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Abstract Machine Learning (ML) applications using complex data often need multiple preprocessing techniques
and predictive models to find a solution that meets their needs. In this context, Automated Machine Learning (Au-
toML) techniques help to provide automated data preparation and modeling and improve ML pipelines. AutoML
can follow different strategies, among them Genetic Programming (GP). GP stands out for its ability to create
pipelines of arbitrary format, with high interpretability and the ability to customize information from the data do-
main context. This paper presents a comparative study of two AutoML approaches optimized with GP for the time
series classification problem and its characterization through four domain-based feature sets. We selected the Elec-
troencephalogram (EEG) signals as a case of study due to their high complexity, spatial and temporal co-variance,
and non-stationarity. Our data characterization shows that using only spectral or time-domain features is unsuitable
for achieving high-performance pipelines. Our results reveal how AutoML can generate more accurate and inter-
pretable solutions than the literature’s complex or ad hoc models. The proposed approach facilitates the analysis of
dimensional reduction through fitness convergence, tree depth, and generated features.
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1 Introduction

End-to-end Machine Learning (ML) experiments for real-
world applications require a pipeline of steps, including un-
derstanding the application context, data exploration, data
transformation and preprocessing, data modeling, model
evaluation, and solution implementation [Azevedo and San-
tos, 2008]. Each step, implemented by a flow of techniques
and algorithms, can be subjective and time-consuming. How-
ever, a significant part of this process can be automated using
Automated Machine Learning (AutoML) [Zdller and Huber,
2021; Hutter et al., 2019].

Designing a pipeline for machine learning can be chal-
lenging due to the many algorithms and data preprocessing
techniques available and the complexity of many applica-
tions. Typically, a data scientist needs to manually design
a sequence of procedures, which can be complex. However,
this task can be simplified and made more efficient by using
AutoML to automate the process [Hutter et al., 2019].

Popular AutoML open-source frameworks, such as Auto-
sklearn [Hutter et al., 2019], use Bayesian optimization to
find good pipelines in a search space by selecting and op-
timizing preprocessing operations and performing hyperpa-
rameter tuning on ML algorithms. Other frameworks use dif-
ferent approaches, e.g., H20 [LeDell and Poirier, 2020] em-
ploys random search and stacking of the best pipelines found,
and TPOT (Tree-based Pipeline Optimization Tool) [Olson
and Moore, 2019] uses Genetic Programming (GP) to build

them.

GP’s main advantages are easy parallelization, high
customization, interpretability, control of computational
resources, and insertion of application domain informa-
tion [Zodller and Huber, 2021]. It allows the creation of ex-
pressions or computer programs from combinations of user-
defined operators. Its flexibility makes solving problems in
different contexts with different data types [Poli et al., 2008],
even time series analysis [Miranda et al., 2019], more effort-
less.

A time series is a data type where observations show a time
ordering - and they depend on each other based on this order-
ing [Bontempi et al., 2012]. Regarding the use of traditional
ML algorithms on these data, transforming the temporal fea-
tures through descriptive measures is necessary to represent
the problem most properly [Motamedi-Fakhr et al., 2014].

In the context of bio-signals, e.g., Electroencephalogram
(EEG) signals are particularly problematic time series due to
their high complexity, spatial and temporal co-variance, and
non-stationarity [Kevric and Subasi, 2017]. Consequently,
the classification of EEG signals typically necessitates the
involvement of a medical specialist. However, this process
can be time-consuming, exhausting, and vulnerable to errors,
biases, mood fluctuations, distractions, and variations in ex-
pertise [Bontempi ef al., 2012; Motamedi-Fakhr et al., 2014].
Thus, this intricate process faces the potential for failure, as
a consensus among experts may only sometimes be attain-
able [Weiner and Dang-Vu, 2016].
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Problems involving EEG use multiple input channels and
can generate up to 256 simultaneous signals from different
parts of the scalp [ Yamazaki et al., 2012]. Although the liter-
ature guides which channels to use in various contexts, many
still need to be analyzed. Also, wavelet transforms may de-
compose each signal into multiple levels depending on the
preprocessing method [Hazarika et al., 1997]. Furthermore,
to utilize traditional machine learning algorithms on time se-
ries data, it is imperative to partition the data into samples
and compute a representative set of features [Acharya et al.,
2019; Motamedi-Fakhr et al., 2014; Ilyas ef al., 2015].

