
Journal of Information and Data Management, 2024, 15:1, doi: 10.5753/jidm.2024.3317
 This work is licensed under a Creative Commons Attribution 4.0 International License.

The Impact of Representation Learning on Unsupervised Graph
Neural Networks for One-Class Recommendation
Marcos Paulo Silva Gôlo [ University of São Paulo | marcosgolo@usp.br ]
Leonardo Gonçalves de Moraes [ University of São Paulo | leonardo.g.moraes@usp.br ]
Rudinei Goularte [ University of São Paulo | rudinei@icmc.usp.br ]
Ricardo Marcondes Marcacini [ University of São Paulo | ricardo.marcacini@icmc.usp.br ]

 Institute of Mathematics and Computer Sciences, University of São Paulo, Av. Trabalhador São Carlense, 400, Centro,
São Carlos, Sãp Paulo, Brazil, 13566-590.

Received: 10 April 2023 • Published: 22 February 2024

AbstractWe present a Graph Neural Network (GNN) using link prediction for One-class Recommendation. Tradi-
tional recommender systems require positive and negative interactions to recommend items to users, but negative
interactions are scarce, making it challenging to cover the scope of non-recommendations. Our proposed approach
explores One-Class Learning (OCL) to overcome this limitation by using only one class (positive interactions) to
train and predict whether or not a new example belongs to the training class in enriched heterogeneous graphs. The
paper also proposes an explainability model and performs a qualitative evaluation through the TSNE algorithm in
the learned embeddings. The methods’ analysis in a two-dimensional projection showed our enriched graph neu-
ral network proposal was the only one that could separate the representations of users and items. Moreover, the
proposed explainability method showed the user nodes connected with the predicted item are the most important to
recommend this item to another user. Another conclusion from the experiments is that the added nodes to enrich
the graph also impact the recommendation.

Keywords: One-Class Learning, Recommender Systems, Graph Neural Networks, Link Prediction, One-Class Explain-
ability, Graph Explainability

1 Introduction

Finding items that match users’ interests is an important fea-
ture for any online platform, and recommender systems are
indispensable for helping in this task. Still, these systems
must find a way to deal with some issues, mainly modeling
users’ preferences and relations [Wu et al., 2020a; Khoali
et al., 2022]. User preferences and relations essentially have
a graph structure since nodes can be user and item, and the
edges can be user-user, item-item, and user-item relations.
Furthermore, graphs benefit from incorporating structured
external information [Wu et al., 2020a; Ru et al., 2021].
Generally, the graph recommender systems studies model

the graph with the user and items using the original mod-
eling. The original modeling considers only user and item
relations to generate the graph [Wu et al., 2020a]. How-
ever, those graph representations are incomplete, i.e., there
are no interactions between all users and items. Even so,
the graph has interactions the user would like to be recom-
mended (positive) and interactions the user would not like
(negative). However, positive interactions are more frequent
in the real world than negative ones, i.e., there are few nega-
tive interactions [Khoali et al., 2022].
Traditional recommender systems need positive and nega-

tive interactions to recommend items to users. Therefore, we
must cover the positive and negative interactions’ scope in
this scenario. Still, covering the scope of positive recommen-
dations is easier, given the number of positive recommenda-
tions. However, covering the scope of negative interactions

is challenging as these interactions have a more extensive
scope and few interactions [Khoali et al., 2022].
In this scenario, One-Class Learning (OCL) arises as an

alternative. OCL algorithms use only one class to train and
predict whether or not a new example belongs to the train-
ing class. In this sense, OCL is a learning that only needs
interest class instances to train and can recommend or not an
item for a user. Thus, OCL has the advantage of not having
to cover the scope of non-recommendations [Pan et al., 2008;
Gôlo et al., 2021a; Khoali et al., 2022]. Furthermore, OCL
is adequate for imbalance scenarios, such as recommender
systems [Fernández et al., 2018]. On the other hand, OCL
is more challenging, as OCL only has interesting recommen-
dations in the training step. Part of this challenge relates to
the representation directly influencing the OCL [Gôlo et al.,
2021b; Khoali et al., 2022; Gôlo et al., 2022]. Therefore,
one-class recommendations have the challenge of represent-
ing the user, the item, and its iterations, a challenge already
known in recommender systems [Wu et al., 2020a].
The gaps cover the non-recommendations scope and repre-

sent the user, item, and iterations on the OCL scenario, gen-
erally, are mitigated individually or by studies that apply one-
class recommendation without graphs or by studies that use
graph representations considering non-recommendations. In
this way, we propose a Graph Neural Network (GNN) for
link prediction to the one-class recommendation. GNNs are
recently used for representation learning and have obtained
state-of-the-art results, even more in the recommender sys-
tems literature [Wu et al., 2020a], but not in the one-class
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recommendation. Another novelty of our proposal is an un-
supervised GNN for link prediction, which is little explored
in the field of recommender systems. This GNN type is
directed to the recommendation problem since the link pre-
diction task predicts interactions between nodes, which are
interactions between users and items in recommender sys-
tems, i.e., recommendations and non-recommendations [Li
and Chen, 2013; Yang et al., 2019]. In short, our proposed
approach has the following contributions:

