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Providing timely information to drivers is proving valuable in urban mobility applications. There has been several
attempts to tackle this question, from transportation engineering, as well as from computer science points of view.
In this paper we use reinforcement learning to let driver agents learn how to select a route. In previous works,
vehicles and the road infrastructure exchange information to allow drivers to make better informed decisions. In
the present paper, we provide extensions in two directions. First, we use non-local information to augment the
knowledge that some elements of the infrastructure have. By non-local we mean information that are not in the
immediate neighborhood. This is done by constructing a graph in which the elements of the infrastructure are
connected according to a similarity measure regarding patterns. Patterns here relate to a set of different attributes:
we consider not only travel time, but also include emission of gases. The second extension refers to the environment:
the road network now contains signalized intersections. Our results show that using augmented information leads
to more efficiency. In particular, we measure travel time and emission of CO along time, and show that the agents
learn to use routes that reduce both these measures and, when non-local information is used, the learning task is

accelerated.
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1 Introduction

Congestion in urban traffic networks poses challenges to
many developed and developing countries economies, as
well as to the environment. In this context, reducing emis-
sions and lost hours in traffic is among the top priorities
of our societies. Conventional traffic management solutions
may have reached their limits, as the available methods and
tools are not flexible enough, or were not developed hav-
ing in mind traffic patterns that are arising in mega-cities,
or due to new transportation modes, mobility-on-demand,
etc. Moreover, those solutions do not necessarily exploit
new technologies, such as communication systems, includ-
ing vehicle to infrastructure (V2I) communication. In fact,
although Intelligent Transportation Systems (ITS) have re-
ceived a lot of attention in the past decades, only recently
has this area focused on the avenues opened by fast com-
munication and vehicular networks. By effectively using
communication-based approaches, congestion and, conse-
quently, emissions and lost hours can be reduced.

New technologies can be employed in several ways. In
this paper we concentrate on V2I as a tool to improve drivers’
decisions on how to travel from A to B (pointers on other re-
search directions appear in Section 3). Under this particular
perspective, while the current pattern is that each individual
driver selects a route based on his/her own experience, this
is changing with the increasing penetration of new technolo-
gies that allow information exchange. Examples of these
technologies are not only based on broadcast (e.g., GPS or

cellphone information) but also a two-way communication
channel, where drivers provide and receive traffic informa-
tion.

Key here is that these technologies change the paradigm.
While currently many traffic management systems are based
on a central authority in charge of assigning routes for drivers,
or at least providing information (e.g., Waze, Google apps,
etc.) for them to decide, communication among vehicles, be-
tween vehicles and the road infrastructure, or even among el-
ements of the infrastructure are transformative. In fact, roads
are already undergoing the same changes that are seen in the
economy, as well as in the society, namely, a decentraliza-
tion of the decision-making process and, not least, the promi-
nence of several players, such as IT, big tech, and, most im-
portantly, the citizen her/himself. At the end of Section 3 we
point to researchers that have surveyed this topic.

Right now we are experiencing a situation in which these
technologies and platforms are trying to establish themselves,
and are still focusing very much on an agenda that is decades
old, namely saving travel time. However, more and more,
other aspects are being considered when formulating public
policies related to urban mobility. One of these aspects con-
cerns the environment, since stop-and-go traffic may cause
more emissions. Therefore, while in the past traffic engineer-
ing has focused mostly on reducing travel time, emissions are
often being taken into account as well.

As discussed in the next section, there are many ways to
help improve how the demand (persons, trips, goods) can ef-
ficiently use the existing supply (road infrastructure). Most
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of them rely on centralized approaches though. One way
to mitigate this is by letting drivers experience and decide
in a decentralized way by means of reinforcement learning
(RL), where, given the collective nature of this process, we in
fact should use multi-agent reinforcement learning (MARL),
aiming at investigating how drivers (or agents) choose their
preferable route based on their own learning experiences.