As a result, due to the many approaches available to solve
the same problem, data scientists usually adopt a manual and
empirical approach to construct their solution pipelines [Bon-
tempi et al., 2012; Geurts, 2001]. Thus, it is a tiring and sub-
jective task, which reduces experimental reproducibility and
is prone to overfitting in the generated models [Corradino
and Bucolo, 2015]. Overfitting is also a common problem
even in pipelines generated by AutoML solutions [Fabris and
Freitas, 2019], making its identification and prevention criti-
cal factors for time series analysis problems.

This paper compares state-of-the-art AutoML tools with
the GP-based AutoML for identifying events in EEG signals,
which is considered a complex benchmark [Motamedi-Fakhr
et al., 2014]. Besides, we propose characterizing EEG data
using four feature groups: Statistical, Spectral, Complexity,
and Time Series bases. For such, we use the Sleep Spindles
public database [Devuyst et al., 2011] of EEG signals to ana-
lyze: the quality of pipelines found for classification metrics,
the selected features, and the pipeline structure. In the ex-
periments, we obtained, for several classification measures,
ML pipelines whose predictive performance was higher than
those found by the other tools.

The main contributions of this study, as demonstrated
by the findings, can be outlined as follows: (1) The char-
acterization of Sleep Spindle data reveals that only time-
based or spectral features are inadequate for achieving high-
performance pipelines; (2) a comparative analysis of per-
formance, utilizing the F1-score, among various traditional
machine learning (ML) algorithms applied to raw and PCA-
transformed data, benchmarks from the literature, and the
GP-based AutoML demonstrates that pipelines containing
simple ML algorithms can surpass the performance of in-
tricate, customized models; (3) the analysis of the conver-
gence of the proposed GP-based AutoML algorithms to pre-
vent overfitting, understand pipeline complexity, and reduce
data dimensionality.

This paper extends our previous work, Genetic
Programming-based AutoML for EEG Signal Classifi-
cation - A Comparative Study [Miranda et al., 2022],
published initially at Knowledge Discovery, Mining and
Learning (KDMiLe) 2022. The present version builds
on the initial findings and further expands the discussion,
incorporating new insights and developments. As a result,
the extension of our paper showcases a more thorough,
well-rounded, and insightful exploration of the techniques
of AutoML and the new experiments we carried out.
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Figure 1. Two sleep spindles, marked in gray, identified in a 4-second win-
dow.

2 Background

This section briefly introduces the most fundamental GP con-
cepts in the AutoML context. We also delve into AutoML al-
gorithms, contrasting GP to other optimization methods and
presenting their limitations. Finally, we discuss applications
of EEG signals and mainly how it is possible to apply Au-
toML solutions in this domain.

2.1 Genetic Programming

GP is an evolutionary computation technique inspired by bi-
ological evolution for automatically creating computer pro-
grams that solve a given problem. GP iteratively transforms
a set (called population) of computer programs through the
heuristic search called evolution [Koza, 1994; Poli et al.,
2008].

At each iteration (called generation), GP stochastically
modifies a set of possible solutions (called individuals) for
the problem, generating new solutions by modifying and re-
combining the previous set. When appropriately parameter-
ized, the algorithm enables the most recent individuals to
outperform their predecessors in problem-solving. Further-
more, the stochastic nature of the technique allows for the
evasion of local optima, to which deterministic methods typ-
ically converge [Eberhard ef al., 1999]. Therefore, GP is
a technique that successfully develops new and unexpected
ways to solve problems [Poli et al., 2008]. Additionally, GP
yields more interpretable outcomes, as the construction of
individuals involves user-defined operations and constants.
This characteristic facilitates fine-tuning through inspection.

(+)
OREC

Figure 2. Example of a GP program

f(AB) =B x 3+ log(A)
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2.2 Representation

Individuals are hierarchical tree-like structures (Figure 2)
composed of primitive functions and terminal values the user
selects for the particular domain of the problem [Poli et al.,
2008]. The application context and the types of data in-
volved affect the choice of these parameters. The set of prim-
itive functions used can include, for example, arithmetic op-
erations, mathematical functions, logical and conditional op-
erations, and user-specified functions. The set of terminals
can comprise numerical constants and specific entries for the
problem [Koza, 1994]. For example, in Figure 2, the pro-
gram represented has the variables A, B, and the constant
value 3; and has the primitive functions of addition +, mul-
tiplication x, and natural logarithm log. Finally, we can
rewrite it as the expression B x 3 + log(A4). Even though
it is an entirely numerical example, GP is flexible for any in-
put data as long as there are primitive functions, inputs, and
compatible terminals.

