Journal of Information and Data Management, 2024, 15:1, doi: 10.5753/jidm.2024.3371

© This work is licensed under a Creative Commons Attribution 4.0 International License.

How to balance financial returns with metalearning for trend

prediction

Alvaro Valentim Pereira de Menezes Bandeira & ®
tim98@usp.br |

[Universidade de Sao Paulo | avalen-

Gabriel Monteiro Ferracioli @ [Universidade de Sao Paulo | ferracioligabriel@usp.br |
Moisés Rocha dos Santos ® [Universidade de Sao Paulo | mmrsantos@usp.br |

André Carlos Ponce de Leon Ferreira de Carvalho
dre@icmc.usp.br |

® [Universidade de Sdo Paulo | an-

&9 University of Sdo Paulo, Av. Trab. Sdo Carlense, 400, Centro, Sdo Carlos, SP, 13566-590, Brazil.

Received: 1 May 2023 e Published: 27 February 2024

Abstract

The prediction of market price movement is an essential tool for decision-making in trading scenarios. However,
there are several candidate methods for this task. Metalearning can be an important ally for the automatic selection of
methods, which can be machine learning algorithms for classification tasks, named here classification algorithms. In
this work, we present the use of metalearning for classification in market movement prediction and elaborate new
analyses of its statistical implications. Different setups and metrics were evaluated for the meta-target selection.
Cumulative return was the metric that achieved the best meta and base-level results. According to the experimental
results, metalearning was a competitive selection strategy for predicting market price movement. This work is an

extension of Bandeira et al. [2022].

Keywords: market movement, metalearning, stock market, machine learning

1 Introduction

The stock market, the gathering of buyers and sellers of
stocks, has been an important activity for centuries. It can
be defined as an environment where it is possible to buy and
sell fractions of a company. Since it works with the supply
and demand principle, the price of each stock (fraction of
a specific company) varies over time [Teweles and Bradley,
1998]. Predicting this variation has always been a challeng-
ing problem that has taken much time from experts in this
area. The most common way to represent market fluctuation
is through a time series. With the advent of machine learning,
predicting behavior in many sectors became possible, and it
can also be applied to the stock market [Jordan and Mitchell,
2015].

Predicting market price movement is difficult when it is
based on price alone. The most used approach in the litera-
ture seeks to characterize the market movement as a binary
classification problem: the stock price will either fall or rise.
Classical time series prediction methods, such as Autoregres-
sive Integrated Moving Average (ARIMA), have accuracy
ranging around 50% [Wen et al., 2019]. New variables were
explored in the literature to add relevant information regard-
ing the asset to be traded, such as Natural Language Process-
ing (NLP) and Technical Analysis, to improve the predictive
performance [Mehtab and Sen, 2019].

Any binary classification algorithm can be used to clas-
sify price movement in the market. Thus, there are many
possibilities to consider. The choice of the best algorithm
by evaluating the predictive performance of all available ap-
proaches has a high computational cost and demands a good

knowledge on business model and machine learning algo-
rithms [Prudéncio and Ludermir, 2004]. Metalearning is a
set of methods that have been successfully used as an alterna-
tive to the costly work of algorithm selection. It differs from
traditional manual selection machine learning algorithms by
using the experience gained from past machine learning tasks
to obtain better predictive performance faster and more effi-
ciently in future tasks [Brazdil et al., 2008].

This work is an extension of Bandeira ef al. [2022] pub-
lished in the 2022 edition of The Symposium on Knowledge
Discovery, Mining, and Learning (KDMiLe). In this piece,
we focus on improving the understanding of the experiment,
going deeper into explanations and the interpretability of the
data, adding the industry descriptions layer to the study, and a
new section centered on analyzing the metafeatures and their
contributions.

The main contribution of this work is to propose an au-
tomatic algorithm selection approach through metalearning
that can bring benefits to trading market operations, not re-
stricted to the financial market but extendable to other mar-
kets, for example, the electricity market. Another relevant
analysis consists of considering different metrics for the se-
lection of algorithms, having achieved the best results in
terms of financial simulation when considering the financial
return accumulated at the meta-level.

This paper is structured as follows. Section 2 goes into
a brief explanation about the related works; Section 3 de-
scribes the materials and methods for the proposed approach;
Section 4 presents the results and evaluation insights; Sec-
tion 5 presents the metafeatures analysis; Section 6 presents
the conclusions and future research directions.

https://orcid.org/0009-0005-1070-0582
mailto:avalentim98@usp.br
mailto:avalentim98@usp.br
https://orcid.org/0009-0002-5008-4436
mailto:ferracioligabriel@usp.br
https://orcid.org/0000-0002-1541-8333
mailto:mmrsantos@usp.br
https://orcid.org/0000-0002-4765-6459
mailto:andre@icmc.usp.br
mailto:andre@icmc.usp.br

How to balance financial returns with metalearning for trend prediction

2 Related Work

As cited before, some works used metalearning for algorithm
selection and other works used models based on machine
learning for trading tasks, but to the best of our knowledge,
no work has attempted to solve both problems at the same
time. This work’s main objective is to apply metalearning
to select algorithms for predicting price movement in the fi-
nancial market. Starting with a general overview, different
solutions will be shown in order to present the current state
of the art in market movement prediction.

