
Journal of Information and Data Management, 2024, 15:1, doi: 10.5753/jidm.2024.3365
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Two Meta-learning approaches for noise filter algorithm
recommendation
Pedro B. Pio [ University of Brasilia | pedrobpio@gmail.com ]
Adriano Rivolli [ Federal University of Technology – Paraná, Brazil (UTFPR) | rivolli@utfpr.edu.br ]
André C. P. L. F. de Carvalho [ University of São Paulo | andre@icmc.usp.br ]
Luís P. F. Garcia [ University of Brasilia | luis.garcia@unb.br ]

 Department of Computer Science, University of Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil.

Received: 30 April 2023 • Published: 23 February 2024

Abstract Preprocessing techniques can increase the predictive performance, or even allow the use, of Machine
Learning (ML) algorithms. This occurs because many of these techniques can improve the quality of a dataset, such
as noise removal or filtering. However, it is not simple to identify which preprocessing techniques to apply to a given
dataset. This work presents two approaches to recommend a noise filtering technique using meta-learning. Meta-
learning is an automated machine learning (AutoML) method that can, based on a set of features extracted from a
dataset, induce a meta-model able to predict the most suitable technique to be applied to a new dataset. The first
approach returns a ranking of the noise filter techniques using regression models. The second sequentially applies
multiple meta-models, to decide the most suitable noise filter technique for a particular dataset. For both approaches
we extract the meta-features from use synthetics datasets and use as meta-label the f1-score value obtained by
different ML algorithms when applied to these datasets. For the experiments, eight noise filtering techniques were
used. The experimental results indicated that the rank approach acquired higher performance gain than the baseline,
while the second obtained higher predictive performance. The ranking based approach also ranked the best algorithm
in the top-3 positions with high predictive accuracy.

Keywords: Meta-Learning, Noise Detection, Preprocessing, Machine Learning, Algorithm Recommendation, Ranking

1 Introduction
Machine Learning (ML) has been defined as the ability to
adapt to new circumstances and to detect and extrapolate pat-
terns [Russell and Norvig, 2009]. Nowadays, to facilitate the
implementations of ML algorithms, we have several frame-
works, such asWeka, Scikit-learn, H2O, Tensorflow, and Py-
torch. However, applying ML algorithms to datasets and
acquiring information from them is very time-consuming.
Usually, the user follows a Data Mining (DM) methodol-
ogy such as CRISP-DM [Wirth and Hipp, 2000] and KDD
[Fayyad et al., 1996]. Those methodologies indicate that a
few steps will be necessary to successfully extract the infor-
mation, such as preprocessing, algorithm selection, hyperpa-
rameters tunning, and presentation. Unfortunately, choosing
the preprocessing algorithm is not trivial and can influence
the entire ML process. In fact, the choice of the preprocess-
ing techniques that should be applied may vary according to
the ML algorithm that is selected [García et al., 2015].
Since the demand for ML systems has grown in the past

years, forming market pressure for ML specialists, and the
process to build ML systems is commonly tedious and repet-
itive, the idea of automating the ML process became promis-
ing [Truong et al., 2019]. This field, called Automated ML
(AutoML), aims to automatically find the best approach for
a particular problem when provided with a dataset [Hutter
et al., 2019]. For this, the AutoML systems may search
for the best data preprocessing, features engineering, ML
models, hyperparameters of the algorithm, and architecture
[Truong et al., 2019]. At each step, the AutoML systems

will have to search for algorithms, a problem usually solved
with Bayesian optimization, Genetic Programming, or Meta-
Learning (MtL) [Nagarajah and Poravi, 2019]. It is also im-
portant to notice that the preprocessing step is not extensively
covered by most of the AutoML solutions [Truong et al.,
2019].
The preprocessing step covers all actions applied before

the data analysis starts [Famili et al., 1997]. It is essen-
tially a transformation applied to the raw data returning a
new dataset ready for data analysis. There are several dif-
ferent reasons why it is necessary to implement a preprocess-
ing technique: data may have missing values, too many or
not enough attributes, noisy instances, and other problems
[Famili et al., 1997]. However, since noise data may provide
lower accuracy for classifiers, it is hard to find a generalized
algorithm to remove it, and they commonly appear on real
data [Zhu and Wu, 2004]. In this work, we focus on noise
detection algorithms.
Our goal is to present two different noise detection algo-

rithm recommendation systems using MtL, compare their re-
sults, and identify the advantages of each approach. MtL,
commonly known as learning how to learn, is a form of us-
ing previous experiences to solve similar tasks [Vanschoren,
2019]. When applied to algorithm selection problems, it per-
forms the recommendation based on a set of meta-features
(MF) extracted from the dataset that contains relevant infor-
mation that influences the algorithm choice [Brazdil et al.,
2009].
Since 50% to 80% of the DM time is dedicated to prepro-

https://orcid.org/0009-0009-0480-208X
mailto:pedrobpio@gmail.com
https://orcid.org/0000-0001-6445-3007
mailto:rivolli@utfpr.edu.br
https://orcid.org/0000-0002-4765-6459
mailto:andre@icmc.usp.br
https://orcid.org/0000-0003-0679-9143
mailto:luis.garcia@unb.br


Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

cessing the data [Munson, 2012], most of the AutoML lack
extensive preprocessing support [Truong et al., 2019], and
MtL is frequently used for algorithm recommendation [Van-
schoren, 2019]. We believe that a noise detection algorithm
recommendation could be useful in an AutoML system, im-
proving the quality and flexibility of current solutions. Also,
MtL is a feasible approach to predict the best algorithm re-
ducing the suggestion cost based on previous experience.
This work is an extension of Pio et al. [2022]. And its main

contributions can be summarized as follows: (i) AppliesMtL
to produce a rank of the most suitable noise detection algo-
rithm for a given dataset from a set of MF; (ii) Proposes a
flexible methodology that could be expanded to other pre-
processing techniques and integrated into current AutoML
systems; (iii) Evaluates the effects of the noise filter algo-
rithms on datasets and both meta and base levels of the MtL
approach; (iv) Compares two different MtL methodologies
for noise detection evaluating its meta and base levels and
identifying the advantages and disadvantages of each one.
The rest of this article is divided as: In Section 2, we

present a theoretical background on MtL and noise detection
methods and introduce some previous works that use MtL
to suggest preprocessing techniques; Section 3 explains the
proposed methodology; In Section 4, we present the results
and some discussions; and in Section 5, we present the con-
clusions and propose some future works.

2 Background and Related Works

2.1 Algorithm Selection and Meta-learning
One of many utilities for MtL applications is to use previous
knowledge to select an algorithm [Vanschoren, 2019]. Rice
[Rice, 1976] was one of the first to propose a solution for
the algorithm selection problem. Rice divided it into four
different spaces:

• The problem space P is the set of problems involved
that usually has high dimensions and some independent
characteristics that are important for the algorithm se-
lection;

• The feature space F is the set of features extracted from
the instances P ;

• The algorithm space A is the set of algorithms consid-
ered in the selection;

• The performance space Y contains the metrics used to
evaluate the performance of the algorithms.

Rice proposed that, from P we could extract f(x) ∈ F
reducing the problem complexity, from F we use the func-
tion S(f(x)) to map the algorithm a ∈ A. Ideally, S(f(x))
will result in the best algorithm according to the performance
metric y ∈ Y . Smith-Miles [Smith-Miles, 2008] expanded
the solution proposed by Rice to support MtL dividing it into
three phases. The first one aims to build a meta-data set
formed by the features F , extracted from P , and the algo-
rithm performance results Y , acquired from the algorithms
A. In the second phase, we use empirical rules in the meta-
data to perform the algorithm selection. In phase three, the-
oretical support is applied to adjust the empirical rules and
refines the algorithms.

We separate the MtL process into the base level, used to
build the meta-data from the P , F , A, and Y space, and
the meta level, where we interpret the meta-data [Brazdil
et al., 2009]. At the base level occurs the extraction of the
MF, forming the F space, which can be divided into six
groups [Rivolli et al., 2022]: simple; statistical; information-
theoretic; model-based; landmarking; and others. The rec-
ommendation process happens at the meta level, where we
can apply classifications, regressions, or rank algorithms to
predict which algorithm to choose based on the F and Y
[Brazdil et al., 2009].

2.2 Noise detection
In real-world datasets, it is common to occur mistakes in its
values called noise, which can appear both in the attributes
and the data class. When performing data analysis, the class
noise will probably cause more interference in the results
than the attributes noise [Zhu and Wu, 2004].
If the noise is detected, we may choose between ignor-

ing, removing (filtering), or altering the instance [Gupta and
Gupta, 2019]. Usually, when filtering or modifying the in-
stance, we can apply methods such as [Frénay and Verley-
sen, 2014] (i) classification filter, where a classification al-
gorithm is used to identify the noisy instance and then re-
move it; (ii) voting filter, where multiple algorithms are exe-
cuted and each one vote to remove or keep the instance; (iii)
distance-basedmethods, where the algorithm utilizesK near-
est neighbors (KNN) sensibility to noise to identify it; (iv)
ensemble or boosting methods, where proprieties of the algo-
rithm, such as the tendency to overfitting, are used to identify
the noise.
A list of noise filters is presented by Morales [Morales

et al., 2017], of which we used the following algorithms:

• High Agreement Random Forest (HARF) [Sluban
et al., 2014]: Uses the Random Forest (RF) classifier
as a noise filter. Instead of classifying each instance, it
defines a percentage threshold of agreement trees. If the
quantity of agreement trees is lower than the threshold,
the instance is considered as noisy and is removed;

• Dynamic Classification Filter (DCF) [Garcia et al.,
2012]: it is a voting filter that uses a set of classifiers
algorithms to define if an instance is noisy, where each
algorithm vote once. Considering the algorithms K-
Nearest Neighbor (KNN) (with k = {3, 5, 7}), Support
Vector Machine (SVM), CART, C4.5, RF, Naive Bayes
e Multilayer Perceptron (MLP)) as the set of classifiers,
it selects m algorithms based on its predictions similar-
ities. The instances labeled as noisy by the majority of
classifiers are removed;

• Hybrid Repair-Remove Filter (HRF) [Miranda et al.,
2009]: It uses four classifiers to vote if the instance is
noisy (SVM, MLP, CART, andKNN). If the instance is
considered noisy by the majority of the classifiers, the
algorithm may decide to remove or modify the instance
label according to the result obtained by the KNN clas-
sifier.

• Outlier Removal Boosting (ORB) [Karmaker and
Kwek, 2006]: it uses the propriety of AdaBoost [Fre-



Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

und and Schapire, 1995] to enhance the weights of the
outliers instances to implement the filter. If the weights
are higher than a defined threshold d it is considered
noise and removed.