1. We model an enriched heterogeneous graph consider-
ing only interest class relations (recommendations) to
improve the recommendation;

2. We propose an unsupervised GNN via link prediction
task for recommender systems;

3. We recommend items considering only recommenda-
tions to train without having to cover the wide scope
of non-recommendations from users;

4. We propose an explainability model for one-class rec-
ommendation through graphs; and

5. We perform a qualitative evaluation through the TSNE
algorithm in our learned embeddings.

The extended version of this study builds upon the prior
work [Gôlo et al., 2022]. In this extension, we enhance
the experimental evaluation by incorporating a more diverse
range of datasets, such as Movies, Recipes, and Google rec-
ommendations. Additionally, we introduce novel techniques
for model interpretability, employing one-class learning in
conjunction with graph neural networks. Our investigation
into the learned representations is further enriched through
both visual inspection using TSNE and statistical signifi-
cance analyses. We compared our proposal with four other
strategies. Three are user and item representations consider-
ing the item’s review and the graph structure. We use a state-
of-the-art algorithm for text representation to represent the
reviews. The last strategy is an end-to-end GNN. The results
demonstrated that our proposal outperforms other methods
to represent users and items in the OCL scenario and outper-
forms an end-to-end GNN.
We organized the remainder of this paper as follows. First,

section 2 discusses related work under OCL and GNN via
Link prediction for recommender systems. Second, section
3 presents the proposal to deal with a one-class recommen-
dation. Third, Section 4 presents the explainability model
for one-class learning and graphs. Fourth, section 5 presents
the experimental evaluation, discussing the results obtained
when applying the proposed representations to real-world
data for recommender systems. Finally, Section 6 presents
our concluding remarks and future work.

2 Related Work
One-class approaches have been used as a tool in recom-
mender systems. [Pan et al., 2008] propose two frameworks
to deal with problems with one-class collaborative filtering.
The authors explore the user-item matrix as a feature for one-
class collaborative filtering. In addition, [Zhao et al., 2015]
explore the one-class recommendation through item and user

representations generated by a personalized matrix factoriza-
tion. Also, using one-class collaborative filtering, [He and
McAuley, 2016] use matrix factorization and visual features
represented by a Deep Convolutional Neural Network.
Addressing some common issues of one-class recommen-

dation and commonly used strategies to tackle such issues,
[Khoali et al., 2022] propose a Bayesian personalized rank-
ing based on a neural network using as input the user-item
matrix as features. [Raziperchikolaei and Chung, 2022] aim
to predict positively-related user-item pairs by training sev-
eral state-of-art methods with only similar pairs, addressing
the challenges of relying on dissimilar pairs by introducing
two new terms to the objective functions. Dealing with users’
one-class feedback problems, [Liu et al., 2020] introduce
rich interactions and exploits complementarity between gen-
erative and discriminative training, using generative adver-
sarial networks to enhance the accuracy of modeling users’
behaviors.
Using users’ textual feedback, [Wan and McAuley, 2018]

propose a ranking method to incorporate personalized tex-
tual information in implicit feedback settings. Considering
only positive feedback data, the proposed method models
texts in topics and incorporates it with implicit positive be-
havior feedback, such as purchases or check-ins. Also, in a
one-class approach, [He et al., 2022] propose a method to
recommend dealing with heterogeneous user behavior, such
as different types of interaction with an item. The authors
propose a behavior attention layer to represent different be-
haviors of a user in the same inner structure, modeling the
user’s next behavior relationship with different historical in-
teractions. This way, a task-specific layer can use modeled
users’ real behavior to predict the next interaction, such as
purchasing or examining an item.
With a different one-class classification approach, [Li and