Charkha [2008] provides a comprehensive introduction to
trading in the financial market using machine learning. The
work presents a straightforward experiment to build a model,
explaining how to use a stock dataset as input. Since the work
does not use additional features beyond the stock dataset, it
is significantly different from this experiment.

2.1 Feature Selection Strategies

Ni ef al. [2011] used an improved fractal feature selection
with an ant colony algorithm to select features for the learn-
ing model. The idea behind fractal feature selection is to
measure the importance of each technical index (i.e., the fea-
tures) by testing the impact of removing each one from the
dataset. This process demands a lot of computational power
to test different features, so the ant colony algorithm becomes
useful in order to mitigate this problem.

Feature selection methods can be divided into wrapper
methods (which evaluate how good a feature is based on the
performance of a model) and filter methods (which select fea-
tures based on statistical tests on the dataset). Literature has
shown works that use only one of the methods, as well as
combining them to obtain different strategies [Huang et al.,
2008; Lee, 2009].

2.2 Incorporating Relative Return

Zhang et al. [2018] is a recent work that goes beyond us-
ing feature selection and market movement prediction, it also
uses the model relative return to compare models. A similar
metric is going to be used in this present experiment. Since
this concept of return was already explored in the past, it has
potential, which will be explored in section 4.

2.3 Dynamic Model Selection

The most similar work found in the literature, by Dong et al.
[2021], is able to dynamically evaluate and select prediction
models, based on an initial list of models. Despite the exis-
tence of a similar idea of dynamic selection, the work uses a
clustering algorithm to evaluate the candidates for predictors,
which is different from what is presented here.

3 Experiments

In this section, we explain the development process of the
recommendation system, from selecting data sources to the

Bandeira et al. 2024

base-level and meta-level evaluation methods. All experi-
ments are publicly available at a GitHub repository .

3.1 Data acquisition

The data used in this experiment is gathered from two main
indexes of the stock market and a general list of stocks, which
contain an amount of time-series compound by the days of
trades, the prices of open, close, high, and low, and the vol-
ume of trades.

Although all the data used came from the global stock mar-
ket, the list of selected companies was obtained with three
different strategies:

* S&P 500 (abbreviation of Standard & Poor’s 500 In-
dex) [Tsaih et al., 1998]: an index that represents a spe-
cific list of stocks in the market. In this case, a weighted
index of about 500 of the most relevant stock companies
in the USA. This index was first introduced in 1957 and
is still one of the most famous until now, this shows how
useful it can be as a starting point. The selection is not
only tied to the top companies because there are other
criteria of S&P Dow Jones Indices, the company that
maintains the index.

Wilshire 5000 [Haugen and Baker, 1991]: Differently
from the S&P 500 index, the Wilshire 5000 tracks the
whole stock market in the US. The index company cri-
teria inclusion is that the stock must be publicly traded
and the headquarters in the USA. There is no stock limit
in the index, despite its name. Just by including smaller
companies, the Wilshire 5000 provides a more complete
scenario of the US than the S&P 500. It was created
in 1974, holding nearly 5000 stocks during launch. In
1998, the number of companies in the index was about
7500, and currently is under 3500. The index compa-
nies can be reviewed monthly, and there is a possibility
to adjust.

Use all stocks available: With a web crawler algorithm
is possible to get a list of all companies that are listed on
any stock website. The page we used was Stock Moni-
tor 2, and all stocks listed on this site were used in this
work, despite being companies with good or bad perfor-
mance in the market. This can be helpful for metalearn-
ing because it can promote diversity of data. This list
has about 5100 stock names. Since the first two sources
of stocks we used are bound to the US, this was an alter-
native to get data of other relevant companies, but that
are tied to other countries.

After getting the stock list, the methodology is the same
for the three variations. We first iterate by reading each stock
name and using the Yahoo Finance tool * to get the dataset
of the company.

Every time series is represented as a Pandas DataFrame®.
This format arranges the data in a table-like structure. To

'Project Repository: github.com/ferracioli/Market-Movement-
Prediction-Algorithm-Selection-by-Metalearning

2Stock Monitor URL: https://www.stockmonitor.com

3Yahoo Finance URL: https:/finance.yahoo.com

4Pandas documentation: https://pandas.pydata.org/

How to balance financial returns with metalearning for trend prediction

maintain the chronological aspect for programming and mod-
eling purposes, each timestamp serves as the index. The
columns associated with this index contain data specific to
each time observation, as depicted in Figure 1. With a
dataframe, it is possible to iterate through each observation in
chronological order, preserving the temporal sequence. Al-
ternatively, it is possible to extract all elements from a spe-
cific column to gather insights, for instance, to obtain statis-
tical data.

Some of the listed names can not be found while searching
the databases. There is only one restriction: The selection of
the stocks with at least 800 observations in their time series.
That is the minimal data quantity we fixed for a good result.
If the stock has more than 1500, we get only the 1500 most re-
cent observations. Both lower and maximum thresholds (800
and 1500 observations) were set as arbitrary values for prac-
ticality since focusing on optimizing these parameters can
drain time from the main problem. This strategy was set to
select only the time series of the last period rows, but there
is another reason for standardizing a period of time for the
series. Some companies are old enough to accumulate more
than 10000 in trading days. While using a small dataset(less
than 800 observations) can result in a poor model, with in-
sufficient data to avoid high bias, the large series can store
patterns from decades ago that are not compatible with our
current stock market. This was the solution we found to fix
the unbalanced price history that each company has.