• Edge Boosting Filter (EDB) [Wheway, 2001]: uses
AdaBoost to classify if an instance is noisy. It ap-
plies the AdaBoost form iterations, computing the edge
value of each instance, if it is higher than a threshold t,
the instance is considered as noisy and is removed;

• Generalized Edition (GE) [Koplowitz and Brown,
1981]: Is a variation of the ENN [Wilson, 1972] algo-
rithm that allows the possibility to correct the noisy in-
stance. The instance is corrected if the number of agree-
ment neighborhoods is higher than k′. Otherwise, it is
removed;

• All-k Edited Nearest Neighbors (AENN) [Tomek,
1976]: it applies the ENN algorithmmultiple times with
K varying from 1 to k. If any instance is classified as
noisy by any of the ENN executions, it is considered as
noisy and is removed;

• Preprocessing Instances that Should be Misclassi-
fied (PRISM) [Smith andMartinez, 2011]: It computes
five heuristics, one based on distance, two based on like-
lihood and two extracted from leaves of the algorithm
C4.5. the five heuristics are passed to a function1, and,
depending on the returned result, the instance is classi-
fied as noisy and is removed.

Note that this algorithm set A includes voting, distance-
based, and ensemble noise filters. Where HARF, DCF, and
HRF are voting filters, GE, AENN, and PRISM are distance-
based, and the ensemble filters are ORB and EDB.

2.3 Related Works
To validate the possibility of using an MtL approach to rec-
ommend preprocessing algorithms, we performed a system-
atic review on the subject of MtL and preprocessing tech-
niques. Although it is not the focus of this work to present
the results of this review, in this section, we present some
studies that use MtL techniques to recommend preprocess-
ing algorithms.
Garcia [Garcia et al., 2016a] implements an algorithm se-

lection system for noise filter algorithms aiming to select the
algorithmwhich identifies the noisy instance with higher pre-
cision. It uses 53 datasets extracted from UCI and KEEL.
They artificially generate noise into these datasets with a per-
centage varying between 5% to 20% of the total instances.
The meta-data was built with 70 MF and with the perfor-
mance metric f1-score as a prediction target. They compared
three different algorithms to perform the recommendation:
KNN, RF, and SVM. After the analysis of the mean square
error of each regressor, they concluded that RF was a better
choice.
Garcia [Garcia et al., 2016b] presents a MtL system

that aims to recommend the noise detection algorithm that
achieves the best precision in removal. The study uses five
different noise reduction algorithms forming 26 combina-
tions of ensembles that are evaluated and used as the algo-

1defined by the author

rithm set. the study selected 90 datasets that were subjected
to an artificial noise generation process, creating noise in 5%
10, 20, and 40% of the instances. The MtL used a total of
70 MF to perform the classification of the best ensemble of
algorithms. TO define the best meta-classifier, the authors
compared five ML techniques and concluded that the DT ob-
tained the best performance, with approximately 75% of ac-
curacy.

Bilalli [Bilalli et al., 2019] introduces a preprocessing
recommendations system that ranks the most suitable pre-
processing techniques. The recommendation includes dis-
cretization, normalization, missing data imputation, and di-
mensionality reduction techniques. To create the meta-data,
they used over 500 real datasets extracted from OpenML, of
which they extracted over 60 MF and applied five different
ML algorithms to calculate the performance metrics. They
compared the results with baseline algorithms and real users.
In both cases, the recommendation was efficient, acquiring
better accuracy than random algorithms and non-specialists.

Parmezan [Parmezan et al., 2021] proposes a methodol-
ogy to suggest a feature selection algorithm applying MtL
systems in sequence. First, they used multiple MtL systems
to select the type of algorithm that is more adequate, then,
depending on the selected type, it suggests an algorithm, and
finally, another MtL system is applied to suggest the algo-
rithm parameters. A total of nine meta-data were created,
two to select the type of algorithm, two to select the algo-
rithm, and five to suggest the algorithm with its parameters.
Five algorithms are supported: CBF, CFS InfoGain, Relief,
and wrapper subset evaluation. 213 datasets were selected
and 161 MF were used to create all nine meta-data. The pro-
posed solution acquired up to 90% accuracy.

Pio [Pio et al., 2022] perform the recommendation of noise
detection algorithms by trying to identify the algorithm that
generates the most gain in the f1-score performance metric.
A total of 323 datasets were used and modified to contain 5,
10, 20, and 40 percent of noisy instances. A set of three noise
filters, HARF, ORB, and GE, and 73 MF were utilized to
perform the recommendationwhichwas presented to the user
as a ranking of the best algorithms. The work compared three
regressors that were adapted from the rank, concluding that
the solution could generate performance gain in the f1-score
metric and that the RF algorithm acquired the best results.

In this work, we present two noise filtering recommenda-
tion methodologies and compare their results. Although a
similar problemwas approached by [Garcia et al., 2016a] and
[Garcia et al., 2016b], here we are trying to predict the per-
formance of a specific classification algorithm, verifying if
the combination of filtering and classifier is adequate, while
in the aforementioned work, the authors predict how well the
filter would find the noise. More precisely, this work com-
pares two MtL approaches, the first is an extension of the
methodology proposed by Pio [Pio et al., 2022]. The second
approach is adapted fromParmezan’s [Parmezan et al., 2021]
solutions to feature selection recommendation, thus, we used
a set of MtL in sequences to suggest a noise filter algorithm.
Both approaches are explained in Section 3 and their results
are shown and compared in Section 4.



Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

Figure 1. Base level diagram.