Chen, 2013] convert a recommendation problem into a link
prediction one using a generic kernel-based ML approach to
map the transactions into a bipartite user-item graph, with the
prediction model built from the one-class SVM algorithm.
Graph representation approaches have been used in recom-
mender systems [Li and Chen, 2013; Wu et al., 2020a]. The
study [Wu et al., 2020a] is a survey of Graph Neural Net-
works (GNNs) in recommender systems. This study shows
the extensive use of GNNs in this field. The authors high-
lighted the advantages of using heterogeneous graphs to rep-
resent relations and user-item iterations to obtain a robust
representation of the user and the items. Furthermore, GNNs
allow link prediction approaches that are adequate for the rec-
ommender systems problem [Wu et al., 2021].
Considering GNN for link prediction in the recommender

systems, we can cite studies such as [Zhang and Chen, 2018]
that propose a novel method that uses GNN to predict edges
in graphs, indicating the GNN for link prediction as promis-
ing in the recommender systems. Also, [Islam et al., 2020]
suggest that GNN for link prediction is an alternative to the
recommender systems field. Furthermore, [Wu et al., 2021]
also cite recommender systems as promising applications for
these GNNs.
As the above discussion shows, pioneers’ one-class recom-

mendation studies use traditional and non-enriched represen-
tations and do not explore graphs for recommendations mod-
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eling. On the other hand, previous one-class recommenda-
tion studies use enriched heterogeneous representations with
feedback/reviews, however, without graph modeling and its
advantages. Following a different path, [Li and Chen, 2013]
explore one-class recommendations with a graph for link pre-
diction. However, this study does not explore the GNNs.
Studies that explore GNNs for link prediction indicate recom-
mender systems as a promising application. However, using
GNNs for link prediction in one-class recommendations is
scarce. Thus, there exists a need for more studies on GNNs
via link prediction for the one-class recommendation. There-
fore, with the use and advantages of OCL, heterogeneous
graph modeling, and GNN for link prediction to represent
users and items, we propose the one-class recommendation
through unsupervised graph neural networks via link predic-
tion.

3 Unsupervised Graph Neural Net-
works via Link Prediction for One-
Class Recommendation

We propose learning a more robust and adequate represen-
tation for the one-class recommendation considering the ad-
vantages of the graph structure. Thus, we separate the pro-
posal into three steps: (i) create an enriched graph for the
users, items, and metadata; (ii) learn representations through
a graph neural network via link prediction task; and (iii) use
the One-Class Support Vector Machines to perform the one-
class recommendation. Figure 1 illustrates each proposal
step. First, we model our recommender problem with a het-
erogeneous enriched graph. Second, we learn representa-
tions for the graph nodes with a GNN for link prediction.
Finally, we use one-class learning to recommend or not an
item for a user. The following sections explain each step.

3.1 Heterogeneous Enriched GraphModeling
We model our user-item recommendation problem with
graphs since graphs naturally model the recommendation
problem. First, we create a heterogeneous graph. Then, we
model the graph:

1. User-Movie dataset: five nodes (users, items, key-
words, genre, and review) and four edge types (user-
item, keyword-item, genre-item, and review-item);

2. User-Recipe dataset: four nodes (users, items, tags,
and review) and four edge types (user-item, tag-item,
review-user, and review-item);

3. User-Google dataset: four nodes (users, items, cat-
egory, and review) and four edge types (user-item,
category-item, review-user, and review-item);

The keywords represent the words related to the item, the
genre is the movie genre, and the reviews are the reviews
for the items. We add this metadata to enrich the graph and
make it more connected. Finally, we model our graph as a
one-class graph since we only add edge user-item of the in-
terest, i.e., user evaluations for items with a 5 rating, with
the intuition that learns a representation only with the set of

interest labeled. After modeling the graph, we can learn a
representation with graph neural networks considering the
link prediction task.

3.2 Graph Neural Networks for Link Predic-
tion

Before applying the graph neural network for link prediction,
we adopted a strategy for all graph nodes aiming to reach
representations to improve the representation learning of our
Graph Neural Network. Thus, we use a graph regulariza-
tion framework from [Rossi et al., 2014; do Carmo and Mar-
cacini, 2021]. Equation 1 defines regularization and has two
terms. The first term determines that neighboring nodes in
the graph have similar embedding vectors. The second term
preserves the initial node representation according to a factor.
Finally, our goal is to minimize the Q(F ):

Q(F ) = 1
2

∑
oi,oj ∈O

woi,oj Ω(foi , foj )+µ
∑

oi∈Oe

Ω(foi , koi ) (1)

in which, F are the graph node representations generated by
the regularization,O is the set of all graph nodes,Oe is the set
of graph nodes with initial representations, woi,oj

indicates
the weight of the connection between the nodes oi and oj , Ω
is a distance function between embedding vectors, foi is a
generated embedding, koi

is an initial representation for oi,
and µ is a factor of preserving, in which µ > 0.
After generating initial representations for all nodes, we

will apply a Graph Neural Network (GNN). The GNN con-
siders the structured representation of each node in the graph
and the adjacencymatrixA as input for learning the represen-
tations of the nodes. The initial representation of the nodes
will be called foi