Sample stock

Oct '16 Nov '16

v

Pandas DataFrame

Open Close Volume
2016-10-31
2026-11-01
2016-11-02

2016-11-03

Figure 1. Representation of time series as tabular data

Our final rate of success databases obtained with the whole
market list was near 70%, and the sectors with the most
stock names discarded were Healthcare and Financial Ser-
vices since there are a lot of recent companies that were not
considered in the minimal row quantity. The reproduction of
this step may not result in the same list of companies because
some of them may differ according to time , since we rely on
Yahoo Finance, a tool that couldn’t fetch some companies
we asked for. The Stock Monitor list also can change, since
some stocks may be added or removed from the stock market.
In order to obtain the most faithful reproduction of this min-
ing step, we recommend using the same closing date for the

Bandeira et al. 2024

Yahoo Finance tool, that is April 22, 2022, with the indexes
constituents shared in our repository. With the stock lists
from different sources, we concatenated them into a unique
dataset and removed duplicates as a strategy to improve the
diversity of companies during the learning step. In addition
to being aware of duplicates, we standardize the names of the
sectors, since each source used different names for the same
category, e.g. Consumer Cyclical, which in some sources is
called Consumer Discretionary. Is important to be aware of
different names for the same sector, because we are dealing
with indexes that are composed from different sources.

3.2 Price Trend Prediction Problem

The price trend prediction problem involves forecasting the
future direction of an asset’s price movement. This problem
is inherently challenging due to the complex interplay of var-
ious market factors, including market sentiment, macroeco-
nomic indicators, trading volumes, and historical price pat-
terns. Researchers and practitioners have developed numer-
ous methodologies, ranging from traditional statistical ap-
proaches to more sophisticated machine learning techniques,
to tackle this problem [Ghosh et al., 2022].
Some target horizons:

* Close-to-close: The close-to-close target horizon en-
compasses the prediction of price movement from the
closure of one trading day to the closure of the sub-
sequent trading day. This horizon serves as an in-
dispensable tool for short-term investors, encapsulat-
ing overnight developments that significantly influence
market dynamics post-trading hours.

* Intra-Day: The intra-day prediction horizon re-
volves around forecasting price movements within a
single trading day. This target is paramount for
high-frequency traders seeking to capitalize on short-
lived market fluctuations, necessitating real-time data
streams and sophisticated modeling techniques.

* Day ahead: The day-ahead target horizon involves pre-
dicting price movements from the close of the current
trading day to the close of the subsequent trading day.
This horizon caters to medium-term investors, allowing
them to incorporate overnight events and market trends
into their strategies.

This work adopts a close-to-close target. The choice of the
close-to-close target horizon stems from its unique blend of
practicality and stability. While each prediction horizon has
its merits, close-to-close predictions strike a balance between
short-term volatility and overnight developments, making
them particularly valuable to day traders and swing traders.

3.3 Experiment Design

Before explaining the experiment architecture, we are going
to present the general pipeline that occurs in metalearning:

* Base-level learning: The first step of the pipeline,
solves the main problem using various models, and
comparing its performances. For generating the meta-
dataset, the best algorithm is stored for each time series,

How to balance financial returns with metalearning for trend prediction

with its metafeatures. The algorithm will be used as the
target later on, and the metafeatures are the data used
in this classification problem. An in-depth explanation
for each of these words will be given in the following
sections. This step is expected to be the longer one be-
cause the idea is to generate the metadatacet once, and
then use it many times, that is the faster step.
Meta-level learning: step that occurs in the sequence
of the previous. Using the generated metadataset, it is
possible to improve the solution of new problems. A
recommendation system can learn specific features and
behaviors that happen in the data distribution, and make
suitable predictions of the best model for solving the
problem.

3.4 Base-level learning

We are dealing with the stock market and price oscillation, so
it is important to define another important section of the ex-
periment, which has more options for implementation, that is
how the model will operate trades. There are several possibil-
ities of trade logic to be constructed: compare the difference
between the opening and closing price on the same day, the
closing of one day and the opening of the next day, or clos-
ing prices between two days. For this work, we chose one
that seemed more interesting: define the market tendency as
the difference between the closing price between this and the
previous day. This affects how the experiment will be con-
structed because up and down trends can be predicted with
classification models.

Figure 2 shows a diagram with the pipeline we used during
the base-level learning of the experiment, presenting a flow
of the steps we are presenting during this section.

Stocks time series

S&P 500 Stock Monitor list

/\

Data characterizarion

Wilshire 5000

Performance Extraction

Algorithm 1 I I PYMFE
Algorithm N I I Catch 22

Removing

duplicates metadataset

Figure 2. Base-level learning architecture

As shown in Figure 2, two steps are needed to generate the
metadata: performance extraction and data characterization.

Bandeira et al. 2024

The data characterization step comprehends extracting rel-
evant information related to the algorithm’s performance
called metafeatures. We combined two metafeatures sets im-
plemented on Python libraries:

* PyMFE [Alcobaca ef al., 2020]: is a Python pack-
age for extracting various types of metafeatures for the
classification task. The PyMFE package aims to en-
hance the reproducibility of metalearning applications
by curating a set of meta-features gathered from vari-
ous works in the literature. The package encompasses
diverse categories of meta-features: General, Statisti-
cal, Information-theoretic, Model-based, Landmarking,
Clustering, Concept, Itemset, and Complexity. For the
present study, we extract 55 General and Statistical
metafeatures due to their simplicity and low computa-
tional cost of extraction. For this last one, we can cite
Pillai’s trace [Pillai, 1955], used as a test statistic in mul-
tivariate analysis, and Skewness, which is the degree of
asymmetry observed in a probability distribution, calcu-
lated as the third statistical moment.