3 Methodology
This section describes the proposed methodologies for each
MtL approach. We divided it into two subsections: Firstly
we show the ranking approach (MtL-Rank), which was ex-
panded from [Pio et al., 2022]; secondly, we present the ap-
proach based on Parmezan’s solution [Parmezan et al., 2021],
where multiple MtL models are used in sequence to provide
the suggestion (MtL-Multi).

3.1 MtL-Rank
To explain each approach, we divided it into the base and
meta levels. The base level is where we build the meta-base,
and the meta level is where we build the recommendation
and analyze the results. Figure 1 shows a diagram of the
MtL-Rank base level, the process begins with the data collec-
tion. We used the OpenML2 platform to collect the datasets
that were used. The platform allows us to filter the datasets
according to our needs. We used sets with 100 to 20000
instances, 3 to 100 attributes, without missing values, and
with only two classes, thus, reducing the preprocessing step
needed to extract the ML metrics. To ensure that all ML and
noise filter algorithms would run, we converted all categor-
ical attributes into dummy variables and excluded datasets
with more than 200 attributes due to high dimensionality, re-
sulting in a total of 358 datasets.3. Note that, those filters
were used to standardize the datasets, facilitate the tests, and
reduce the execution time of the noise filters and the ML al-
gorithms. In fact, this methodology could work without any
restrictions regarding the number of classes, attributes, or in-
stances in the datasets. Afterwards, to control the class noise
level on each dataset, we randomly changed the instance’s
class, generating artificially random noise in 5%, 10%, and
20% of the instances. To avoid bias in cases where the noise
is applied in instances outliers, we repeated the process 10
times for each percentage of noise, resulting in 30 synthetics
sets for each dataset, forming the P space.
With the class noise introduced in the datasets, we calcu-

late the performance metric Y after applying the noise fil-
ter algorithms. To calculate Y , first, we apply the filter and
then run a classification algorithm that will allow us to com-

2https://www.openml.org/
3The list of datasets and MF used can be found at https://bit.ly/

JIDM_Datasets and https://bit.ly/JIDM_MF respectively

Figure 2. Meta level diagram.

pute the f1-score. We executed the eight different filters that
compose the algorithm spaceA: GE, PRISM,AENN,HRF,
DCF,HARF, EDB, andORB. All filters were implemented
with the NoiseFiltersR package and their default config-
urations. After executing the filter, we used four different
ML algorithms as base-learners to extract the f1-score: DT
CART [Breiman et al., 2017] algorithm, RF [Breiman, 2001],
KNN [Mitchell, 1997] and SVM [Cortes and Vapnik, 1995],
all with the default hyperparameters of the Scikit-Learn
implementation. To compute the MF we used the pymfe4
[Alcobaça et al., 2020] library, which allows us to calcu-
late a large variety of features, including: simple, statistical,
information-theoretic, model-based, and landmarking. We
extracted a total of 97 MF producing the F space. Combin-
ing both the F space and the Y space resulted in four meta-
bases, one for each base-learner, used in the meta level to
apply the regressions and form the ranking containing 10740
instances, 97MF, and 8 performance metrics, which are later
used as the regressors targets.
Figure 2 shows the meta level, where we implement the

meta-ranker and evaluate its performance. The inducedmeta-
model is obtained by anML algorithm that performs a regres-
sion. The goal is, based on the MF, to predict the ML clas-
sifier f1-score on the dataset after the filter execution. Later,
the set of regressions is transformed into a rank, being or-
dered and then labeled according to the higher f1-score, in
case of a draw between different approaches both are labeled
equally as the best.
To perform the regression, we used three different5 ML

algorithms: the Gradient Boosting (GB) [Friedman, 2001]
that is boosting ensemble algorithm; the KNN [Mitchell,
1997], which is a distance-based algorithm; and the RF
[Breiman, 2001] a bagging ensemble algorithm, once again,

4https://pymfe.readthedocs.io/en/latest/
5In this work we used four classifiers to calculate the f1-score, we call

them base-learners, and three regressions algorithm to generate the ranking.

https://www.openml.org/
https://bit.ly/JIDM_Datasets
https://bit.ly/JIDM_Datasets
https://bit.ly/JIDM_MF
https://pymfe.readthedocs.io/en/latest/


Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

all algorithmswere executed with Scikit-Learn default pa-
rameters. Since each dataset generates 30 synthetics noisy
datasets, during the training, to avoid bias, we implemented
a variation of the leave-one-out cross-validation [Cawley and
Talbot, 2003], in which we separated each set of the 30
datasets derivated from the same original OpenML dataset
and validate them together.

Figure 3. Steps of MtL-Multi.

To compare the results we selected two baselines, which
represent the results acquired if we always used the filters
DCF and ORB. Those algorithms were chosen because they
provided the best overall performance gain and accuracy, re-
spectively. At the base level, we selected the best algorithm
predicted by each meta-ranker and compared it with the base-
lines, allowing us to quantify the gain in the f1-score metric
we acquired with each ML algorithm. At the meta level, we
evaluated the accuracy of the top-k best position in the gener-
ated rank, we used k = 1 and k = 3, meaning we consider a
rank as correct if the best algorithm is in the top-1 and top-3
position of the rank. Again, we compare the top-k accuracy
with the baselines, allowing us to identify when the recom-
mendations were efficient. Finally, to evaluate the rank, we
apply Spearman’s rank correlation [Zar, 2014] between the
optimal rank and the one returned by the meta-ranker.