In a previous work Santos and Bazzan [2021]; Santos et al.
[2021], we have connected MARL to V2I communication,
in order to investigate how it could augment the information
drivers use in their route choices. Later, we have considered
multiobjective RL Santos and Bazzan [2022], where drivers
have two objectives: reduce not only travel time, but also
emission of carbon monoxide.

In a further work, we connected that line of research to the
use of multiple attributes, while also considering V2I Baz-
zan et al. [2022]. In this case, a third element was added,
namely, information about non-local interactions. By non-
local we mean information that is gathered not in the vicinity
ofa given road infrastructure element like an intersection or a
road segment. This is done by constructing a graph in which
some elements of the infrastructure are connected according
to a similarity measure regarding patterns. Patterns here re-
late to a set of different attributes: we consider not only travel
time, but also include emission of gases. These aspects are
further detailed in Section 4.

In the present paper, we extend the experiments to a sce-
nario that also considers traffic signal controllers. This is
important because such controllers are present in urban net-
works and thus, need to be considered. We stress that, in this
work, the controllers are not learning agents.

Section 4 details the methodology. Here, it suffices to
say that we use of a relationship graph where sections of the
traffic network (links) that have similar values for those at-
tributes are connected. An exchange of information about
travel time and emissions occurs, so that the infrastructure
has augmented information, which is then passed to vehicles
to allow them to make more informed decisions. Section 5
reports experiments that show the efficiency of our approach,
where informed drivers are able to make decisions that, de-
spite aiming at reducing their travel times, also reduce emis-
sions. We test the approach on a network considering two
cases (with and without traffic signal controllers) and also
two RL algorithms (the classical QL) and our approach.

2 Background

In this section, we cover some key concepts that underlie
our approach. For more details on conventional traffic as-
signment, we refer the reader to Chapter 10 in Ortuzar and
Willumsen [2011]. For our purposes it suffices to mention
that conventional approaches are centralized. Instead, this
section focuses on MARL-based approaches that allow a de-
centralized decision-making for route choice.

Next, we give a brief introduction to RL and MARL.

Reinforcement learning (RL) is a machine learning
method, in which agents learn how to map a given state to
a given action, by means of a value function. RL can be
modeled as a Markov decision process (MDP), where there
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is a set of states S, a set of actions A, a reward function
R : S x A — R, and a probabilistic state transition func-
tion T'(s,a,s’) — [0, 1], where s € S is a state the agent is
currently in, @ € A is the action the agent takes, and s’ € S
is a state the agent might end up, taking action a in state s.
The tuple (s, a, s’, r) represents that an agent was in state s,
then took action a, ended up in state s’ and received a re-
ward r. The key idea of RL is to find an optimal policy 7*,
which maps states to actions in a way that maximizes future
rewards.

RL methods fall within two main categories: model-based
and model-free. While in the model-based approaches the
reward function and the state transition are known, in the
model-free case, the agents learn R and 7" by interacting with
an environment. One method that is frequently used in many
applications is Q-Learning (QL). In QL, the agent keeps a
table of Q-values that estimate how good it is for it to take
an action a in state s; thus a Q-value Q(s, a) holds the maxi-
mum discounted value of going from state s, taking an action
a and keep going through an optimal policy. In each learn-
ing episode, the agents update their Q-values as in Equation 1,
where « and vy are the learning rate and the discounting factor
for future values, respectively.

Q(s,a) = Q(s,a)+a(r+ymaza[Q(s', a') = Q(s, a)]) (1)

In RL tasks, it is also important to define how the agent se-
lects actions, while also exploring the environment. A com-
mon action selection strategy is the e-greedy, in which the
agent chooses to follow the optimal values with a probabil-
ity 1 — ¢, and takes a random action with a probability e.