∈ F . We denote g(F , A; W) to represent
a GNN with trainable weights W = {W (1), · · · , W (L)}
in L hidden layers. For the l-th layer, the GNN propagation
rule can be summarized as [Wu et al., 2020b]:

H l+1 = g(H(l), A; W (l)) (2)

in which, H(l) is the input to the l-th layer of the GNN, and
H l+1 is the output of this layer. It is worth noting that the F
representations are the input to the first layer, which is equiv-
alent toH(0). The embeddings learned for each object in the
graph are represented by H(L). Therefore, the information,
i.e., characteristics present in the representations of adjacent
nodes (neighbors), are aggregated through a neural network.
For unsupervised representation learning via GNN for link

prediction, we pass the last layer H(L) for a LinkEmbedding
layer that predicts a link between nodes. Equation 3 defines
this layer:

z = σ

 ∑
oi,oj∈O

h(L)
oi

· h(L)
oj

 (3)

in which, h
(l)
oi and h

(l)
oj are the final generated embeddings

from the neural network for the nodes oi and oj , σ is an acti-
vation function and z are the link predictions.
For this GNN for link prediction, we learn embeddings in

an unsupervised way. First, we generate fake edges and use
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2. Representation Learning: Link Prediction via Graph Neural Network 3. One-Class Learning
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Figure 1. Proposed steps illustration.

original edges to train through Equations 2 and 3. Finally,
we use binary accuracy as a loss function. We use the H(L)

layer to obtain the embedding nodes. After generating the
user and item representations with the GNN, we use OCL to
recommend or not an item for a user.

3.3 One-Class Learning
Given a user node oi and an item oj , we represent the user
and item concatenating the representations, which generate
a new representation uiq:

uiq = concatenation(h(L)
oi

, h(L)
oj

). (4)

Given the uiq representation, we can apply the One-Class
Learning (OCL) in the 5 rating representations.
In OCL [Tax, 2001; Alam et al., 2020], the training of the

algorithms is only with examples of the interest class (rat-
ing 5), i.e., in the absence of counterexamples (other ratings).
Therefore, in OCL for recommendations, the algorithm’s ob-
jective is to inform if the item should be recommended for the
user or not, learning only with data of items recommended
for users. We use the One-Class Support Vector Machines
(OCSVM) to perform the classification [Tax andDuin, 2004].
The OCSVM of [Tax and Duin, 2004] classifies a new in-
stance belonging to the interest class if this example is inside
a hypersphere. Formally, the center of the hypersphere [Tax
and Duin, 2004] is:

µ(c) = arg min
µ∈U

max
1≤q≤m

∥φ(uiq) − µ∥2, (5)

in which uiq is the representation for a user and item for a
rating 5, m is the number of examples, U is the feature space
associatedwith the function kernelφ,µ(c) is the center of the
hypersphere in which the greater distance between φ(uiq)
to µ(c) is minimal and φ(uiq) map uiq into another feature
space defined according to the kernel chosen. [Tax and Duin,
2004] define the hypersphere through the Equation 6:

min
µ,φ,r

r2 + 1
m

m∑
q=1

εuiq

ν
(6)

subject to:

∥φ(uiq) − µ(c)∥2 ≤ r2 + εuiq
, ∀i = 1, ..., m. (7)

r is the radius of the hypersphere, εuiq is the external dis-
tance between φ(uiq) and the surface of the hypersphere,

and ν ∈ (0, 1] defines the smoothness level of the hyper-
sphere volume.

4 Explainability for One-Class Rec-
ommendation and Graph Neural
Networks

Studies use explainability in graph neural networks in the lit-
erature to explain the representation learning of these meth-
ods, for instance, explain which type of graph node is more
important for the solved task [Yuan et al., 2022]. We follow
[Yuan et al., 2022]’s taxonomy for our explainability, propos-
ing an explainability method for unsupervised GNNs in the
one-class learning scenario. Our method is at the level of
instance-level explanations through perturbations.
The strategy of perturbation-based methods is to analyze

the GNN output with perturbed GNN inputs [Yang et al.,
2019; Liu et al., 2020]. In our case, we analyze the output
of the OCSVM classification after perturbing its inputs, i.e.,
we perturb the representations generated by our unsupervised
graph neural network. Since we divided our proposal into
two steps, we also divided our explainability method into (i)
perturbation of the representations generated by our enriched
GNN; and (i) analyzing the OCSVM classification of the per-
turbed representation.
Explainabilitymethods such as GNNExplaner [Yang et al.,