3.2 MtL-Multi
The second approach used in this study was based on
Parmezan’s solution [Parmezan et al., 2021], however, it
was adapted to perform the noise algorithm recommendation.
This recommendation is performed in two steps. Firstly, a
MtL model is used to decide the most appropriate type of
filter. Subsequently, according to the chosen filter type, an-
other MtL model is selected to decide the most suitable al-
gorithm. Figure 3 illustrates the two steps of the MtL-Multi,
considering that we used three different filter types, it is re-
quired a total of four MtL systems to perform the recommen-
dation. It is important to note that, unlike MtL-Rank, this
approach does not provide the result as rank, instead, it re-
turns only the selected algorithm.
To enable a fair comparison between the two approaches,

we decided to maintain as much as possible the four spaces.
Thus, we used the same set of datasets (P), MF (F), algo-
rithms (A), and performance metrics (Y). However, the algo-
rithm space was divided into three categories: voting algo-
rithms (HARF, DCF, and HRF), distance-based algorithms
(AENN, GE, and PRISM), and ensemble algorithms (ORB

and EDB).
Figure 4 illustrates the construction of each meta-base, de-

noted by meta-baseT,D,V,E , which are used to predict the al-
gorithm type, the distance algorithm, the voting algorithm,
and the ensemble algorithm, respectively. The meta-bases
differ mainly in the algorithm set and labeling. To build
the meta-baseT we executed all noise filters and labeled the
dataset with the type of filter that achieved the highest per-
formance gain. The other three meta-bases focused only on
a specific type of noise filter and were labeled with the al-
gorithm name that generated the highest performance gain
considering its reduced algorithm set. We extracted the per-
formance metric Y using the same four base-learners as in
MtL-Rank.
With the meta-bases, we can perform the recommenda-

tion and evaluate the results. We employed three classifiers,
namely GB, KNN, and RF, to generate the recommenda-
tions, and evaluated their performance at both the meta and
base levels. The results were compared with the same base-
lines selected in the MtL-Rank approach.

4 Results
Before evaluating eachMtL approach, we analyzed the meta-
base. This included examining the impact of the noise filter
on performance metrics, identifying which filters produced
the highest performance gain for each base-learner, determin-
ing the optimal rank for each filter in terms of performance
gain, and verifying the distribution of classes within theMtL-
Multi meta-bases.
First, we analyze the filters’ impacts, checking if the ef-

fects in the f1-score are positive or negative. Figure 5 dis-
plays the number of datasets that exhibited positive and neg-
ative results in the performance metric after applying each
filter for each base-learner. HARF was the filter that pro-
duced the highest number of positive results, followed by
either AENN or DCF. In contrast, ORB was always the fil-
ter with more negative results, followed by either PRISM or
EDB.
However, the results were different when we considered

the sum of the f1-score gain. Figure 6 shows the total perfor-
mance gain obtained by each filter across all datasets. HARF,
instead of being the first, is either the fourth or fifth filter with
higher performance gain, meaning that, even though it may
not decrease performance, it may not provide a significant
performance boost compared to other filters that yield more
positive results. Overall, DCF was the filter with the best
performance, while PRISM was the only one with negative
performance gain.
To determine how frequently each filter was ranked as the

best and the worst, we assigned a rank to each algorithm
based on its performance gain across all datasets. Figure 7
presents the frequency with which each algorithm appeared
on each rank position considering all noisy datasets. The re-
sults showed that ORBwas ranked as the best algorithmmost
frequently, however, it was also commonly ranked as one of
the worst. DCF was most often ranked as the best or second-
best filter, while HRF was always the third-best. Those re-
sults help to explain why ORB did not have the worst perfor-



Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

Figure 4. Base level diagram of MtL-Multi.

Figure 5. Times the filters had a positive or negative result in the perfor-
mance metric.

Figure 6. Plot containing the sum of the gain in all data sets after the appli-
cation of filters.

mance gain despite being the one with the highest number
of negative results. This suggests that ORB would probably
benefit from an algorithm recommendation technique.
Finally, we also verified the class distributions in the four

meta-bases used in the MtL-Multi approach. Figure 8 dis-
plays the frequency with which each class was ranked as
the best across all four MtL-Multi meta-bases considering

all noisy datasets. We observed that none of the meta-bases
had a balanced distribution of classes, where DCF, ORB, and
AENN were the dominant classes in their respective meta-
base. Moreover, we found that the distance-based filters had
worse overall performance when compared with both voting
and ensemble filters.

4.1 MtL-Rank Results
After analyzing the effects of the filters on the performance
metric, we started to examine the MtL approaches. We first
evaluated the MtL-Rank approach, verifying its overall per-
formance gain and accuracy. In this evaluation, we used
three ML regressors to generate the ranks: RF (MtL-Rank-
RF), GB (MtL-Rank-GB), and KNN (MtL-Rank-KNN).
Figure 9 presents the total performance gain obtained by

the MtL-Rank-RF, MtL-Rank-GB, MtL-Rank-KNN com-
pared to DCF as the baseline. Both MtL-Rank-RF and MtL-
Rank-GB outperformed the baseline, showing that the ap-
proach can provide actual performance gain. To verify if
the results were statistically significant, we conducted the
Friedman-Nemenyi test[Demšar, 2006]. Figure 10 shows
the results of the Nemenyi test, where each dot represents
the value obtained by the test, and each line indicates its re-
spective critical distance. The results revealed that only two
methods were not significantly different: MtL-Rank-GB and
DCF, while using DT as the base-learner.
When evaluating the MtL-Rank accuracy, since we are re-

turning the results as a rank, to consider a classification cor-
rect, we used a top-k with K = 1 and k = 3 method to
evaluate it. Figures 11 and 12 present the accuracy consid-
ering the top-1 and top-3 method, respectively, comparing
it with two baselines, the DCF and ORB filters. The results
showed that the MtL-Rank approach is always better than at
least one baseline when considering the top-1, while the top-
3 analysis managed to achieve up to 87% accuracy, better
than all baselines, with the MtL-Rank-RF.
Finally, to evaluate the ranks produced by the MtL-Rank,

we calculated Spearman’s rank correlation between the rank
acquired by them and the optimal rank. The best ranker was
MtL-Rank-RF acquiring 0.57, 0.55, 0.58, and 0.52 correla-
tion when using the DT, KNN, RF, and SVM base-learners
respectively, MtL-Rank-GB got 0.56, 0.51, 0.56, and 0.47,



Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

Figure 7. Times the filters had a positive or negative result in the performance metric.