Prediction

(kernel = linear)

Select
Features 1 and 4

RandomForest
Select
Features 2 and 7

Figure 3. Example of pipeline represented by a GP tree

Naturally, in AutoML context, data processing functions
and ML algorithms naturally constitute the components of
the tree structure [Zoller and Huber, 2021]. Assuming the
generation of the pipeline illustrated in Figure 3 over a
dataset containing ten input columns and one label column,
the algorithm executes a voting ensemble consisting of three
machine learning models: Support Vector Machine (SVM),
K-Nearest Neighbor (KNN), and Random Forest (RF). Au-
toML selects the hyperparameters, such as the kernel type for
SVM and K = 9 for KNN. Moreover, the SVM and KNN
models undergo training with the selected features.

2.3 Fitness Function and PG Initialization

With each generation of GP, a new population is created
based on an attempt to reproduce the principle of natural se-
lection, where the fittest individuals survive and are more
likely to reproduce. This boils down to an assessment of
the individual’s quality, calculated through a fitness function,
and its definition varies for each problem [Poli ef al., 2008],
a crucial step in the preparation of the algorithm [Poli ef al.,
2008]. In classification applications with AutoML, cost op-
timization functions or evaluation metrics such as AUC, F1-
score, or balanced accuracy are usually used, as they reflect
the quality of the obtained pipeline.
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2.4 Bloat

Bloat is a phenomenon that happens during the execution of
GP [Vanneschi et al., 2010]. As generations progress, in-
creasingly complex programs arise without enhancing their
fitness value. This complexity often results from subtrees
irrelevant to the problem or branches that could be simpli-
fied. In the context of AutoML, some pipelines may con-
tain preprocessing operations and models that bring little or
no performance improvement, for example, multiple occur-
rences of data normalization or overgrowth of an ensemble of
classifiers. The event of bloat makes more processing neces-
sary to evaluate the programs, decreasing the algorithm’s per-
formance and increasing the occurrence of overfitting [Van-
neschi et al., 2010; Gongalves et al., 2012].

2.5 Automated Machine Learning

The AutoML pipeline structure is modeled as a Directed
Acyclic Graph (DAG). Each node represents a basic algo-
rithm, and the edges represent the input data flow through
the selected algorithms. In this way, the size of a particu-
lar pipeline, that is, its number of nodes (algorithms), can
be used to indirectly measure a pipeline’s complexity. Most
DAGs that represent ML pipelines have the constraint that
there is always a predictive algorithm at their last node.

The choice of algorithms that compose the pipeline de-
pends mainly on the nature of the data and the problem goal.
For example, in a classification application, it is necessary to
have algorithms such as Naive Bayes (NB), KNN, Decision
Trees (DT), and their hyperparameters in the search space to
build the pipeline (preprocessing functions may be present
in this set depending on the types of data involved). On the
other hand, in the case of a numerical problem, for example,
normalization, scaling, and transformation functions such as
Principal Component Analysis (PCA) are used as candidates
for pipeline elements [Gijsbers et al., 2019].

Hence, this process is highly iterative and an ideal candi-
date for automation [Tuggener et al., 2019]. Consequently,
AutoML is an alternative to help specialists in Data Science
by avoiding manual tasks, speeding up the process, and fa-
cilitating ML access for less specialized professionals [Xin
et al., 2021; Xanthopoulos et al., 2020; Shang et al., 2019].
Using AutoML, the data scientist is freed from these repeti-
tive tasks and can focus on more creative tasks, adding more
business value to the solution [Hutter et al., 2019].

AutoML applications encompass techniques long ex-
plored in the automatic selection of algorithms and hyper-
parameters and feature extraction, selection, and construc-
tion [Zoller and Huber, 2021]. As computational resources
become more accessible, along with affordable hardware,
cloud solutions, and ML frameworks, a favorable environ-
ment emerges for the development and implementation of
AutoML techniques [Wang et al., 2009]. A factor that also
helps in this process is expanding access to several open
databases on platforms such as Kaggle' and UCI? [Dua and
Graff, 2017]. Therefore, obtaining and using larger datasets

'https://wuw.kaggle.com/
Zhttp://archive.ics.uci.edu/ml
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is increasingly common in the number of samples and fea-
tures.