3 Related Work

Traffic assignment problem is not a new problem; there have
been several works that aim at solving it. Besides conven-
tional methods, (see Chapter 10 in Ortizar and Willumsen
[2011]), which mostly deal with planning (long term) tasks,
and are centralized, RL is turning popular. In this front,
methods usually fall into two categories: a traditional (state-
based) RL method, and a stateless one. In the latter, each
agent d actually is in only one state (its origin location),
where it selects a route to travel. A route is defined as a se-
quence of links that take d from its origin to its destination,
thus no en-route decision is necessary. Works in this category
are Ramos and Grunitzki [2015]; Ramos et al. [2017]; Zhou
etal.[2020]. Tumer et al. [2008] adds a reward shaping com-
ponent (difference utilities) to QL, aiming at aligning the UE
to a socially efficient solution. Multiobjective, stateless RL
was employed in Huanca-Anquise [2021]; Huanca-Anquise
et al. [2023], where agents aim at optimize travel time and a
second objective, toll.

In the state-based front, each agent d makes decisions at
each junction, regarding which link to select next, so that it
will eventually reach its destination. In Bazzan and Grunitzki
[2016] this is used to allow agents to learn how to build
routes. However, they use a macroscopic perspective by
means of cost functions that compute the abstract travel time.



In the present paper, the actual travel time is computed by
means of a microscopic simulator (see Section 5).

As aforementioned, our approach includes V2I commu-
nication, as this kind of new technologies may lead agents
to benefit from sharing their experiences, thus reducing ex-
ploration. The use of communication in transportation sys-
tems, with some sort of communication among drivers, has
also been studied previously by us (Bazzan et al. [2006];
Grunitzki and Bazzan [2016]) as well by others (Auld et al.
[2019]). In a different perspective, works like Yu et al.
[2020] evaluate the impact of incomplete information shar-
ing.

Also, in order to exploit the potential of V2I communi-
cation, in previous works Santos and Bazzan [2020, 2021];
Santos et al. [2021], we have connected it to MARL, in order
to investigate how V2I communication could benefit drivers
use in their route choices. In these works, the infrastructure
is able to communicate with the vehicles, both collecting
information about their most recent travel times (on given
links), as well as providing them with information that was
collected from other vehicles. However, links in the infras-
tructure only exchange information if they are connected by
a junction, i.e., only local information is considered.

We have also investigated what happens when multiple ob-
jectives are considered Santos and Bazzan [2022]. In that
work, drivers have two objectives: reduce travel time and
emission of carbon monoxide. However, that work does not
address any kind of communication. A first attempt in this
direction was investigated in Bazzan et al. [2022], where
elements of the traffic infrastructure that have similar pat-
terns form a graph. This graph is then used to allow commu-
nication among the various elements. Patterns are formed
when these elements have similar values regarding a set of
attributes that include not only travel time but also emission
of gases. In the present paper, we extend this approach and
consider a scenario that has traffic signals.

The value of V2I communication has started to receive
attention also in the traffic engineering community. The
reader is referred to Mahmassani [2016] (focusing on how
autonomous vehicles and connected vehicles are expected to
increase the throughput of highway facilities, as well as im-
prove the stability of the traffic stream), and Maimaris and
Papageorgiou [2016] (applications).

Finally, the method we employed here grounds on graph-
based methods. Since few of them do tackle communication,
due to lack of space we cannot cover that literature. We refer
the reader to a survey: Cui et al. [2022].

4 Methodology

4.1 Terminology: Road Network and Virtual
Graph

We deal with two sorts of graphs. First, a road network is
a (planar) graph G = (J, L), where J is the set of junctions
(intersections), and L is the set of links. We use the term link,
since it is more commonly used in traffic engineering (and
then reserve the term edge for the second graph, as described
next).
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For example, in Fig. 4 links gneE54 and gneE55 are both
connected to the junction that appears in the center of the fig-
ure. As for the second graph, once our approach relies on
non-local information, such graph is the one that connects
two links I; € L and Iy € L which are not necessarily phys-
ically close (as, e.g., gneE49 and gneE45 in Fig. 4), but that
have similar patterns. We call this a virtual graph denoted by
VG = (L, E), where L is the set of links (note that now they
act as vertices in V'(7), and F is the set of edges that connect
two links that have similar patterns, as described next.