Figure 8. MtL-Multi meta-bases classes distributions.

Figure 9. MtL-Rank performance gain compared with DCF baseline.

while MtL-Rank-KNN got 0.43, 0.40, 0.44, and 0.40. It is
important to notice that the poor performance of the MtL-
Rank-KNN may be due to the high number of MF suffering
with the curse of dimensionality.

Figure 10. Results of the Friedman-Nemenyi for the MtL-Rank approaches
and DCF baseline performance gain.

Figure 11. MtL-Rank accuracy compared with DCF and ORB baselines
when considering the top-1 positions of the rank as correct.

4.2 MtL-Multi Results

Similarly to the MtL-Rank, to evaluate the MtL-Multi ap-
proach, we used three meta-classifiers: RF (MtL-Multi-RF),
GB (MtL-Multi-GB), and KNN (MtL-Multi-KNN). Once
again, each is analyzed based on its performance gain and
accuracy.
Figure 13 displays the total performance gain obtained by

the MtL-Multi-RF, MtL-Multi-GB, MtL-Multi-KNN com-
pared to the DCF filter as the baseline. The results indi-
cate that the MtL-Multi approaches did not manage to obtain



Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

Figure 12. MtL-Rank accuracy compared with DCF and ORB baselines
when considering the top-3 positions of the rank as correct.

Figure 13. MtL-Rank performance gain compared with DCF baseline.

Figure 14. Results of the Friedman-Nemenyi for theMtL-Multi approaches
and DCF baseline performance gain.

Figure 15. MtL-Rank accuracy compared with DCF and ORB baselines.

higher performance gains than the baselines. Furthermore,
after applying the Friedman-Nemenyi test, Figure 14, both
MtL-Multi-RF andMtL-Multi-GBwere not significantly dif-
ferent from each other.

However, even though the MtL-Multi did not provide a
performance gain when compared with the DCF, both MtL-
Mult-RF, andMtL-Mult-GB obtained a higher accuracy than
all baselines. Figure 15 presents the accuracy obtained by
each MtL-multi compared with the two baselines. The re-
sults showed that the solution acquired an accuracy of up to
49%, higher than that obtained by the top-1 MtL-Rank and
any baseline.

4.3 Discussions
The comparison between the two approaches reveals that
each one has its advantages. The MtL-Rank approach
obtained a higher performance gain, while the MtL-Multi
achieved higher accuracy in its predictions. This differ-
ence can be attributed to the training goal of each method-
ology. Since MtL-Rank trains and forms its ranks with meta-
regressors, it is optimized to always look for higher perfor-
mance gain. Conversely, the MtL-Multi is trained with clas-
sifiers, which are optimized to find the correct label, resulting
in an emphasis on accuracy during training.
Another factor that may have influenced the results is the

combinations of both P and A spaces. When we analyzed
the filters’ performances, we observed that ORB was the al-
gorithm that was most frequently ranked as the best but also
had a higher number of negative results in terms of perfor-
mance. This means that when the recommendation method
mistakenly suggests this filter, it has a higher chance of re-
ducing the total performance gain, which is one of themetrics
that we utilized to analyze the results. Needless to say, since
MtL-Multi was optimized for higher accuracy, it suggested
the ORB more frequently than the MtL-Rank approach.
Finally, we decided to verify the importance of each MF

for the MtL. Thus, we selected the approach with the high-
est overall performance gain, which was MtL-Rank-RF, and
examined the feature importance for each base learner. The
results are presented in Figure 16, which shows the 20 most
important features in the RF regression for each base learner.
In total, 30 MFs6 with 11 belonging to the statistical group, 7
to the information-theoretic group, 5 being landmarking fea-
tures, 4 being model-based, and only 3 being simple. Usu-
ally, the most important feature is mutual information, with
the exception of when the SVM was the base-learner, in this
case, kurtosis had more influence in the regression.

5 Conclusions
In this work, we presented and compared two methodologies
to recommend noise filtering algorithms with MtL. The first
one, MtL-Rank, presents the suggestion in the form of a rank
of the best algorithms, while the other one, MtL-Multi, per-
forms the recommendation in two steps, first defining the fil-
ters type and then deciding what algorithm of the selected
type should be selected. Our goal was to identify the algo-
rithm that generated the most gain over the f1-score after the
execution of a base-learner. The results showed that MtL-
Rank approachesmanaged to obtain higher performance gain
than the MtL-Rank and the baseline. However, when con-
sidering the recommendation accuracy, MtL-Multi was the
best choice, achieving up to 49% of accuracy, better than
any baselines or the top-1 results of MtL-Rank approaches.
It is worth noticing that, taking into account the top-3 results,
the MtL-Rank, we acquired up to 87% accuracy.
For future works, we intend to expand the process to

support hyperparameters recommendations, which could in-
crease the solution search space and provide better results. It

6The description of each MF can be found at https://pymfe.
readthedocs.io/en/latest/auto_pages/meta_features_
description.html

https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html


Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

Figure 16. 20 most important features for each base-learner for MtL-Rank-RF meta-regressor.

would also be interesting to study different sets of MF. Even
though we presented a collection of MF who was more in-
fluential in the regression, this process could be further ana-
lyzed to find an optimal MF set. Finally, those methodolo-
gies could be expanded to other types of preprocessing tech-
niques, such as missing values imputation, feature selection,
or data balancing, resulting in a more general preprocessing
recommendation system.