However, difficulties arise when the data has many fea-
tures/dimensions since a large sample size is needed to repre-
sent high-dimensional sample distributions. Bellman [Bell-
man et al., 1957] defined this behavior as the ”Curse of Di-
mensionality”. In contrast, as Hughes [Hughes, 1968] shows,
using numerous features can reduce classification and regres-
sion models’ assertiveness and generalization capacity even
when processing them requires computational power. So,
Bellman and Hughes’s concepts help us understand the dif-
ficulty of generalizing complex problems. Furthermore, the
performance of several ML algorithms is sensitive to design
decisions, which can be a problematic factor for less experi-
enced users. Naturally, these difficulties get worse with the
construction of AutoML pipelines.

Several widely used open-source AutoML tools are avail-
able, and each implements this concept through different
strategies. Auto-sklearn, for example, uses Bayesian opti-
mization to find the best algorithms and their hyperparam-
eters in a pipeline involving preprocessing and modeling
functions. These pipelines have a fixed structure formed by
data cleaning, preprocessing, and modeling. In parallel, the
H20 AutoML framework employs a random grid search to
discover the hyperparameters of a model without incorporat-
ing preprocessing. In the end, it combines the best models
using an ensemble.

Finally, the TPOT uses GP to build high-performance
pipelines with variable structures for classification or re-
gression problems, providing less overfitting than other
tools [Fabris and Freitas, 2019]. In this context, the flexible
tree structure properties, ease of customization of the nodes,
and the very process of evolution of pipelines make GP quite
attractive.

The three mentioned frameworks have different strategies
for constructing their pipelines when optimizing their solu-
tions. For example, while H20 AutoML generates pipelines
with only one predictive layer, Auto-sklearn builds more
complex DAGs, despite its fixed structure [Z6ller and Hu-
ber, 2021; LeDell and Poirier, 2020; Hutter ef al., 2014]. In
contrast, TPOT works with DAGs of arbitrary format.

Limiting the universe of pipeline structures reduces the
problem’s search space. In the context of H20, which em-
ploys a computationally demanding optimization strategy,
generating simpler DAGs ensures the evaluation of more so-
lutions [LeDell and Poirier, 2020]. Despite the more com-
plex search space, TPOT does not seek an exhaustive evalu-
ation of all hyperparameters combinations, as it uses GP to
optimize the algorithms.

AutoML solutions can ensure horizontal scalability and
greater control of computing resources [Ferreira et al., 2021;
Olson and Moore, 2019]. On the other hand, as it involves
algorithms of different natures and the evaluation of multiple
pipelines simultaneously, the execution of AutoML routines
often causes system failures due to intensive computational
loads [Xin et al., 2021]

Also, most commercial frameworks like Google Cloud
AutoML [Bisong, 2019b,a; Drozdal et al., 2020], for exam-
ple, lack customization settings. As a result, the generated
solutions do not have transparency during execution and in-
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terpretability, often treated as a black box [Xin et al., 2021;
Bosch et al., 2021; Arzani et al., 2021].

3 Related Work

Sleep Spindles (Figure 1), visible waveforms in the EEG sig-
nal during the polysomnography examination, are essential
in sleep staging and identifying pathologies [Devuyst et al.,
2011; Clemens et al., 2005; Niedermeyer and Ribeiro, 2000;
Iranmanesh and Rodriguez-Villegas, 2017]. Despite a wide
variety of recommended features for describing EEG sig-
nals [Motamedi-Fakhr et al., 2014], characterization studies
of Sleep Spindles data mainly focus on instantaneous statis-
tics of the signal over the spectral and time domains [Ahmed
et al., 2009; Gomez-Pilar et al., 2021; O’Reilly and Nielsen,
2014; Purcell ef al., 2017]. In a more general perspective,
Lubba et al. [Lubba ef al., 2019] present a characterization of
multiple time series problems - including some EEG datasets
- to find a canonical set of features.

In order to use this kind of application, it is necessary to di-
vide the signal into segments and calculate features for each
created sample. These are varied, but it is possible to de-
fine four major groups of features: statistical, spectral, time-
frequency, and non-linear [Motamedi-Fakhr et al., 2014].
Despite this, finding a descriptive set to separate the samples
into classes can be challenging. For example, in a problem
with a five-channel EEG, where we decompose the signal
into five wavelet transform levels and calculate ten features
per sample, we obtain a database with 250 features. In this
context, AutoML can help obtain more generalist pipelines
that automatically discover the most relevant features. Our
experiments show that we can find less complex and more
performant predictive pipelines using more robust character-
ization measures than literature baselines using fewer data
dimensions.

