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Abstract While the most common approach in Machine Learning (ML) studies is to analyze the performance
achieved on a dataset through summary statistics, a fine-grained analysis at the level of its individual instances can
provide valuable information for the ML practitioner. For instance, one can inspect whether the instances which
are hardest to have their labels predicted might have any quality issues that should be addressed beforehand; or one
may identify the need for more powerful learning methods for addressing the challenge imposed by one or a set of
instances. This paper formalizes and presents a set of meta-features for characterizing which instances of a dataset
are the hardest to have their label predicted accurately and why they are so, aka instance hardness measures. While
there are already measures able to characterize instance hardness in classification problems, there is a lack of work
devoted to regression problems. Here we present and analyze instance hardness measures for both classification
and regression problems according to different perspectives, taking into account the particularities of each of these
problems. For validating our results, synthetic datasets with different sources and levels of complexity are built and
analyzed, indicating what kind of difficulty each measure is able to better quantify. A Python package containing
all implementations is also provided.
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1 Introduction
Data is a crucial component for the development of Machine
Learning (ML) models, making endeavours towards bet-
ter understanding data properties important [Schweighofer,
2021]. By properly characterizing data one may previously
identify quality issues that need to be addressed [Paiva et al.,
2022] or the need for more powerful solutions for solving
a new problem [Cruz et al., 2015, 2018; Sowkarthika et al.,
2023].

Some recent piece of work has been focusing on charac-
terizing a dataset based on the difficulty level encountered
in predicting the labels of its individual instances, a concept
named instance hardness analysis [Smith et al., 2014; Arruda
et al., 2020; Torquette et al., 2022]. Objectively, Smith et al.
[2014] regard an instance as hard to classify if a set of predic-
tors of different biases are unable to predict its label correctly.
This concept is originally defined for classification problems,
by taking the average probability of misclassification of an
instance as recorded by a pool of diverse classification algo-
rithms. For regression problems, where the data labels are
quantitative, a first strategy for instance hardness quantifica-
tion was proposed in [Torquette et al., 2022]. Similarly to
what is performed in classification problems, the predictions
of a pool of diverse regressors for the instance are taken into
account. Nonetheless, in this case, the distance between the
predictions and the actual label values is taken.

In addition to the identification of instances which are the
hardest to have their labels predicted, the literature also con-

tains measures which give estimates of instance hardness
quantification according to different perspectives [Smith
et al., 2014; Arruda et al., 2020; Torquette et al., 2022].
They are named instance hardness measures (IHM) and are
aimed to explain possible reasons why an instance is hard in
a dataset. In classification problems, instances near the de-
cision boundary needed to separate the classes or which are
outliers tend to have higher hardness levels than instances
well situated inside their classes [Lorena et al., 2019]. In
regression problems, outliers also pose a higher complexity
and the smoothness of the data distribution can influence the
predictive results attained too [Lorena et al., 2018]. There
are several IHM defined for classification problems in the
literature, but the analysis of regression problems is still in-
cipient.

Other attempts to measure the hardness level of individual
instances in a dataset are given by the use of concepts from
Item Response Theory (IRT) [Martínez-Plumed et al., 2019;
Moraes et al., 2022]. In this framework, each instance of the
dataset is regarded as an item of an exam or test, while the
respondents of the test are different ML models. Based on
the pool of responses, it is possible to identify latent traits
such as the difficulty level of the items (instances) and the
ability level of the classifiers.

This work focuses on estimating instance hardness with
the support of the IHM. They are able to give estimates of
the instance hardness level without the need to run multiple
ML models, which can be costly. They also present different
perspectives on why an instance is hard to predict in compar-
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ison to others in a dataset. IHM for classification and regres-
sion problems are presented, formalized and experimentally
analysed. Finally, we provide a Python package containing
implementations of all IHM presented.

The experiments comprise a set of synthetic datasets with
increasing sources and levels of difficulty. The choice for
synthetic datasets is motivated by the need to control the data
behavior, which would bemore difficult to achieve using real
datasets. Our results evidence how each IHM contributes in
identifying different sources of classification/regression dif-
ficulty. This paper extends our previous contribution on the
topic [Torquette et al., 2022], which was limited in the for-
malization of the measures and their experimentation. In this
extended paper, we present the mathematical formalization
of the measures absent in the previous contribution. The ex-
periments here also include more datasets, which now con-
sider a wider range of possible sources of difficulty of classi-
fication and regression problems to be captured, making the
contribution more complete.