Authors’ Contributions
Pedro B. Pio contributed by performing the experiments, writing
and reviewing the study. Adriano Rivolli and André C. P. L. F.
de Carvalho contributed to writing and reviewing the study. Luís
P. F. Garcia contributed by supervising the experiments, writing,
and reviewing the study. All authors read and approved the final
manuscript.

Availability of data and materials
The list of datasets andMF used can be found at https://bit.ly/
JIDM_Datasets and https://bit.ly/JIDM_MF respectively.

Acknowledgment
This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior – Brasil (CAPES)
– Finance Code 001.

References
Alcobaça, E., Siqueira, F., Rivolli, A., Garcia, L. P. F.,
Oliva, J. T., and de Carvalho, A. C. P. L. F. (2020). Mfe:
Towards reproducible meta-feature extraction. Journal
of Machine Learning Research, 21(1):4503–4507. DOI:
10.5555/3455716.3455827.

Bilalli, B., Abelló, A., Aluja-Banet, T., and Wrembel, R.
(2019). Presistant: Learning based assistant for data pre-
processing. Data & Knowledge Engineering, 123:1–22.
DOI: 10.1016/j.datak.2019.101727.

Brazdil, P., Giraud-Carrier, C., Soares, C., and Vilalta, R.
(2009). Metalearning - Applications to Data Mining. Cog-
nitive Technologies. Springer, Berlin, Heidelberg, 1 edi-
tion. DOI: 10.1007/978-3-540-73263-1.

Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32. DOI: 10.1023/a:1010933404324.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
(2017). Classification and regression trees. Routledge,
New York, NY. DOI: 10.1201/9781315139470.

Cawley, G. C. and Talbot, N. L. (2003). Efficient leave-
one-out cross-validation of kernel fisher discriminant clas-
sifiers. Pattern Recognition, 36(11):2585–2592. DOI:
10.1016/S0031-3203(03)00136-5.

Cortes, C. and Vapnik, V. (1995). Support-vector
networks. Machine learning, 20:273–297. DOI:
10.1007/bf00994018.

Demšar, J. (2006). Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine learning re-
search, 7:1–30. DOI: 10.5555/1248547.1248548.

Famili, A., Shen, W.-M., Weber, R., and Simoudis, E. (1997).
Data preprocessing and intelligent data analysis. In-
telligent data analysis, 1(1):3–23. DOI: 10.1016/S1088-
467X(98)00007-9.

Fayyad, U. M., Haussler, D., and Stolorz, P. E. (1996). Kdd
for science data analysis: Issues and examples. In Sec-
ond International Conference on Knowledge Discovery &
Data Mining (KDD), pages 50–56, Portland, OR. AAAI
Press. DOI: 10.5555/3001460.3001471.

Frénay, B. and Verleysen, M. (2014). Classification in the
presence of label noise: A survey. IEEE Transactions on
Neural Networks and Learning Systems, 25(5):845–869.
DOI: 10.1109/TNNLS.2013.2292894.

Freund, Y. and Schapire, R. E. (1995). A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139. DOI: 10.1006/jcss.1997.1504.

Friedman, J. H. (2001). Greedy function approximation: a
gradient boosting machine. Symposium on Knowledge
Discovery, Mining and Learning, 29(2):1189–1232. DOI:
10.1214/aos/1013203451.

https://bit.ly/JIDM_Datasets
https://bit.ly/JIDM_Datasets
https://bit.ly/JIDM_MF


Two Meta-learning approaches for noise filter algorithm recommendation Pio et al. 2024

Garcia, L. P., de Carvalho, A. C., and Lorena, A. C. (2016a).
Noise detection in the meta-learning level. Neurocomput-
ing, 176:14–25. DOI: 10.1016/j.neucom.2014.12.100.

Garcia, L. P., Lorena, A. C., Matwin, S., and de Carvalho,
A. C. (2016b). Ensembles of label noise filters: a rank-
ing approach. Data Mining and Knowledge Discovery,
30(5):1192–1216. DOI: 10.1007/s10618-016-0475-9.

Garcia, L. P. F., Lorena, A. C., and Carvalho, A. C. (2012).
A study on class noise detection and elimination. In Brazil-
ian Symposium on Neural Networks (BRACIS), pages 13–
18. DOI: 10.1109/SBRN.2012.49.

García, S., Luengo, J., and Herrera, F. (2015). Data pre-
processing in data mining, volume 72. Springer, Cham,
Switzerland, 1 edition. DOI: 10.1007/978-3-319-10247-4.

Gupta, S. and Gupta, A. (2019). Dealing with noise
problem in machine learning data-sets: A systematic re-
view. Procedia Computer Science, 161:466–474. DOI:
10.1016/j.procs.2019.11.146.

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Auto-
mated machine learning: methods, systems, challenges.
Springer Nature, Cham, Switzerland. DOI: 10.1007/978-
3-030-05318-5.

