studies.

3.2.1 Hub targeting in malignant network

Cancer is a complex disease resulting from genetic and epige-
netic changes, which disrupts several mechanisms, including
cell division regulation. We hypothesized that targeting up-
regulated protein hubs within the framework of theranostics,
combining the diagnosis and therapeutic approach to cancer,
could enhance patients’ benefits. The advantage of targeting
hubs in scale free networks has been mathematically demon-
strated by the Barabasi’s research team [Albert et al., 2000;
Barabási, 2016]15 and confirmed by Conforte et al. [2019],
encompassing various types of cancer with different degrees
of aggressiveness (ranging from 30% to 98% 5-years overall
survival rates). Through an analysis of the entropy [Shan-
non, 1948] of signaling subnetwork of up-regulated genes in
malignant cells, conducted by comparing the IntAct16 inter-
actome [Orchard et al., 2014] and RNA-seq data from The
Cancer Genome Atlas (TCGA17), we identified hubs that
needed inhibition. Notably, these hubs displayed varying
levels of specificity concerning different tumor types and in-
dividual patients, underscoring the necessity for a personal-
ized approach to rational therapy rather than a generic one-
size-fits-all solution [Carels et al., 2015]. This concept was
further substantiated through in vitro experiments on breast
cancer cell lines using RNA interference, as demonstrated by
Tilli et al. [2016] and was later extended to tumors by Con-
forte et al. [2019]. The research conducted by Conforte et al.
[2019] expanded the rational therapy paradigm, focusing on
inhibiting up-regulated hubs, from cellular models to tumor

15http://barabasi.com/networksciencebook/
16https://www.ebi.ac.uk/intact/
17https://cancergenome.nih.gov/
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scenarios through RNA-seq data analyses. Their study re-
vealed a correlation between the number of hubs to be deac-
tivated and tumor aggressiveness. Specifically, there was a
negative correlation between entropy and 5-year overall sur-
vival rates. This correlation enabled the calculation that ap-
proximately 10 hubs should be inhibited for tumors with a
30% 5-years overall survival rate, while about 3 hubs should
be targeted for tumors with a 98% 5-years overall survival
rate, on average. Intermediate values can be easily derived
due to the linear regression that can be fitted on the observed
data of the negative correlation as indicated byConforte et al.
[2019]. The negative correlation has also enabled to derive
genes responsible for tumor aggressiveness as a result of prin-
ciple component analysis (PCA) and random forest classifi-
cation [Barbosa-Silva et al., 2022].
The hub approach is oriented toward the molecular phe-

notype, whereas the traditional method is based on gene mu-
tations and statistical analysis of large patient cohorts. The
distinction between these two approaches lies in the direct
connection of the patient’s disease condition, under the hub-
based strategy, to a phenotypic portrait of molecular dysfunc-
tion, enabling a rational therapy. In contrast, the mutation-
based approach depends on an indirect relationship between
marker genes and the disease itself through statistical corre-
lations. This dependency assumes a significant variability in
the disease response to drug treatments.
This research resulted in the approval of a patent

(BR102015030819-1) by the Brazilian Institute of Intellec-
tual Property Protection (INPI18). It has been financially sup-
ported by Faperj19 to facilitate its transition to patients in a
start-up context. Consequently, we automated the hub di-
agnosis, which was previously conducted using a series of
Perl and Python scripts, within a Galaxy pipeline accessible
through web pages [Pires et al., 2021]. Currently, efforts
are underway to advance toward in vivo pre-clinical valida-
tion in the context of solid and liquid tumors in collaboration
with Flávia Raquel Gonçalves Carneiro (Fiocruz/CDTS) and
Ana Carolina dos Santos Monteiro from Laboratório de Os-
teoimunologia e Imunologia Tumoral (Universidade Federal
Fluminense - UFF). We are also looking for biomarker of
HPV-induced cervix cancer staging in collaboration with Ce-
cilia Vianna de Andrade from Coordenação Diagnóstica em
Anatomia Patológica e Citopatologia (Fiocruz/Instituto Fer-
nandes Figueira - IFF).

3.2.2 Cancer modeling

Despite the promising outlook presented by our hub-based
approach to cancer treatment, we recognized the presence
of challenging inquiries that needed exploration. One such
query involved determining whether it would be more effec-
tive to target hubs that are neighbors in the up-regulated net-
work of tumors, or hubs that are distant in such networks.
This led us to explore a gene targeting method based on the
concept of attractors. These questions are currently under
investigation in collaboration with the research team led by
Fabricio Alves Barbosa da Silva at the Laboratory of Compu-
tational Modeling of Biological Systems (Fiocruz/Programa

18http://www.gov.br/inpi/pt-br
19http://www.faperj.br/

de Computação Científica - PROCC).