2019] mask edges and nodes to disturb the aggregations be-
tween node representations performed by the GNN represen-
tation learning during its training. In the same way, PG-
Explaner [Liu et al., 2020] masks the edges of the graph.
We used a similar strategy in our perturbation step. We dis-
turb the graph node representations by considering each node
type. We perform the perturbation by subtracting the neigh-
bor’s representations of a given type from a target node rep-
resentation. Our perturbation can be defined by Equation 8:

ĥ(l)
oi

=
∑

oj∈Op

h(l)
oi

− h(l)
oj

, (8)

in which, ĥ(l)
oi is the new target node representation andOp is

the target node neighbors set considering a single node type.
Studies on explainability for classification tasks generally

use the probability of the instance belonging to one of the
problem classes to estimate how much the perturbation influ-
enced the classification of the instance [Ribeiro et al., 2016].
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To generate a score in the one-class learning scenario simi-
lar to the probability in the multi-class scenarios, we use the
distance from the example to the hypersphere, in which, if
the example is classified as belonging to the class of inter-
est, the score has a positive sign, and if not, it has a nega-
tive sign [da Silva et al., 2022; Gôlo et al., 2023]. Figure
2 illustrates an example of the scores generated for two ex-
amples with distances 5 and 7 from the hypersphere. The
green point has distance 7 from the hypersphere, while the
blue point has distance 5 from the hypersphere. The green
point is outside of the hypersphere. Thus we add a negative
signal for the green point distance (−7). The blue point is in-
side of the hypersphere. Thus we add a positive signal for the
blue point distance (+5). After perturbing the graph’s node
representations, sending the representations to the OCSVM,
and receiving a distance value from that representation to the
hypersphere, we can analyze how much each type of node
influenced a certain recommendation considering the value
generated through the strategy presented above.

7

5
= -7
= +5

Figure 2. Illustration of the value generated through our explainability
method.

5 Experimental Evaluation
In the experimental evaluation, we compare the representa-
tions generated by our proposal with three baselines in the
one-class learning scenario for recommendations consider-
ing the OCSVM algorithm and an end-to-end GNN for link
prediction baseline. We also compare the 2D TSNE projec-
tions of the representation methods and analyze our explain-
ability model. Our research goal is to demonstrate that our
proposal outperforms othermethods used in the user and item
representation and the recommendation and generates more
robust representations. The following sections present the
dataset, experimental settings, results, and discussion. All
source codes and datasets are available.

5.1 Dataset
We use the recommendation dataset for movies from [Rana
et al., 2022]. The dataset contains 289853 ratings from users
ofmovies. We use the ratings 5 (19668) and 1 (6624) to repre-
sent the recommendation and non-recommendation classes.
Each movie has reviews, and the dataset with only ratings 1

and 5 contains 1915 users and 1612 movies. Furthermore,
the dataset contains the IMDB movie id. Thus, we enriched
the dataset withmoviemetadata to enrich our graph1. We col-
lect the metadata from. We add the movie genre, keywords,
and overview.
We also used the dataset from [Li, 2019], which contains

1132367 ratings and reviews from users of food Recipes on-
line, with ratings re-scaled from [0, 5] to [1, 5]. Recipes tags
and description metadata are also present in the dataset, thus,
allowing for its usage to enrich our graph. Also, to make
our graph more connected, we kept only reviews from users
within the top 1000 users with the most reviews posted and
Recipes in the top 1000 most reviewed, with only ratings 5
and 1 kept for representing recommendations. We sample
the 1132367 ratings to run experiments.
Finally, we used the dataset from [Yan et al., 2022; Li

et al., 2022], containing 4838887 user reviews from places
on Google. Reviews with ratings 1 and 5 were kept to rep-
resent recommendations, filtering only items with both user
and item in the top 1000 most common. We enrich the
graph using the metadata from descriptions and categories of
places. We sample the 4838887 ratings to run experiments.
Table 1 presents the details of the datasets.

Table 1. Details of the datasets considering the number of users,
items, rating 5, and rating 1.