In order to define when two links are to be connected in
V G, historical information is collected for a network GG. This
information refers to several attributes: travel time, fuel con-
sumption and several kinds of gas emissions!, per link, per
time interval. We aggregate such information using a time
window wy, and normalize the values of all attributes be-
tween zero and one. Then, the values of such attributes for
each two pairs of links are compared. If two links /; and
l> have the same values for all attributes (given a tolerance
value, i.e. +4,), then an edge connecting /1 and [5 is inserted
in VG. Fig. 1 shows an instance of such a virtual graph,
whereas Fig. 2 depicts a zoom of that graph, where some
relationships among similar links can be better seen. The la-
bels of the vertices are formed by the link ID plus the time
interval in which their values were found to be similar.

4.2 How Communication Works

Next we briefly explain how the communication is per-
formed by the elements of the road network G. We assume
that every junction j € J and every link [ € L is equipped
with a communication device (henceforth, CommDev) that
is able to send and receive messages among themselves, as
well as to and from nearby vehicles (i.e., those in the link
where a given CommDev is located). For instance, in Fig. 3,
the red vehicle informs the corresponding CommDev about
its rewards in terms of travel time and other attributes, once
it has travelled that particular link. Similarly, the correspond-
ing CommDev informs the green vehicle the expected travel
time in the links ahead, so that the green vehicle is able to
decide which link to take, once it reaches the next junction
(i.e., the next decision state).

A junction CommDev collects information from its incom-
ing links, defined in the physical road network G. Addition-
ally, given that these incoming links may have virtual neigh-
bors in the virtual graph V' G, information about their virtual
neighbors are also passed to each CommDev at the links and,
from these to the junction CommDev. Once a CommDeyv at
a junction j has collected such information, it updates a ta-
ble in which the last 30 entries are kept in a FIFO way, for
each attribute. This value was used in Santos and Bazzan
[2020] for the same scenario. Moreover, in the present pa-
per, a CommDeyv stores information also about travel time
and CO emission.

Each CommDev then communicates to the nearby driver
agents an aggregation of those values kept in the tables?, i.e.,

'We collect CO, CO2, HC (hydrocarbon), PMx (particulate matter), and
NOx.

2The information about CO is not used by the agent, given that QL only
optimizes for one objective — in this case travel time — but, as discussed in



Figure 1. Instance of a virtual graph VG (Full VG).
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Figure 2. Zoom of a small part of the full VG.
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Figure 3. Road network is superimposed with a scheme of the communication among various elements of the road infrastructure, as well as the VG shown

in Fig. 1.

potential rewards that the agent may obtain if selecting each
action in that particular state. The agent then perceives this
information as expected rewards for the actions available to
it.

4.3 MDP Formulation

As mentioned in Section 2, a RL learning task is formulated
by an MDP. In our case, given a network G, the set of states
is defined by J. Two particular states are the origin and the
destination of an agent. They define the so-called origin-
destination (OD) matrix or set of OD pairs, which basically
shows how many trips start and end in each location of the
network. A7, denotes the set of actions available to agent d at
7, which are the links that leave j. Since we deal with a max-
imization task, each reward is given by the negative of the
travel time experienced by d at link /. This value is provided
by the microscopic simulator we use (see next section).

Note that in the standard QL algorithm, the agents update
their Q-values based on the feedback from the action they
have just taken. However, in our case agents also update
their Q-values based on the expected rewards received by
each CommDev. This means that every time they reach a
junction, they also update their Q-values with the informa-
tion provided by the CommDevs.

We also remind that we deal with a commuting scenario,
where each agent performs day-to-day experiments in order

Section 6, this will be addressed in a future work, in a similar way as in
Santos and Bazzan [2022].

to learn how to travel in the network G to go from its origin
to its destination.

S Experiments, Results, and Analysis

5.1 Scenario

Simulations were performed using a microscopic simulator
called SUMO Lopez et al. [2018], whose API was used to al-
low vehicle agents to interact with the simulator during sim-
ulation time.

The network used is shown in Fig. 4, where the main links
are two-way. Note that this figure depicts only six traffic
signal controllers, for sake of clarity. However, the network
is basically symmetric so that the other three quadrants have
further signalized junctions. Fig. 5 then shows a zoom of the
network, showing details of two signalized junctions (at the
left side of the central horizontal arterial).