Despite the many features needed to characterize Sleep
Spindles and the variety of characterization measures, many
papers focus on a few ad hoc metrics, mainly instantaneous
statistics on the signal in the time and spectral domains. Our
experiments show that we can find less complex and more
performant predictive pipelines using more robust character-
ization measures than literature baselines using fewer data
dimensions.

The literature suggests several approaches for the Sleep
Spindles data. Tsanas et al. [Tsanas and Clifford, 2015] and
Zhuang et al. [Zhuang et al., 2016] proposed Continuous
Wavelet Transform (CWT) based approaches and the esti-
mation of the probability of spindles occurrences. Lachner-
Piza et al. [Lachner-Piza et al., 2018] proposed a Support Vec-
tor Classifier (SVC) approach with an ad hoc supervised fea-
ture selection method based on correlations for determining
the importance of each one. Finally, in previous work [Mi-
randa et al., 2019], we presented an automatic feature selec-
tion and construction GP-based algorithm to improve simple
ML classifiers’ performance.

Our previous method uses GP to evolve feature trees to
improve the performance of the desired classifier. It builds
a new dataset from the original data composed of combi-
nations of the original features. Our GP combines them
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Figure 4. AutoML tasks automated by the two analyzed frameworks

through mathematical operators, allowing the addition of
non-linearity through truncated mathematical operators, for
example. From an AutoML perspective, this method auto-
mates attribute selection, creation, and preprocessing. We
used the EEG data of Sleep Spindles and K-complexes as an
object of study, showing that GP can empower simple clas-
sifiers by providing more sophisticated attribute engineering
while reducing dimensionality and improving classification
results [Miranda et al., 2019].

The literature contains many GP-based AutoML appli-
cations that optimize different parts of the Data Science
flow [Miranda et al., 2019; Suchoparova and Neruda, 2020;
deSaetal.,2018; Tranetal., 2016; Guo et al., 2011], such as
algorithm selection, feature engineering, and hyperparame-
ter optimization. As a complete AutoML solution, the frame-
work TPOT [Olson et al., 2016] is one of the most famous
GP-based techniques.

TPOT considers preprocessing and classification tech-
niques as GP operators and the dataset as a terminal to com-
bine them in a pipeline. In addition to the restriction that
every pipeline must have a classifier as the final operator,
it is possible to construct them with an arbitrary format. In
this way, GP trees provide a flexible representation for ML
pipelines [Olson and Moore, 2019].

Despite its advantages, running TPOT on large datasets
can be time-consuming [Zdller and Huber, 2021]. Due to
the algorithm considers multiple ML algorithms in a pipeline
with several preprocessing steps, the hyperparameters for all
models, and various ways to group or stack algorithms in the
pipeline. This problem is not unique to AutoML applications
with GP, but the occurrence of bloat in pipelines can exacer-
bate it [Cerrada et al., 2022].

Still, we can find applications of AutoML with promising
results on EEG data. For example, Mei et al. [Mei et al.,
2017] used the framework TPOT to identify phenomena in
EEG sleep, while Yang et al. [Yang et al., 2021] analyzed the
EEG of patients who suffered cardiac arrest.

4 Methodology

In order to study the application of GP-based AutoML tech-
niques on the EEG classification problem, we performed a
series of experiments comparing the performance of the algo-

rithm TPOT with our previous work GP approach for feature
engineering [Miranda ef al., 2019]. From now on, to facili-
tate our comparisons, we will name our previous work, Algo-
rithm 1. Although both are AutoML techniques and use GP
as an optimization strategy, each automates different parts of
pipeline creation. While TPOT proposes multi-step automa-
tion, our previous work focuses on constructing and selecting
attributes. Figure 4 shows which ML steps Algorithm I and
TPOT automate.

To carry out our study, we used the Sleep Spindle database
of the DREAMS project [Devuyst ef al., 2011]. It consists
of signals with expert notes on sleep phenomena or disor-
ders. The dataset has 30-minute 3-channel EEG samples
from eight patients, independently annotated by two sleep
specialists. It is essential to highlight that all records in this
database are from patients with sleep disorders, making iden-
tifying the phenomenon more challenging [Devuyst et al.,
2006].