+ Catch22 [Lubba et al., 2019]: a high-performance li-
brary that extracts 22 canonical time series metafea-
tures. The 22 characteristics of time series are selected
from a larger set of 7000 features from the hctsa pack-
age Fulcher et al. [2013]. They are referred to as canon-
ical features as they constitute a concise representation
of the 7000 features, empirically prioritizing predic-
tive performance, computational efficiency, and inter-
pretability. As examples, we can cite the time intervals
between successive extreme events above (or below)
the mean and the proportion of successive differences
exceeding 0.04 standard deviation. Further explanation
of each of the features can be obtained from its refer-
ence.

The data characterization is a step that may have custom
functions, so instead of only two libraries, it is possible to add
a custom function that extracts information for a specific data
domain.

The Performance Extraction occurs in parallel to this step,
and again, can have custom models according to the data do-
main of the problem that is being solved. We apply eight
different algorithms during base-level learning. A ranking
system selects the best algorithm for that specific stock. The
name of the company and its sector are also stored for data
analysis reasons. Since the time series of each stock is rel-
atively large, we are using a time series split of size four
(this split results in 5 sub-groups of time series and using
the sliding-window strategy) and the mean of the result of
each split. The algorithms used in the base-level are Ran-
dom Forest (RF) [Ho, 1995], Decision Tree (DT) [Breiman
et al., 2017], Extreme Gradient Boosting (XGB) [Chen and
Guestrin, 2016], K-Nearest Neighbors (KNN) [Cover and
Hart, 1967], Support-Vector Machine (SVM) [Vapnik, 1998],
Naive Bayes (NB) [McCallum et al., 1998], Adaptative
Boosting (ADA) [Freund and Schapire, 1997] and Logistic
Regression (LogReg) Cox [1958].

For each time series, we extract the performances by run-
ning each base-learner and calculating performance metrics.
In this work, two metrics were used to define the meta-target,

How to balance financial returns with metalearning for trend prediction

balanced accuracy, and cumulative return:

* Balanced Accuracy (BAC): we have chosen to use a
built-in SKLearn metric, since is a more efficient solu-
tion than rewrite an accuracy function. This metric is a
good option for handling imbalanced datasets. It is de-
fined as the average between specificity and recall con-
cerning the Equation:

recall 4+ speci ficity
2

BAC =

(M

¢ Cumulative Return (CRet): The cumulative return
uses a specific function that predicts if the stock is in
a trend of High or Down movement. If the market goes
up, it buys one unit of the stock and sells the next day.
Using the same logic, if the market is going down, it
operates in short, selling stock and repurchasing it the
next day. The cumulative return is the sum of all the
operations done in the whole period. A negative cumu-
lative return means the algorithm lost money. In that
way, it is hard to compare cumulative return between
different stocks because it is related to the volatility of
the stock. So, this is only useful for comparing different
algorithms applied in the same stock. It is important to
state that we choose to always operate one unit of each
stock at a time because it ensures more stability. An-
other possibility would be to trade a variable volume of
stocks, depending on how much money is available for
the model to make orders. This option may have expo-
nential growth since any fluctuation or small difference
in performance between models can result in a very dif-
ferent ranking. This means the dynamic volume orders
are unstable compared with a fixed volume. We are also
considering that if the model has a negative balance, we
will allocate more money for the following trades dur-
ing the simulation. The formal notation for CRet in the
period ¢ is:

CRet; = (1 + CRetifl) X (1 + Reti) -1 (2
where Ret; is the financial return in the period .

We can build our metadata by combining the data obtained
in data characterization with the data from performance ex-
traction. As stated before, we are dealing with a classifica-
tion problem, so one must select a target for the metalearning
step. We have two target options: Balanced Accuracy and
Cumulative Return, data obtained during the performance ex-
traction. We can only test one target type at a time, so two
versions of the metadata will be tested.

3.5 Meta-level learning

Next step is applying the metadataset with the meta-level
learning. Figure 3 shows the difference between a regular
ML model and a model that uses metalearning for recom-
mendation problems.

Metalearner is a machine learning algorithm applied to
metadata for meta-knowledge extraction. That is, it will be
able to recommend a promising model from past tasks. This

Bandeira et al. 2024

metadataset

New data

Metalearners
Algorithm 1 I
Algorithm N I

Recommendation

/

Compare
results

Ordinary ML models

Algorithm 1

Algorithm N

Figure 3. Meta-level learning architecture

work used four metalearners options: KNN, SVM, RF, and
DT.

We can use the meta-knowledge obtained by metalearners
to verify a new stock, applying the same functions of metafea-
ture extraction and trying to recommend the most promising
algorithm. Cross-validation is used in this 80% of datasets
for training, and we use the 20% of data for the testing. Us-
ing the Balanced Accuracy, we verify if its value is greater
than 1/8 (12,5%), the maximal randomness, which means
the probability of choosing an algorithm at random given the
number of classes.