We employ this network in two variants. The first one
is as in Bazzan et al. [2022], i.e., without the traffic signal
controllers. This means that we use SUMQ’s allway-stop
rule to decide which vehicles have right to go. This leads to
all vehicles having to stop before crossing the junction. In the
second variant, this rule is replaced by a signalized junction,
meaning that the right to cross is decided by a signal; we use
SUMO’s actuated controller that gives priority to the lanes

according to an actuated mechanism?.

3See: https://sumo.dlr.de/docs/Simulation/Traffic_
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Figure 4. Road network used in the experiments (labels for some links that run in an opposite direction are omitted; they are similarly labelled: gneE66-n
for example.). This figure also depicts some of the junctions that are signalized (for sake of clarity, only top left quadrant is depicted; the others are similar).

Figure 5. Zoom of the road network showing only two junctions (central
horizontal arterial at the left side); the colors of the vehicles refer to their
destinations.

We now explain the demand side, i.e., the trips that use
the network (with or withouth traffic signals). Trips origi-
nate in each of the four most external links (gneE63, gneE64,
gneE65, and gneE66), and have the other three of these links
as destination (as, e.g., gneE63 to gneE64, gneE65, and
gneE66), thus defining 12 OD pairs, with 400 trips each.
This demand was set to maintain the network populated at
around 30% of its maximum capacity, (given that a vehicle
occupies 5m), which is considered a high occupation.

5.2 Model Parameters

For the various parameters of the model, we have used the
same values as in Santos et al. [2021]. This way, we have
set learning rate o« = 0.5, the discount factor v = 0.9, and
€ = 0.05. These values guarantee that the future rewards
have a considerable amount of influence in the agent’s cur-

Lights.html#type_actuated

rent choice, since v has a high value. Other parameters take
these values: wy = 250 and J, = 0.005.

5.3 Results and Discussion

To measure the performance, we collect travel time and CO
emission, over all links [ € L of the network. Given the
probabilistic nature of the process, 30 runs were performed.

Plots ahead, in which shadows account for the deviations
over the runs, show a comparison between the cases we deal
with. First, we show the results when no learning is used,
both for travel time (Fig. 6) and CO emission (Fig. 10). Fig-
ures 7 and 11 then also show these two quantities, now for
the case when QL is used. The case in which QL is com-
bined with the virtual graph V' G has performance as in Fig. 8
(travel time) and Fig. 12 (CO). Finally, the case in which the
network with signalized junctions is used as infrastructure is
shown in figures 9 and 13.

In all cases, we note that it takes some time for all vehi-
cles to be loaded, hence the initial increase that appears in
all plots. As aforementioned, oscillations are shown in all
plots as shadows. They happen either due to agents explor-
ing their route choices, or due to SUMO’s route assignment
(see ahead).

We start by discussing the plots that refer to how travel
time changes along time: Fig. 6 — Fig. 9. In the former,
agents do not learn. However, SUMO has a mechanism that
computes a route for each vehicle that is departing, based on
the current occupation of the links in the network. This can
be seen as a kind of optimization, but one that is performed
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Figure 6. No learning: Travel time (average over all links).

centrally by the simulator. The travel time starts to stabilize
around step 8,000, roughly at 100 steps or seconds (per link).

Next we compare: (i) travel time when agents do not learn
versus when they use QL (Fig. 7 is lower than that in Fig. 6);
(i1) when QL is used with and without the virtual graph (Fig. 6
Fig. 8).

In the former case, when agents use QL, they have to ex-
periment in the beginning, until they converge to better deci-
sions (about choice of links). This leads to lesser travel times:
at the end of the simulation the travel time shown in Fig. 7 is
lower than that in Fig. 6 by 25%.

When the virtual graph is used (Fig. 8), the convergence to
a lower travel time happens earlier in comparison to the case
in which only QL is used (Fig. 6). This happen due to the
fact that links with similar patterns exchange information that
helps each CommDev to better inform drivers about which
links to select. Also, note that there are less deviations (blue
shadow). In short, although drivers do converge to similar
travel times (= 705), this time is reached earlier when the
virtual graph is used.