We segmented the EEG signals into 2-second samples
based on the maximum duration of 1.67s of the events iden-
tified in the data [Patti et al., 2014; Al-Salman et al., 2019].
In the sequence, we extracted samples from the original sig-
nals using the sliding window method with a 75% over-
lap [Parekh et al., 2015; Patti ef al., 2015]. Next, we decom-
posed each sample into five levels of Discrete Wavelet Trans-
form (DWT) db5 [Unser and Aldroubi, 1996; Amin et al.,
2015; Hazarika et al., 1997]. Lastly, we calculated different
sample feature groups to generate four new databases.

Table 1, describes the features of the four groups. Appli-
cations of EEG sleep signals already utilize the first three
groups: statistical, spectral, and complexity [Motamedi-
Fakhr et al., 2014]. However, due to the wide variety of fea-
tures available in this domain, understanding which groups
aggregate the most relevant information to the problem can
generate leaner and more generalist models. Lastly, the
group catch22 comprises 22 features considered canonical
for classification problems and time series clustering, ob-
tained through applying multiple feature engineering tech-
niques on 93 different classification problems [Lubba et al.,
2019]. The study of this group on EEG data allows for com-
paring the performance of AutoML techniques when evaluat-
ing features more or less specific to the application domain.

The spindle identification problem is unbalanced. Less
than 2.5% of the total signal from the data are spindle events.
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Table 1. Feature groups extracted from EEG data

Group Features Signal Domain  # Features

Statistic {5, 25,75, 95} percentile, mean, median, variance, Time 195
entropy, RMS, STD, kurtosis, {zero, mean} crossings

Spectral {5, 25, 75, 95} percentile, mean, median, variance, Frequency 195
entropy, RMS, STD, kurtosis, {zero, mean} crossings

Complexity  {Shannon, FFT, SVD, Fisher} entropy, Time/Frequency 90
{Higushi, Pretosian} fractal dimension

Catch22 Constructed non-trivial time-frequency features Time/Frequency 330

Table 2. AutoML techniques hyperparameters

Previous Work TPOT

Operator set X, 4+, —, +,

log(|]), v/]«]

Binarizer, Normalizer, VarianceThreshold, PCA,
{MaxAbs, Robust, Standard}Scaler, Select{Fwe, Percentile},

RBFSampler, ZeroCount, FeatureAgglomeration

Gaussian NB, DT
RF, SV, KNN

Classifier

Hiper-parameters  Default (scikit-learn)

Terminal set —-0.5, +0.5, -1, +1 -

Gaussian NB, Bernoulli NB, Multinomial NB, DT, KNN,
Logistic regression (LR)

GP optimization

To mitigate this problem and maintain the unbalanced nature
of the application domain, we reduced the majority class ran-
domly until reaching the proportion of 70% of the samples
in all four constructed datasets only for the training and vali-
dation sets.

For each group of features, we applied a cross-validation
per patient. That is, patients selected for training did not have
their samples tested. Thus, each group was performed eight
times, with seven patients for training and validation and the
last for testing.

Because of the techniques based on GP, we kept the
same hyperparameters whenever possible: 100 for popula-
tion size, 100 generations, F1-score for fitness function, 70%
for crossover rate, 30% for mutation rate, and a time limit
of 100 minutes. We show the divergent hyperparameters in
Table 2. Also we maintained the same crossover and muta-
tion rates as our previous study for the GP techniques. Al-
gorithm I and TPOT algorithms operate with high mutation
rates, given the high amplitude of the search space and the
small changes caused by the kind of mutation operator in
these approaches.

In order to observe the advantages of applying AutoML
to the problem, we built a comparison basis through train-
ing and evaluation of five simple ML classifiers: DT, KNN,
Gaussian NB, RF, and SVC. We evaluated these algorithms
on the four groups of features without performing any ad-
ditional preprocessing. In addition, we collected conver-
gence metrics on training, validation, and test data about the
pipeline’s classification performance (confusion matrix) and
complexity (pipeline size and the number of features) during
the training. After that, we applied PCA to the groups of fea-
tures to observe how the classifiers deal with the transformed

features and dimensionality reduction keeping 99.5% of the
explained variance proportion. Next, we trained the five clas-
sifiers using the PCA-transformed dataset and collected the
same metrics from the previous step. Finally, we trained
and evaluated Algorithm I and TPOT over the raw groups of
features.