This paper is structured as follows: Section 2 presents
the background on measuring instance hardness. Section 3
presents the IHM of classification and regression problems.
Section 4 presents an experimental evaluation of the IHM.
Section 5 concludes this paper.

2 Instance Hardness Analysis
The most common approach when analyzing a new dataset
is giving aggregate estimates on its main properties [Van-
schoren, 2019; Rivolli et al., 2022; Lorena et al., 2019].
Smith et al. [2014] was seminal to stress the need to perform
a more fine-grained analysis of a dataset, by investigating
the difficulty level in predicting the label of each individual
instance of a dataset.

Formally, given a datasetD containingn instancesxi ∈ X
with their corresponding labels yi ∈ Y , instance hardness
(IH) is defined as the likelihood of an instance being misclas-
sified by a pool of classifiers L with different biases when
trained on D:

IHL
(
xi, yi

)
= 1 − 1

|L|

|L|∑
j=1

p
(
yi|hj(xi)

)
, (1)

where p
(
yi|hj(xi)

)
is the probability xi is assigned to its

original label yi by a learning model hj from the pool.
The concept is originally defined for classification problems,
where the labels yi are qualitative (Y is a discrete set). The
idea is that instances that are frequently misclassified by a
pool of diverse learning algorithms can be considered hard
to classify. In contrast, easy instances are likely to be cor-
rectly classified by any of the algorithms.

In regression problems, the quantitative nature of the out-
put labels (set Y ) prevents a direct quantification of the prob-
ability in Equation 1. Nonetheless, it is a fact that the closer
the predicted value is to the actual label of an instance, the
more accurate the regressor response is. Therefore, it is more
intuitive to define our probability space for regression prob-
lems over distances z = d (yi, h(xi)), where yi is the label
of an instance xi and h(xi) is the prediction obtained by a

model h. Taking an exponential kernel on such distances and
plugging it into the cumulative distribution function, we ar-
rive in the form of the exponential distribution. Now, we can
define the instance hardness for regression as:

IHL
(
xi, yi

)
= 1 − 1

|L|

|L|∑
j=1

exp

(
− d (yi, hj(xi))

γ

)
, (2)

where hj(xi) represents the output of a regressor j in the
pool L for instance xi. A natural issue that arises is how to
choose a proper value for γ, which can be seen as a normal-
izing constant. For instance, γ can be set as the power of
the signal y, that is, γ = 1

n

∑
i y2

i . In that case, depending
on the chosen distance metric d(·, ·), d(·,·)

γ is equivalent to
some normalized error metric, such as normalized squared
error when the the Euclidean distance is used.

For computing the IH values in Equations 1 and 2, a cross-
validation procedure is undertaken. D is divided into r folds
of approximately the same size and while r−1 folds are used
for training, one is left out for testing. Each training instance
is part of one of the test folds, making it possible to compare
the instance actual label to the predictions obtained by a pool
of models and to compute the IH values.

3 Instance Hardness Measures (IHM)
The instance hardness measures (IHM) allow to obtain esti-
mates of IH without the need to rely on the results of multi-
ple ML models, while also indicating possible reasons why
an instance is hard to be predicted. Next we present the IHM
surveyed in this work, along with their formal definition and
interpretation.

All of them are computed for the instances of a dataset D
with n data instances xi assuming labels yi in a set Y , which
is qualitative for classification problems and quantitative for
regression problems. In addition, let m denote the number of
input features the dataset has. The definitions of all measures
are standardized so that larger values are observed for more
difficult instances.