To add statistical support, we apply a Mann-Whitney-
Wilcoxon test [Mann and Whitney, 1947] two-sided with Bon-
ferroni correction [Dunn, 1961] (which is the nonparametric
counterpart of the Student’s t-test for independent samples),
comparing all the possible pairs of base-level models distri-
butions, considering the following hypothesis:

Hy: The distributions of both populations are identical.
vs
Hi: The distributions of both populations are not identical.

4 Results and Discussion

The section shows the performance of each variation of our
metadata. Since we are using two variations of the metadata,
there will be a comparison between them, with a discussion
about on which occasion each one is more relevant than the
other.

4.1 Meta-level

We analyze the meta-level data by looking at whether the
metadata components can differentiate their models based

How to balance financial returns with metalearning for trend prediction

on the extracted metafeatures. As the first step in this ex-
ploration, we plotted Figure 4 and Figure 5, which show the
distribution of the base-level learners using respectively the
Balanced Accuracy and Cumulative Return as meta-targets.

Percent

RF DT XGB KNN SVM NB
Algorithms for Balenced Accuracy

ADA LogReg

Figure 4. Distribution of algorithms over the metadata with Balanced Ac-
curacy as target

Percent

RF DT XGB KNN SVM NB
Algorithms for Cumulative Return

ADA LogReg

Figure S. Distribution of algorithms over the metadata with Cumulative
Return as target

There is a considerable unbalance of learning algorithms
distribution in Figure 4 with a small presence of SVM and
LogReg, and the models are more equally distributed in Fig-
ure 5. Unbalance in the distribution can be a problem during
the recommendation step because it may tend to the most fre-
quent models to classify an unknown stock time series.

As an additional synthesis, we explored the companies’
distribution over the metadataset. Understanding the data
distribution is useful because if a sector appears with less fre-
quency, its influence in base-level learning will be smaller.
Table 1 shows the count of companies grouped by sector, us-
ing the same metadataset.

Table 1 shows that the first three sectors, Health Care, Fi-
nancials and IT represent practically half of the data. Unbal-
ance can lead to biased or inaccurate model predictions, but
it is present in the Sectors column of data, so it may have a
smaller impact since it is not our primary target. We have
to verify in the next steps if this unbalance will affect our
experiment.

As a next step in verifying the data unbalance and meta-
data behavior, we test how accurate recommendations are
for both meta-targets. So, doing a 10-fold of the data with

Bandeira et al. 2024

Table 1. Count of companies used in metadataset grouped by sector

Sector Companies count
Health Care 860
Financials 779
Information Technology 568
Industrials 550
Consumer Discretionary 428
Energy 253
Real Estate 240
Materials 234
Communication Services 224
Consumer Staples 183

Utilities 96

Total 4415

ten repetitions, we trained the four metalearners to see how
good are the recommended performances.

Figure 6 and Figure 7 show the performance of the four
metalearners in Balanced Accuracy. In the first case, the rec-
ommended target was Balanced Accuracy, and for the sec-
ond, the Cumulative Return.

0.10 A —

0.08 T T T T
KNN SVM RF DT

Algorithms

Figure 6. Recommendation based on Balanced Accuracy metric

In the hypothesis test, ns’ means nonsignificant, and each **’ means a de-
crease in the p-value for the test.

In Figure 6, with 5% of significance level, we can spot
the difference between most of the models for the Balanced
Accuracy metric, but they are still at the same level of perfor-
mance, i.e., although the algorithms have different learning
mechanisms, they have essentially the same result. More-
over, all of them have a median of about 0.135, which is a
poor result considering the quantity of metadata that was ex-
tracted. A possible reason for this result to be near the ran-
dom guess (0.125) is that the balanced accuracy should not
be a good choice of target for this task. Another possible ex-
planation is that the unbalanced model distribution results in
the metalearners making wrong recommendations.

Focusing now on Figure 7, according to the test results,
with 5% of significance level, there is no significant differ-

How to balance financial returns with metalearning for trend prediction

ns

0.08 T T T T
KNN SVM RF DT

Algorithms

Figure 7. Recommendation based on Cumulative Return metric

In the hypothesis test, ns’ means nonsignificant, and each **’ means a de-
crease in the p-value for the test.

ence between the distributions of the pair KNN v.s. Decision
Tree, which is not true in the other cases, where we see that
the distributions are different and Random Forest proved to
be the best metalearner.

Besides that, the plot shows that even the worst algorithm
has the metric median above the probability of randomly
choosing the best algorithm for one specific stock. This
means that the recommendation using the metadataset for
Cumulative Return can outperform a random choice of algo-
rithm. Although the accuracy seems low in this multi-class
classification problem, it doesn’t necessarily mean a signifi-
cant loss in the cumulative return, considering that, in most
cases, the performance of the best algorithm is not that far
from the second and third places, and sometimes a different
seed or hyperparameter could close this gap. This shows that
it is more promising to apply metalearning with a focus on
cumulative return rather than balanced accuracy as a meta-
target, as it has a better result in terms of recommendation.
To confirm this choice, we analyze metalearning at the base-
level.

Considering the Sectors as a new target in the metadataset,
instead of Balanced Accuracy or Cumulative Return, we
tested how the model could perform classifying the sectors
based only on its own metadata. The result is shown in Fig-
ure 8, and has the same structure as the previous plots:

There are 11 sectors in total, which means that a random
guess model would have a general performance of accuracy
of around 0.09. The lowest median of the models has a bal-
anced accuracy above 0.18, considerably higher than the per-
formance of random guess. This means that the characteris-
tics of each sector are unique enough to be used as identifiers.
Despite being additional information, this reaffirms the pre-
vious discussions about how metalearning can find similar
patterns in different stocks.