Karmaker, A. and Kwek, S. (2006). A boosting ap-
proach to remove class label noise. International Jour-
nal of Hybrid Intelligent Systems, 3(3):169–177. DOI:
10.1109/ICHIS.2005.1.

Koplowitz, J. and Brown, T. A. (1981). On the rela-
tion of performance to editing in nearest neighbor rules.
Pattern Recognition, 13(3):251–255. DOI: 10.1016/0031-
3203(81)90102-3.

Miranda, A. L., Garcia, L. P. F., Carvalho, A. C., and Lorena,
A. C. (2009). Use of classification algorithms in noise
detection and elimination. In International Conference
on Hybrid Artificial Intelligence Systems, pages 417–424.
DOI: 10.1007/978-3-642-02319-4_50.

Mitchell, T. M. (1997). Machine Learning. McGraw Hill
series in computer science. McGraw Hill, New York, NY.

Morales, P., Luengo, J., Garcia, L. P., Lorena, A. C., de Car-
valho, A. C., and Herrera, F. (2017). The noisefiltersr
package: Label noise preprocessing in r. The R Journal,
9(1):219–228. DOI: 10.32614/RJ-2017-027.

Munson, M. A. (2012). A study on the importance of
and time spent on different modeling steps. ACM
SIGKDD Explorations Newsletter, 13(2):65–71. DOI:
10.1145/2207243.2207253.

Nagarajah, T. and Poravi, G. (2019). A review on au-
tomated machine learning (automl) systems. In 5th
International Conference for Convergence in Technol-
ogy (I2CT), pages 1–6, Bombay, India. IEEE. DOI:
10.1109/I2CT45611.2019.9033810.

Parmezan, A. R. S., Lee, H. D., Spolaôr, N., and Wu,
F. C. (2021). Automatic recommendation of fea-
ture selection algorithms based on dataset characteris-
tics. Expert Systems with Applications, 185:115589. DOI:
10.1016/j.eswa.2021.115589.

Pio, P. B., Garcia, L. P., and Rivolli, A. (2022). Meta-
learning approach for noise filter algorithm recommen-
dation. In X Symposium on Knowledge Discovery, Min-
ing and Learning, pages 186–193. SBC. DOI: 10.5753/kd-

mile.2022.227958.
Rice, J. R. (1976). The algorithm selection problem. Ad-
vances in Computers, 15:65–118. DOI: 10.1016/S0065-
2458(08)60520-3.

Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J., and
de Carvalho, A. C. (2022). Meta-features for meta-
learning. Knowledge-Based Systems, 240:108101. DOI:
10.1016/j.knosys.2021.108101.

Russell, S. J. and Norvig, P. (2009). Artificial Intelligence:
a modern approach. Pearson, Prentice Hall Upper Saddle
River, NJ, USA, 3 edition. DOI: 10.5555/1671238.

Sluban, B., Gamberger, D., and Lavrač, N. (2014).
Ensemble-based noise detection: noise ranking and visual
performance evaluation. DataMining andKnowledgeDis-
covery, 28(2):265–303. DOI: 10.1007/s10618-012-0299-
1.

Smith, M. R. and Martinez, T. (2011). Improving classi-
fication accuracy by identifying and removing instances
that should be misclassified. In International Joint Con-
ference on Neural Networks, pages 2690–2697. DOI:
10.1109/IJCNN.2011.6033571.

Smith-Miles, K. A. (2008). Cross-disciplinary per-
spectives on meta-learning for algorithm selec-
tion. ACM Computing Surveys, 41(1):1–25. DOI:
10.1145/1456650.1456656.

Tomek, I. (1976). An experiment with the edited
nearest-neighbor rule. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-6(6):448–452. DOI:
10.1109/TSMC.1976.4309523.

Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C. B.,
and Farivar, R. (2019). Towards automated machine learn-
ing: Evaluation and comparison of automl approaches and
tools. In 31st International Conference on Tools with Ar-
tificial Intelligence (ICTAI), pages 1471–1479, Portland,
OR. IEEE. DOI: 10.1109/ICTAI.2019.00209.

Vanschoren, J. (2019). Meta-learning. In Automated Ma-
chine Learning, pages 35–61. Springer Nature, Cham,
Switzerland. DOI: 10.1007/978-3-030-05318-5_2.

Wheway, V. (2001). Using boosting to detect noisy data. In
Pacific Rim International Conference on Artificial Intelli-
gence, pages 123–130. DOI: 10.1007/3-540-45408-X_13.

Wilson, D. L. (1972). Asymptotic properties of nearest neigh-
bor rules using edited data. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-2(3):408–421. DOI:
10.1109/TSMC.1972.4309137.

Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a standard
process model for data mining. In 4th International Con-
ference on the Practical Application of Knowledge Discov-
ery and Data Mining, pages 29–39, New York, NY. AAAI
Press.

Zar, J. H. (2014). Spearman rank correlation: overview.
Wiley StatsRef: Statistics Reference Online. DOI:
10.1002/9781118445112.stat05964.

Zhu, X. and Wu, X. (2004). Class noise vs. attribute
noise: A quantitative study. Artificial Intelligence Review,
22(3):177–210. DOI: 10.1007/s10462-004-0751-8.


	Introduction
	Background and Related Works
	Algorithm Selection and Meta-learning
	Noise detection
	Related Works

	Methodology
	MtL-Rank
	MtL-Multi

	Results
	MtL-Rank Results
	MtL-Multi Results
	Discussions

	Conclusions