Using the performance and convergence metrics of the
models, we compared the quality of the pipelines with mul-
tiple metrics and models from the literature trained on the
same data. In addition, we presented the characterization of
the Sleep Spindles on the feature groups, observing the per-
formance and complexity of the pipelines obtained on each
of them. We also discussed the increasing complexity of
pipelines as the GP population converges. Finally, we dis-
cussed about the dimensionality reduction provided by each
algorithm, observing the feature selection and construction
operations. The following section presents all these results
and analyses.

5 Experimental Results

In the literature, we can easily find references that use the
DREAMS project databases to study the classification of
EEG signals. We compared some references (Table 3) with
multiple rating metrics (Sensitivity, Recall, Accuracy, and
F1-score) with the obtained results. In Table 3, we present
four algorithms discussed in Section 3 and their performance
on Sleep Spindle data compared to the two AutoML ap-
proaches used in the experiments. Even though the results
are individually competitive with the literature on Recall and
Specificity, Algorithm I and TPOT presented a higher av-
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Table 3. Comparison of the results obtained with models from the literature

Reference Recall Specificity Precision Fiscore
[Tsanas and Clifford, 2015] 0.76 0.92 0.33 0.46
[Zhuang et al., 2016] 0.51 0.99 0.70 0.59
[Lachner-Piza et al., 2018] 0.65 0.98 0.38 0.48
[Miranda et al., 2019] 0.75 0.98 0.35 0.48
Experiment (Algorithm I) 0.69+0.09 092+£0.06 0.68+0.19 0.65+0.11
Experiment (TPOT) 0.67£0.07 0.95+£0.03 0.73+£0.18 0.68 £+ 0.09

erage F1-score than the other analyzed references, showing
a better trade-off in rejecting false positives and false nega-
tives.

To observe the performance of AutoML in contrast to the
other classifiers, we compared the F1-score of Algorithm I
and TPOT on raw data against ML classifiers on raw and
PCA-transformed data. In Figure 5, we present the perfor-
mance of each classifier or AutoML technique.

Figure 5 is composed of three grouped bar plots. Each clas-
sifier or AutoML technique was evaluated on the four groups
of features (represented in different colors) with the metric
F1-score, represented by the vertical bars and their respective
confidence intervals (calculated over the cross-validation re-
sults).

We trained Algorithm I (which needs a target classifier the
user selects) on the same classifiers used on raw data for a
more direct comparison. Our results show that the perfor-
mance of the algorithms drops when reducing the dimension-
ality with PCA, which shows the difficulty in eliminating fea-
tures while maintaining the ability to discriminate the classes
of the problem. Still, in Figure 5, we can observe that when
applying AutoML techniques, there is an increase in the F1-
score for all previously tested algorithms, including the case
of SVC, which did not converge in the previous step. The
TPOT algorithm, which builds more general pipelines with
less focus on feature engineering, obtained competitive re-
sults. In addition, it stands out in the use of the features of
the Spectral group.

When analyzing the evolution of the fitness function in
Figure 7, we can observe a sharp growth in the initial gener-
ations followed by a slight increase until the end of the exe-
cution. Due to the established limit of 100 minutes, TPOT
interrupted its execution before 100 generations. Both tech-
niques converge to low values of the F1-score in the Spectral
and Statistical groups, showing that the algorithms have dif-
ficulty adjusting pipelines capable of differentiating the prob-
lem classes. On the other hand, the Complexity and Catch22
groups proved to be more suitable for characterizing the prob-
lem.

To observe the increase in pipeline complexity, we an-
alyzed the average number of operators in the population
at each generation for TPOT and its equivalent for Algo-
rithm I, represented by the average depth of individuals. Fig-
ure 6 shows the evolution of the average complexity of the
pipelines for each feature group over the generations.

With the increase in fitness, we can also observe an in-
crease in the complexity of the pipelines in Figure 6. To ob-
tain solutions with higher performance, GP increments the
pipelines with more features in the case of Algorithm I and
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Figure 5. Evaluation of traditional ML models on raw data (top), tradi-
tional ML models on PCA-transformed data (middle) and F1-score obtained
from AutoML pipelines on feature groups through cross-validation (bottom).
Each classifier or AutoML technique was evaluated on the four groups of
features (represented in different colors) with the metric F1-score, repre-
sented by the vertical bars and their respective confidence intervals (calcu-
lated over the cross-validation results).

with more operators in the case of TPOT. However, the in-
crease in complexity does not always bring relevant improve-
ments in performance. By observing the best trade-off be-
tween pipeline complexity and individual fitness, we can de-
fine a criterion for early stopping the algorithm.