Bandeira et al. 2024

ns

|]
Sokk
| —— |
.
| —— |
0.30 1 i
0.28
0.26 1 N
.. 024 -1
& I
©
5 022
£
.l T
0.18 A
0164 _|
0.14 - M * e
KNN SVM RF oT

Algorithms

Figure 8. Recommendation based on Sector labels

In the hypothesis test, ns’ means nonsignificant, and each **’ means a de-
crease in the p-value for the test.

4.2 Base-level

The base-level evaluation compares the eight models used
in the metadataset construction with our recommendation
of models that we call MetaMM (Meta Market Movement).
There are two variations of this system, BAC (recommen-
dation focused on balanced accuracy meta-target) and CRet
(based on the cumulative return meta-target). Our last ob-
jective is to see if the MetaMM recommendations can out-
perform the profit of the best base-level model. During the
Meta-level, we saw that the Random Forest model was the
most efficient in the task of recommending stocks, so the
MetaMM will use it again for comparison in the base level.

As stated in the previous section, each company time se-
ries may have a different size, ranging from 800 to 1500 rows,
and we are going to use the average cumulative return as the
performance metric for each model. MetaMM models will
also have an average cumulative return, based on recommen-
dation. We used 20% of data for testing, so we are going
to calculate the average gain for 883 companies. Figure 9
shows the performances of cumulative return for the ten dif-
ferent trading models with the average gain, in USD.

MetaMM(CRet)
SVM A

LogReg A

NB 1

XGB A

KNN -
MetaMM(BAC) -
ADA A

RF

DT A

-50

Algorithms

50 100 150 200
Return

o m

Figure 9. Comparison of Returns between recommendations and other mod-
els

Based on the Figure 9 results, the MetaMM (CRet) strat-

How to balance financial returns with metalearning for trend prediction

egy was the one with the best performance, becoming more
efficient than the best base-level model (SVM). Besides that,
the MetaMM (BAC) result was an inferior performance. The
only model that ended the test with loss was DT, and the oth-
ers were capable of getting a positive result.

Using the data obtained from the base-level task, we can
also show the model performances in a structured way, in
order to understand the possible limitations of the models.
Table 2 shows additional information about each model, in-
cluding both MetaMM versions.

Table 2. Model performances during base-level learning

Model Avg gain Min Max
ADA 41.95 -26731.25 | 61868.40
DT -9.06 -22236.25 | 18119.84
KNN 52.34 -29484.25 | 62378.16
NB 116.47 -9052.80 | 63034.02
RF 10.08 -26530.25 | 17290.88
LogReg 132.75 -551.06 | 64435.34
SVM 146.04 -621.46 | 63035.34
XGB 71.86 -20682.75 | 61775.48
MetaMM(CRet) | 160.59 -329.4 61868.40
MetaMM(BAC) 48.54 -20682.75 | 61868.40

This table endorses what was seen before the MetaMM
model is capable of avoiding bad models since its minimal
gain is the smallest. Even if its maximum gain is not the best,
the possibility of avoiding high losses ensures that this model
will have a high average gain.

It may not seem so intuitive at first that the minimal gain
from MetaMM(CRet) is far different from every other value.
Actually, this means that each model can have its minimal
value in different time series. Since MetaMM(CRet) uses a
recommendation system, it can take advantage of the vari-
ation of the performance for each scenario to avoid giant
losses, reducing the risk in each operation.

One last piece of knowledge we can extract from the meta-
data is that high balanced accuracy does not imply a high cu-
mulative return since the performance of these two metrics
is relatively different. We saw with the Figures that the meta-
data results with balanced accuracy as the target was inferior,
not showing any advantage compared with more straightfor-
ward strategies or focusing on cumulative return. So in prac-
tice, if we had to choose only one metric, the cumulative re-
turn probably would be the best option because protecting
assets is more important than having a greater accuracy rate
for the financial market.

5 Metafeatures analysis

Given our results, we can analyze which metafeatures are
that most contributed to our achievements in this experiment.

For this purpose the Shapley Additive Explanations [Lund-
berg and Lee, 2017] method was used as resource in this anal-
ysis. Originally designed in the game theory subject, this
method assigns a unique distribution of payoffs among the
players in a coalition game, calculating the average marginal

Bandeira et al. 2024

contribution of each player to the results obtained consider-
ing all possible permutations of the players in the game. In
the machine learning context, we can consider that the game
is the prediction task and the players are the features that co-
operate with each other to get the best outcome.