Datasets Users Items Rating 5 Rating 1

Movies 1915 1612 19668 6624
Recipes 967 978 10000 634
Google 959 974 10000 1497

Average 1280 1188 13223 2918

5.2 Experimental Settings
We use three baselines based on the Bidirectional Encoder
From Transformers (BERT) [Devlin et al., 2019]. BERT is
a pre-trained neural network that we use for text represen-
tation that generates embeddings to represent the text. The
BERT model was trained in a large textual corpus that repre-
sents sentences based on their context and outperforms other
natural language pre-processing models. In this way, BERT
applies correlation techniques, compares the embedding, and
extracts semantic and syntactic characteristics from the text
[Otter et al., 2020]. We represent the item reviews and de-
scriptions with the BERT to generate the baselines. The first
baseline is the BERT representation for the item (BERT-i).
We use the review representation in the movie dataset since
we have one review for each item and the description rep-
resentation in the other datasets since we have more than
one review for each item in these datasets. The second and
third are the BERT representation for themovie concatenated
with the user representation generated by the regularization
for two graphs: the original graph with item-user relations
(BERT-i-u-o) and our enriched graph (BERT-i-u-e).

1We collect the metadata from https://www.kaggle.com/
datasets/rounakbanik/the-movies-dataset?select=keywords.
csv&page=2.

https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset?select=keywords.csv&page=2
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset?select=keywords.csv&page=2
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset?select=keywords.csv&page=2
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For our graph modeling, the item node content is the item
description, and the review node content is the reviews for
the item. Both contents are in a text format. We represent
these texts with the BERT embeddings. After representing
these nodes, we apply the regularization for all nodes to have
representations. Another method we used to compare with
our proposal was the prediction of the GNN, i.e., in an End-
To-End (ETE) way. We use our enriched graph to train the
GNN-ETE.
For our proposals, GNN-enriched and GNN-original, we

use the regularization for all nodes to have an initial repre-
sentation in our enriched and original graph (only user-items
relations). Then, finally, we obtain the embedding with the
unsupervised GNN with the link prediction task. In the fi-
nal step, we classify a recommendation or not through the
OCSVM that has as input the concatenation for the user and
item representations, except for BERT-i, which uses only the
item representations, and GNN-ETE, which is end-to-end.
The parameters for the representation methods and OCSVM
were:

• BERTs: parameter free;
• GNNs: layer sizes = {64, 32} and {32}, epochs

= {200}, patience = {20, 50}, activation func-
tions = {sigmoid, relu, tanh}, and learning rates =
{1−3, 1−4};

• OCSVM: kernel = {rbf, poly, sigmoid, linear}, ν =
{0.001, 0.005, 0.01, 0.05} and 0.1 ∗ ν, ν ∈ [1..7], and
γ = 1

n }, in which n is the input dimension.

We use the procedure k-Fold Cross-Validation for One-
Class Learning. In this procedure, we apply a k-Fold
Cross-Validation considering only the interest class (rating
5) since, in the OCL, we have only interest examples labeled.
The procedure consists of dividing the interest class into
folds and using k − 1 folds to train and the remaining fold
to test iteratively. We also add the not-interest set (rating 1)
in the test set. We chose the k = 5 to maintain the test set
with interest and non-interest sets containing similar sizes.
In addition, we use as the test only user-item pairs that are in
the train set. Finally, we use the Accuracy (Acc), f1-score,
Precision (P), and Recall (R) as evaluation measures:

Acc = tp + tn

tp + tn + fp + tn
, (9) f1 = 2 · P · R

P + R
, (10)

P = tp

tp + fp
, (11) R = tp

tp + fn
, (12)

in which tp (True Positives) is the number of ratings 5 that the
OCSVM has correctly classified; tn (True Negatives) is the
number of ratings 1 that the OCSVM has correctly classified;
fp (False Positives) is the number of ratings 1 incorrectly
classified; and fn (False Negatives) is the number of ratings
5 incorrectly classified;

5.3 Results and Discussion
Tables 2, 3, and 4 present the best results considering all
parameters used considering the precision, recall, f1-Score,
and accuracy for the OCSVMwith the representations gener-
ated from BERT and GNN variations and for the GNN-ETE.

The best results are in bold font, and we tie equal values by
the standard deviation values. Each value in the table is the
average of all executions for each fold in the k-fold cross-
validation.
BERT-i presented the lowest results, indicating that only

the item representation is insufficient to recommend an item
to a user. We reinforced this indicative when the BERT re-
sults with a representation of users after the regularization
through the graph structure improved the recommendations
(BERT-i-u-o and BERT-i-u-e). Another interesting point is
the recommendation improvement when the regularization
is performed on the enriched graph since BERT-i-u-e got
the best results in relation to BERT-i-u-o in the Movies and
Recipes dataset. On the other hand, the GNN-ETE presented
the highest values of precision, recall, accuracy, and f1-score
in relation to the BERT methods with the OCSVM in the
Movies and Google datasets.
In addition to obtaining better f1-score and precision val-