In the case of TPOT, the number of operators in the con-
structed pipelines grows linearly, while fitness does not in-
crease to the same extent. The situation is similar for Algo-
rithm I. This undue increase in model learning capacity can
lead to overfitting.

Although Algorithm I and TPOT are AutoML techniques,
each automates different ML tasks. For example, when
analyzing the content of the constructed pipelines, Algo-
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Figure 9. Operators found in the pipelines generated by TPOT.

rithm I provides a high dimensionality reduction for all fea-
ture groups regardless of the classifier used, as shown in Fig-
ure 8. In this Figure, the grouped bar chart shows the average
number of attributes generated for each group of attributes
through Algorithm I. As this technique uses a target classi-
fier, the number of constructed attributes may vary accord-
ing to the choice. Despite this variation, Algorithm I can
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Figure 7. Convergence of the fitness function (population) on the valida-
tion data

bring up to a 97% reduction in dimensionality compared to
the number of attributes of the raw data presented in Table 1.

For TPOT, it is not possible to measure dimensionality re-
duction so explicitly. However, as an indirect measure, in
Figure 9, we present the number of occurrences per algorithm
in the pipelines. So, itis possible to observe the TPOT’s most
frequent choices for the classification problem. Furthermore,
when analyzing the complexity groups and catch22, TPOT
selects a few feature reduction operators, such as PCA, Se-
lectPercentile, and SelectFwe - predominantly, so its solu-
tions work with all dimensions.

6 Conclusions

Time series analysis applications, particularly EEG signals,
are challenging ML applications. For the analysis of EEG
signals, the signals need to be segmented. Signal segmenta-
tion requires a pipeline of several stages when various trans-
formations, cleaning functions, and, mainly, feature extrac-
tion techniques. Optimizing the pipeline in this variety of
tasks generates a complex search space to be explored, espe-
cially for data scientists who do not have in-depth knowledge
of the application domain.

Therefore, the application of AutoML techniques helps in
this process by providing the data preparation, modeling, and
evaluation of ML pipelines in an automated way. In addi-
tion to reducing the data scientist’s participation in repetitive
tasks, we can obtain more general solutions than a manual
and empirical methodology, given the optimization strate-
gies of AutoML.
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In this comparative study, we investigated through system-
atic experiments the characterization of Sleep Spindle data,
the performance comparison on the Fl-score between liter-
ature baselines and GP-based AutoML, and the analysis of
the convergence of the algorithms to avoid overfitting, un-
derstand pipeline complexity, and reduce data dimensional-
ity. The results showed that the use of AutoML on the sleep
EEG signals classification problem can generate more accu-
rate solutions than complex models in the literature and also
quantifies the importance of each group of features used. Fur-
thermore, the analyzed techniques Algorithm I and TPOT
can build more accurate classifiers than models from the lit-
erature through simple operators and classifiers. In addition,
we collected evidence that using complexity measures and
constructed features can better characterize of sleep spindles,
improving the performance of the classifiers used in the raw
data.

Both techniques showed a disproportionate increase in the
complexity of the solutions over their performance, conse-
quently causing overfitting problems and an increase in the
time needed to perform a prediction.

There is still room to improve strategies from GP to Au-
toML. TPOT could not evolve its pipelines by the desired
number of generations because it reached the time limit. In
addition, the algorithm was interrupted in some executions
due to inadequate management of computational resources.
Despite superior results to models in the literature, their so-
lutions can perform only simple transformations on the data.
In parallel, Algorithm I performs a complex feature engineer-
ing and dimensionality reduction. However, its pipelines use
only one classifier and cannot select preprocessing functions.

In future work, we want to extend this study to other Au-
toML approaches and more EEG contexts. So, in the fol-
lowing steps, we will also study the behavior of Bayesian
optimization strategies and grid search on multiple EEG sig-
nal classification problems, applying the same experimental
methodology. Therefore, we can classify each strategy based
on its performance, the complexity of the obtained pipeline,
interpretability, and the likelihood of overfitting. By evaluat-
ing these aspects, it will be possible to show the advantages
of GP optimization over other strategies.
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