FC_LocalSimple_mean3_stderr

MD_hrv_classic_pnn40

DN_Outlierinclude_p_001_mdrmd

CO_Embed2_Dist_tau_d_expfit_meandiff _
DN_Outlierinclude_n_001_mdrmd _

SP_Summaries_welch_rect_area_5_1

SB_MotifThree_quantile_hh

CO_trev_1_num

CO_FirstMin_ac

CO_flecac

gravity

DN_HistogramMede_10

CO_HistogramAMI_even_2_5

freq_class.sd

sparsity.mean

Reglog
NB
CART
KNN

RF

ADA
SVM
XGB

sparsity.sd
cor.mean
DN_HistogramMode_5

SB_BinaryStats_mean_longstretchl

SB_TransitionMatrix_3ac_sumdiagcov

0.00 0.02 0.04 0.06 0.08
mean(|SHAP value|) (average impact on model output rr

Figure 10. Summary plot for the Shap values

In the Shap values summary plot, represented in Fig-
ure 10, all feature importance bars for each class are
stacked, giving us an overall score for our metafea-
tures, which represents how impacting it is for model
prediction. Taking the three most important metafea-
tures we get 'FC_LocalSimple_mean3_stderr', which
is a measure of error from using the mean of the pre-
vious three values of the time series to predict the next
value, 'MD_hrv_classic_pnn40' that represents the pro-
portion of different magnitudes that are greater than
4% of the standard deviation of the time series, and
'DN_QOutlierInclude_p_001_mdrmd' that measures the
timing intervals of outliers occurrence relative to the start and
end of the time series.

As we can notice, not only these three, but all features of
the top ten most important are part of the Catch22 library,
which indicates that, in this case, specialized time series
metafeatures contribute a lot more than the ordinary statis-
tical ones found on PyMFE library.

To proceed with the analysis we compared the relationship
between the most important features and their Shap values
by a scatter plot hued by another important variable called a
Dependency plot.

Observing Figure 11 we can notice that higher Shap values
observations are more common where the error of using the
mean of the prediction on lag equals 3 has the lowest values.
With that said we can state that low values of this feature can
be really significant to predict our target in the experiment. In
addition to that, higher proportions of different magnitudes

How to balance financial returns with metalearning for trend prediction

Los
0.125 -

=

3 0.100- 0.7

2 o
L 00751 z
S % 0.6 5§

u
£ 2 0050 u
o |]
> o -0.5 ©
o 2 00251 Y
<< £ >
o £

T 00001 0.4)

S .y =

o' —0.025 1

el -0.3

~0.050 X
0.0 0.2 0.4 0.6 0.8 10
FC_LocalSimple_mean3_stderr
Figure 11. Dependence plot between

'FC_LocalSimple_mean3_stderr' and 'MD_hrv_classic_pnn40'

that are greater than 4% are concentrated around the value
zero of Shap values, meaning that it is not representative if
compared with its lower values.

0.125 L 0.05

0.100

-0.04
0.075 -

0.050 -
-0.03

0.025

sparsity.mean

T
e
o
[

0.000 -

—0.025 -
-0.01

SHAP value for
DN_Outlierinclude_p_001_mdrmd

—-0.0501

0.0 0.2 0.4 0.6 0.8 1.0
DN_Outlierinclude_p_001_mdrmd

Figure 12. Dependence plot between

'DN_OutlierInclude_p_001_mdrmd' and 'sparsity.mean'

For the Figure 12 we can see the opposite happening to the
'DN_OutlierInclude_p_001_mdrmd' variable, where the
highest values achieve the higher Shap values while the other
values stay around zero. Comparing the behavior of a feature
that is not as important, such as 'sparsity.mean' (native
of PyMFE), we can see that its higher values range around
zero, implying that in the relation between the two variables
only lower values of sparsity means must be considered in
model prediction, in this case.

0.034 .
-0.25
0.02 4
-0.20
0.014

gravity
"
o
=
G

0.00 4

SHAP value for
freq_class.sd

. -0.10
—0.01 4

—0.02 [0-05

0.0 02 0.4 0.6 0.8 10
gravity

Figure 13. Dependence plot between 'gravity' and 'freq_class.sd'

Now analyzing the interaction of the two better features
of PyMFE library ('gravity' and 'freq_class.sd') in

Bandeira et al. 2024

Figure 13 we cannot take a straight conclusion about its im-
portance to the model prediction as we did before with Fig-
ures 11 and 12, which corroborates with the previous state-
ment based on Figure 10 that metafeatures extracted from the
Catch22 library retains higher importance in our recommen-
dation task if compared with the ones extracted from PyMFE
library.

6 Conclusion

The selection of machine learning algorithms in the market
movement prediction task is essential in decision-making in
stock market trading scenarios. From metalearning, it was
possible to recommend promising models for the task, reduc-
ing the computational cost and the need for specialist knowl-
edge to select models in the market movement prediction
task. An important finding of this analysis was that the meta-
target based on cumulative return presented the best results
at the meta-level and the base-level, being the best choice for
representing the performance in this task. The metafeatures
which contribute the most to model recommendation are the
ones natives of the Catch22 library. In future research direc-
tions, we propose to test other metafeature approaches and
explore relationships in which each classification algorithm
benefits specific types of time series. Another aspect that can
be further improved is to use iteration to discover more effi-
cient thresholds to filter the number of observations in each
time series since arbitrary numbers were used.

Acknowledgements

This study was partially funded by grant 2019/10012-2, Sao
Paulo Research Foundation (FAPESP), CEPID-CeMEAI Process
2013/07375-0, USP Research Office (PIPAE project), and CNPq.
This R&D project is being developed in partnership with VOLT,
CESP (Companhia Energética de Sdo Paulo), and Auren Energia
through the Research and Development Program regulated by the
National Electric Energy Agency (ANEEL).

References

Alcobaga, E., Siqueira, F., Rivolli, A., Garcia, L. P. F., Oliva,
J. T., and de Carvalho, A. C. P. L. F. (2020). Mfe: Towards
reproducible meta-feature extraction. Journal of Machine
Learning Research, 21(111):1-5.