In the case with traffic signal controllers, Fig. 9, the pat-
tern is different from the aforementioned cases. First, the use
of traffic signal also leads to a stop-and-go behavior, due to
vehicles having to stop for some seconds in each signalized
junction; this pattern corresponds to the behavior each driver
experiences in the real-world. Second, the initial behavior is
similar as the drivers are being loaded. Then, driver agents
do experimentation until roughly time step 4,000 when the
use of the approach leads them to find their best routes. Note
that the maximum value for travel time is now reduced to
less than 100 steps. Further, the choices of routes converge
to travel times in the same order as when the VG is used,
i.e., = 70. Also noticeable, the agents seem to find their
ways without changing their choices as much as in the pre-
vious cases; this can be seen by the fact that there are less
sharp peaks in this plot. We credit this behavior to the fact
that the use of traffic signals heavily determine the choices
drivers can make; this will be tested in further experiments.

As for the emission of CO, we recall that, when using QL,
drivers only optimize for travel time, as QL does not han-
dle more than one reward value, except if they are somehow
combined in a function. Despite this, the use of the virtual
graph (that corresponds to similarities among links using sev-
eral attributes, including CO), also leads to reduction of CO
emission. This can be seen by comparing Fig. 10, Fig. 11,
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Figure 12. QL plus virtual graph: CO emission in mg/s (average over all
links).
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Figure 13. QL plus virtual graph with traffic signals: CO emission in mg/s
(average over all links).

and Fig. 12. When learning is not used, the emission of CO
converges to above 1500 mg/s. This is reduced to ~ 1250
when QL is used. Comparing QL with and without a virtual
graph, as with travel time, the convergence is achieved ear-
lier in the latter (around time step 10,000).

The case depicted in Fig. 13 can be explained by the same
behavior discussed previously in what regards travel time
when signalized junctions are part of the scenario, namely,
that they seem to influence the drivers choices heavily, thus
leading to less experimentation and a more stable pattern.
Nevertheless, as for travel time, the choice converge to emis-
sions in the same order as when the virtual graph is used.

6 Concluding Remarks

The use of new communication technologies in urban mobil-
ity is turning more and more important. MARL is an attrac-
tive method for route choice, as it mimics the way drivers
perform experimentation in their daily commuting.

The present paper discussed experiments using a method
that combines MARL with V2I communication to allow the
road infrastructure to collect and use non-local information,
and form a virtual neighborhood, where links that have simi-
lar patterns regarding attributes such as travel time and emis-
sion of gases are virtual neighbors. Such augmented vision
is then passed to vehicles for their decision-making about
which link to follow next.

Specifically, experiments considered a network without
signalized junctions, as in Bazzan ef al. [2022], as well as
a case with signal controllers. The results for the former
showed that the use of a virtual graph improves the efficiency
of the learning process. The case of signalized junctions has
shown a different pattern in regard to the metrics used (travel
time and emission of CO). It seems that the time stopped at
the junctions has an influence in the route choices, leading
drivers to converge to routes with less experimentation. This
point remains to be checked. For this, we propose a change in
the way the trips use the network. Recall that the trips origi-
nate in each of the four most external links and have the other
three of these links as destination. This causes the trips to be
short. Thus, to better test the aforementioned hypothesis, we
plan to change the demand so that trips take longer so that the
effect of the signals can be reduced. Another line of investi-



gation refers to the use of a multiobjective RL approach. Re-
call that the reward of the drivers only considers travel time
(even if, as stressed, the virtual graph is constructed using
more attributes). Thus, we plan to reformulate the problem,
so that rewards are expressed as a vector, in which not only
travel time is used, but also further attributes, as in Santos
and Bazzan [2022]. Note that this is different from the for-
mulation in which reward is expressed as some kind of linear
or non-linear function, in which case classical QL could be
used without modification. The authors in that paper have
employed an extension of QL, namely Pareto-QL Van Mof-
faert and Nowé [2014].
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