ues than the baselines in the Recipes datasets, GNN-ETE ob-
tained better results than our proposals. Furthermore, BERT-
i-u-e obtains the highest values considering recall and accu-
racy in this dataset. Interestingly, these two methods are
based on enriched graphs, i.e., enriching the graph improved
the recommendation performance. In the other datasets, our
proposals with the OCSVM outperform BERT methods and
the GNN-ETE, considering precision, recall, accuracy, and
f1-score.
One advantage of our proposals besides the highest met-

rics values is the dimensionality reduction of the representa-
tion of the user and item based on the user’s review of an
item. Our representations have 32 dimensions and BERT
384. The results and advantages reinforce the representation
learning relevance for the one-class recommendation. Con-
sidering our proposals, GNN-original performed better than
GNN-enriched. However, the GNN-enriched performed bet-
ter than all baselines and the GNN-original, considering re-
call and accuracy in the Google dataset.
In our intuition, the GNN-original is better since this GNN

is based on link prediction trains with real and fake links only
between users and items, i.e., with recommendations and not
recommendations. On the other hand, the GNN-enriched
trains with different types of edges and fake edges. Even
with worse metric values than the GNN-original, the GNN-
enriched has some advantages. First, the greater connectivity
of the graph generates paths between users and items, which
we can use in other recommender system tasks, such as user
clustering based on graph relations. Second is the recom-
mendation’s explanatory power through the interactions of
the different nodes that we explore with our expandability
method for unsupervised graph neural networks in the one-
class learning scenario.
We performed Friedman’s statistical test with Nemenyi’s

post-test to compare the methods considering precision, re-
call, f1-score, and accuracy in the three datasets [Trawinski
et al., 2012]. We show the test result in Figure 3, which
presents a critical difference diagram. The diagram presents
the methods’ average rankings and the methods connected
by a line do not present statistically significant differences.
Baselines obtain the worsts rankings, GNN-ETE has a bet-
ter ranking than the BERT, and our proposals obtain the best
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Table 2. Precision, recall, F1-Score and Accuracy for the OCSVM considering all representations methods and the end-to-end GNN. Bold
fonts indicate the best values of the metric. These results are for theMovies dataset.

Methods/Metrics precision recall f1-score accuracy

BERT-i 0.541±0.007 0.536±0.013 0.527±0.014 0.537±0.013
BERT-i-u-o 0.525±0.006 0.532±0.007 0.525±0.006 0.532±0.006
BERT-i-u-e 0.581±0.009 0.574±0.015 0.553±0.021 0.574±0.015
GNN-ETE 0.703±0.004 0.694±0.013 0.693±0.014 0.694±0.013
GNN-original 0.729±0.001 0.730±0.001 0.729±0.001 0.730±0.001
GNN-enriched 0.709±0.002 0.707±0.002 0.708±0.002 0.708±0.002

Table 3. Precision, recall, F1-Score and Accuracy for the OCSVM considering all representations methods and the end-to-end GNN. Bold
fonts indicate the best values of the metric. These results are for the Recipes dataset.

Methods/Metrics precision recall f1-score accuracy

BERT-i 0.635±0.008 0.723±0.011 0.660±0.005 0.724±0.011
BERT-i-u-o 0.648±0.007 0.731±0.005 0.668±0.004 0.731±0.005
BERT-i-u-e 0.641±0.008 0.735±0.006 0.663±0.003 0.735±0.006
GNN-ETE 0.664±0.008 0.712±0.012 0.679±0.004 0.712±0.012
GNN-original 0.661±0.003 0.719±0.005 0.678±0.002 0.719±0.005
GNN-enriched 0.662±0.005 0.725±0.004 0.678±0.003 0.725±0.004

Table 4. Precision, recall, F1-Score and Accuracy for the OCSVM considering all representations methods and the end-to-end GNN. Bold
fonts indicate the best values of the metric. These results are for the Google dataset.

Methods/Metrics precision recall f1-score accuracy

BERT-i 0.514±0.018 0.533±0.006 0.512±0.026 0.533±0.006
BERT-i-u-o 0.525±0.014 0.539±0.012 0.527±0.014 0.539±0.012
BERT-i-u-e 0.497±0.008 0.502±0.008 0.499±0.008 0.502±0.008
GNN-ETE 0.660±0.010 0.631±0.017 0.576±0.054 0.631±0.017
GNN-original 0.669±0.005 0.670±0.005 0.669±0.005 0.670±0.005
GNN-enriched 0.668±0.004 0.670±0.004 0.668±0.004 0.670±0.004

rankings. Our proposals are not statistically different from
GNN-ETE. However, our proposals have statistically signif-
icant differences between the BERT methods.