1. Hopfield networks:
We initially addressed the issues outlined above using
Hopfield networks. Considering the possibility that
cancer may correspond to attractors in Waddington’s
epigenetic landscape [Huang et al., 2009], employing
Hopfield networks to model basins of attraction pre-
sented an appealing approach. This method did not
necessitate prior biological knowledge about protein-
protein interactions or kinetic parameters. Thus, we
utilized Hopfield network modeling to analyze bulk
RNA-seq data from paired tumor and control samples
from breast cancer. We characterized the attractors of
the control and tumor samples in terms of their size
and potential energy. Subsequently, we examined the
correlation between the Euclidean distances among
the tumor samples and the control attractor with their
respective clinical data. Our findings revealed that the
tumor basin of attraction was larger than the control
one and that tumor samples exhibited significantly
more negative energy than control samples, aligning
with prior research findings [Conforte et al., 2020].

2. Boolean modeling:
An alternative approach involved modeling the
up-regulated malignant networks using Boolean tech-
niques. However, this method had a drawback: it
required knowledge of edge orientation and function
(activation or inhibition), which might not always be
available. Understanding the activation or inhibition
status of the genes within the network during its
temporal evolution is crucial for intervening rationally
in controlling the system’s dynamic changes. Conse-
quently, we proposed a methodology for constructing
data-driven Boolean networks that represent breast
cancer tumors. In this approach, we defined the
network components and topology based on gene
expression data derived from RNA-seq of breast cancer
cell lines. We employed a Boolean logic formalism to
describe the dynamics of the network. The integration
of single-cell RNA-seq (scRNA-seq) and interactome
data provided us with the opportunity to investigate
the dynamics of malignant subnetworks consisting
of up-regulated genes through canalyzing functions.
Utilizing single-cell breast cancer datasets sourced
from TCGA, we employed a binarization algorithm.
This transformed version of scRNA-seq data facilitated
the identification of attractors specific to individual
patients and critical genes associated with each subtype
of breast cancer [Sgariglia et al., 2021]. This model
has been investigated to detect critical genes involved
in malignant attractor stability whose inhibition could
optimize the induction of tumor cell death and serve for
potential applications in cancer theranostics [Sgariglia
et al., 2023]. The proposed model is currently under
development and holds the potential to form the basis
for a methodology that aims at identifying pivotal
genes involved in the stability of malignant attractors.
Inhibiting these genes could have significant implica-
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tions in the field of cancer theranostics.

3. Cancer system dynamics:
Employing single-cell RNA sequencing data, we con-
ducted a comprehensive analysis of the cellular land-
scape in Glioblastoma Multiforme (GBM). Drawing
inspiration from observed traits in stochastic systems,
we introduced factors such as genomic instability as a
noise source, effectively characterizing cancer dynam-
ics through stochastic fixed points. We treated sample
and time averages as equivalent, aiding both in parame-
ter fitting and subsequent stochastic simulations of clus-
ter centroids. This methodology gained support through
the correlation found between centroids of experimen-
tal and simulated datasets. The use of stochastic mod-
eling to delineate the Waddington landscape improved
our understanding of GBM’s cellular heterogeneity and
enabled a visual framework for validating the centroids
as accurate representations of potential cancer attrac-
tors. Specifically, this approach bridged the gap be-
tween molecular-level variations and the basin of attrac-
tion. Additionally, we explored the stability and transi-
tions between the attractors linked to different subtypes
of GBM [Vieira et al., 2023].

3.3 Drug repurposing
The identification of protein hubs for rational therapy, cou-
pledwith in silicomodeling of protein targets, naturally leads
to the proposition of drug repurposing. Through the rational
diagnosis of protein hubs in solid tumors across nine cancer
types, we pinpointed ~100 potentially significant genes, with
~60 being particularly pertinent and ~30 having correspond-
ing PDB models. Having protein models available for these
potentially crucial cancer targets, along with drug structures
in ZINC20 [Irwin et al., 2012] and data on approved drugs
in DrugBank21 [Wishart et al., 2017], enables us to conduct
screenings for drugs that align with the theranostics concept
(Lima et al. unpublished data).

4 Conclusion
The use of integrated methods of bioinformatics, computa-
tional biology, and artificial intelligence in biological sci-
ences is a rapidly growing field and is anticipated to provide
benefits to the society, professionals, governments, and in-
surance companies. The journey of our research team as pre-
sented in this report aligns with such trend including in health
sciences since rational chemotherapy has the potential to re-
duce patient suffering, enhance diagnostic accuracy, and re-
duce costs, all of which would be advantageous for society
as a whole.
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