Bandeira, A., Ferracioli, G., dos Santos, M., and de Carvalho,
A. P. L. F. (2022). Market movement prediction algo-
rithm selection by metalearning. In Anais do X Symposium
on Knowledge Discovery, Mining and Learning, pages
1-8, Porto Alegre, RS, Brasil. SBC. DOI: 10.5753/kd-
mile.2022.227947.

Brazdil, P., Carrier, C. G., Soares, C., and Vilalta, R. (2008).
Metalearning: Applications to data mining. Springer Sci-
ence & Business Media.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
(2017). Classification and regression trees. Routledge.
Charkha, P. R. (2008). Stock price prediction and trend pre-

diction using neural networks. In 2008 First International

How to balance financial returns with metalearning for trend prediction

Conference on Emerging Trends in Engineering and Tech-
nology, pages 592-594. IEEE.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining, pages 785-794.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern
classification. [EEE transactions on information theory,
13(1):21-27.

Cox, D. R. (1958). The regression analysis of binary se-
quences. Journal of the Royal Statistical Society: Series
B (Methodological), 20(2):215-232.

Dong, S., Wang, J., Luo, H., Wang, H., and Wu, F.-X. (2021).
A dynamic predictor selection algorithm for predicting
stock market movement. Expert Systems with Applica-
tions, 186:115836.

Dunn, O. J. (1961). Multiple comparisons among
means. Journal of the American statistical association,
56(293):52-64.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of computer and system sciences,
55(1):119-139.

Fulcher, B. D., Little, M. A., and Jones, N. S. (2013). Highly
comparative time-series analysis: the empirical structure
of time series and their methods. Journal of the Royal
Society Interface, 10(83):20130048.

Ghosh, P., Neufeld, A., and Sahoo, J. K. (2022). Forecasting
directional movements of stock prices for intraday trading
using Istm and random forests. Finance Research Letters,
46:102280.

Haugen, R. A. and Baker, N. L. (1991). The efficient mar-
ket inefficiency of capitalization—weighted stock portfo-
lios. The journal of portfolio management, 17(3):35-40.

Ho, T. K. (1995). Random decision forests. In Proceedings
of 3rd international conference on document analysis and
recognition, volume 1, pages 278-282. IEEE.

Huang, C.-J., Yang, D.-X., and Chuang, Y.-T. (2008). Appli-
cation of wrapper approach and composite classifier to the
stock trend prediction. Expert Systems with Applications,
34(4):2870-2878.

Jordan, M. I. and Mitchell, T. M. (2015).
learning: Trends, perspectives, and prospects.
349(6245):255-260.

Lee, M.-C. (2009). Using support vector machine with a hy-
brid feature selection method to the stock trend prediction.
Expert Systems with Applications, 36(8):10896—10904.

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher,
B. D., and Jones, N. S. (2019). catch22: Canonical time-
series characteristics. Data Mining and Knowledge Dis-
covery, 33(6):1821-1852.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. In Guyon, I., Luxburg,
U. V,, Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R., editors, Advances in Neural Informa-
tion Processing Systems 30, pages 4765-4774. Curran As-
sociates, Inc.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether
one of two random variables is stochastically larger than

Machine
Science,

Bandeira et al. 2024

the other. The annals of mathematical statistics, pages 50—
60.

McCallum, A., Nigam, K., ef al. (1998). A comparison of
event models for naive bayes text classification. In A4A41-
98 workshop on learning for text categorization, volume
752, pages 41-48. Citeseer.

Mehtab, S. and Sen, J. (2019). A robust predictive model
for stock price prediction using deep learning and natural
language processing. arXiv preprint arXiv:1912.07700.

Ni, L.-P, Ni, Z.-W., and Gao, Y.-Z. (2011). Stock trend
prediction based on fractal feature selection and sup-
port vector machine. Expert Systems with Applications,
38(5):5569-5576.

Pillai, K. S. (1955). Some new test criteria in multivariate
analysis. The Annals of Mathematical Statistics, pages
117-121.

Prudéncio, R. B. and Ludermir, T. B. (2004). Meta-learning
approaches to selecting time series models. Neurocomput-
ing, 61:121-137.

Teweles, R. J. and Bradley, E. S. (1998). The stock market,
volume 64. John Wiley & Sons.

Tsaih, R., Hsu, Y., and Lai, C. C. (1998). Forecasting s&p
500 stock index futures with a hybrid ai system. Decision
support systems, 23(2):161-174.

Vapnik, V. (1998). Statistical Learning Theory. NY: Wiley.

Wen, M., Li, P, Zhang, L., and Chen, Y. (2019). Stock mar-
ket trend prediction using high-order information of time
series. leee Access, 7:28299-28308.

Zhang, J., Cui, S., Xu, Y., Li, Q., and Li, T. (2018). A novel
data-driven stock price trend prediction system. Expert
Systems with Applications, 97:60—69.

	Introduction
	Related Work
	Feature Selection Strategies
	 Incorporating Relative Return
	Dynamic Model Selection

	Experiments
	Data acquisition
	Price Trend Prediction Problem
	Experiment Design
	Base-level learning
	Meta-level learning

	Results and Discussion
	Meta-level
	Base-level

	Metafeatures analysis
	Conclusion