1 2 3 4 5 6

GNN-original
GNN-enriched

GNN-ETE BERT-i-u-o
BERT-i-u-e
BERT-i

CD

Figure 3. Critical difference diagramwith the average rankings of the Fried-
man test with Nemenyi’s post-test considering all metrics and datasets.

We applied our explainability method to the movie recom-
mendation dataset. We chose a user and item pair correctly
classified by our OCSVM as a recommendation. The sec-
ond step was to generate the subgraph related to the two ob-
served nodes. Third, we perturbed the representation of the
item considering neighbors of a single node type, i.e., we per-
turbed with user, keywords, genres, and review nodes. This
undisturbed instance has a score of +13.77. After perturb-
ing the item node considering the user nodes connected with
this item, we obtained a score of −764.31. Considering the
keyword nodes, we obtained a score of −53.04, for genres,
−65.53, and finally, for the review node +7.12. We present
a visual result of our method showing the subgraph. Each
node used to perturb the item representation has a size propor-

tional to how much it influenced the recommendation. Thus,
the user nodes were more important for the recommendation
since they were the nodes that most modified the score when
removed. Movies genre nodes and keywords also influenced
but less significantly. The type of node that had the least in-
fluence was the review node.
We expected that user nodes would influence more be-

cause they are the most important and item nodes since they
are the nodes used directly to perform recommendations.
The keyword and genre nodes influenced the recommenda-
tion less than the user nodes but were also important as they
changed the recommendation to non-recommendation and
the user nodes. However, the review node was the least influ-
ential since even modifying the distance of the instance did
not change the recommendation. This fact can be explained
because the review node that disturbed the item’s represen-
tation is the only one among the disturbed nodes that has
an initial representation. Thus, this type of node presents
less similar representations than the other types, which led
to this node having a smaller influence on the recommenda-
tion, even though it is one of the most important nodes due
to its function in regularization.
Figure 5 presents two-dimensional projections of the best

representationmodel obtained by eachmethod used in our ex-
perimental evaluation, considering the Movies datasets. We
generated the projections using the algorithm t-Distributed
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Figure 4. Subgraph generated by our explainability method for the movies dataset. The higher the node, the more important for predicting the item’s
recommendation (orange node) for the user (gray node), and the smaller, the less important.

BERT-item BERT-item-user-original BERT-item-user-enriched

GNN-Original GNN-Enriched

Figure 5. Two-dimensional projection (t-Distributed Stochastic Neighbor Embedding) of BERT-item, BERT-item-user-original, BERT-item-user-enriched,
GNN-original and GNN-enriched, in the one-class recommendation scenario. The colors indicate users (blue) and items (orange). Our proposal obtained the
best visual result since was able to separate users and items in different regions.

Stochastic Neighbor Embedding (t-SNE) [Van der Maaten
and Hinton, 2008]. Representations generated by BERT-
item are difficult to analyze since we have only item rep-
resentations. BERT-item-user-original and BERT-item-user-
enriched presented distributed hubs of users and distributed
items in different regions. Even obtaining the best results in
the movies dataset, the GNN-Original generates distributed

representations for items and users in the same area. On
the other hand, GNN-Enriched generates the best visual re-
sult since TSNE separates the items and users in different
regions.
Another important point that our GNN-enriched can con-

tribute is the exploration of other aspects of the recommen-
dation, such as coverage, novelty, and diversity, since the



The Impact of Representation Learning on Unsupervised GNN for OCR Gôlo et al. 2024

graph can be enriched with appropriate information to cover
these aspects. In addition, these aspects may interest the user,
which is advantageous in carrying out the recommendation.

6 Conclusions and Future Work
This study presented an extension for the one-class recom-
mendation through graph neural networks. We evaluate our
methods in more datasets, with qualitative and statistical
analysis and a new explainability model for this scenario.
Our proposal has the advantages: (i) heterogeneous and en-
riched modeling that is useful to recommender systems; (ii)
easy extension to different types of heterogeneous graphs
such as the original or enriched proposed in this study; (iii)
representation learning to obtain more robust representations
for one class recommendation; (iv) generate a more appropri-
ate representation for items and users; and (v) statistical dif-
ference significance to baselines. Furthermore, our expand-
ability method is easy to extend for other works that combine
graphs and one-class learning. Finally, our method is applica-
ble in other graph modeling contexts where one of the edges
or node types is of interest.
Our proposal was limited to a concatenation for the user

and item representation, a two-step proposal (representation
plus OCSVM), and a link prediction proposal that learns rep-
resentations by predicting all links in the graph. Therefore,
in future work, we will create an OCL end-to-end Hetero-
geneous GNN for link prediction that uses only user-item
relations to predict links while using all edges to learn em-
beddings, thus covering our three main limitations.
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