3.1 IHM for Classification
The IHM for classification described here were originally
proposed in [Smith et al., 2014; Arruda et al., 2020; Tor-
quette et al., 2022] and are formalized next. Other measures
with similar concepts are omitted. Some measures have an
IHM subscript in order to differentiate them from their coun-
terparts defined at an aggregated dataset level in [Lorena
et al., 2019].

k-Disagreeing Neighbors kDN(xi): outputs the percent-
age of the k nearest neighbors of xi in D which do not
share its label:

kDN(xi) = ♯{xj |xj ∈ kNN(xi) ∧ yj ̸= yi}
k

, (3)

where kNN(xi) represents the set of k-nearest neigh-
bors of the instance xi in the dataset D, being k fre-
quently set to 5 [Smith et al., 2014]. The higher the
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value of kDN(xi), the harder xi’s classification tends
to be, since it is surrounded by examples from a differ-
ent class.

Disjunct Class Percentage DCP(xi): this IHM builds a
pruned decision tree (DT) using D and considers the
percentage of instances in the disjunct of xi which share
the same label as xi, where the disjunct of an instance
corresponds to the leaf node where it is classified by the
DT:

DCP(xi) = 1 − ♯{xj |xj ∈ Disjunct(xi) ∧ yj = yi}
♯{xj |xj ∈ Disjunct(xi)}

,

(4)
where Disjunct(xi) represents the set of instances con-
tained in the disjunct (leaf node) where xi is placed.
Easier instances will have a larger percentage of exam-
ples sharing the same label as them in their disjunct, so
we output the complement of this percentage.

Tree Depth TD(xi): gives the depth of the leaf node that
classifies xi in an unpruned decision tree, normalized
by the maximum depth of the tree built from D:

TD(xi) = depthDT(xi)
max(depthDT(xj ∈ D))

, (5)

where depthDT(xi) gives the depth where the instance
xi is placed in the DT. There is also a version of this
measure in which the DT is pruned, but we did not in-
clude here because it is very correlated to the unpruned
version. Harder to classify instances tend to be placed at
deeper levels of the tree and present higher TD values.

Class Likelihood Difference CLD(xi): takes the differ-
ence between the likelihood that xi belongs to its class
yi and the maximum likelihood it has to any other class.
The difference in the class likelihood is larger for eas-
ier instances, because the confidence it belongs to its
class is larger than that of any other class. We take the
complement of the difference for standardizing the in-
terpretations of the hardness directions:

CLD(xi) =
1 −
(

p(xi|yi)p(yi) − maxyj ̸=yi
[p(xi|yj)p(yj)]

)
2

,

(6)
where p(xi|yi) represents the likelihood xi belongs to
class yi and p(yi) is the prior of class yi, which we set
as 1

C for all data instances, where C is the number of
classes. The conditional probability p(xi|yi) can be es-
timated considering each of the input features indepen-
dent from each other, as in Naïve Bayes classification.

Fraction of features in overlapping areas F1IHM(xi):
this measure takes the percentage of features of the
instance xi whose values lie in an overlapping region
of the classes using:

F1IHM(xi) =

∑m

j=1 I(xij ≥ max_min(fj) ∧ xij ≤ min_max(fj))

m
,

(7)
where I is the indicator function, which returns 1 if its
argument is true and 0 otherwise, fj is the j-th feature
vector in D and:

min_max(fj) = min(max(f c1
j ), max(f c2

j )), (8)

max_min(fj) = max(min(f c1
j ), min(f c2

j )). (9)

The values max(fyi

j ) and min(fyi

j ) are the maximum
and minimum values of fj in a class yi ∈ {c1, c2}.
Therefore, the overlap for a feature fj is measured ac-
cording to the maximum and minimum values it as-
sumes in two different classes. One may regard a fea-
ture as having overlap if it is not possible to separate the
classes using a threshold on that feature’s values. F1IHM
gives the percentage of features for which an example
is in an overlapping region according to this definition.
Larger values of F1IHM are obtained for data instances
which lie in overlapping regions for most of the fea-
tures, implying they are harder to classify according to
the F1IHM interpretation. Multiclass classification prob-
lemsmust be first decomposed intomultiple binary clas-
sification problems. Different strategies can be used in
this decomposition, such as one-vs-all (OVA - one class
against the others) or one-vs-one (OVO - each pairwise
combination of the classes) [Lorena et al., 2008]. In
our implementation, we have opted for OVO, because
the generated subproblems tend to be smaller and with
a more even distribution of the classes.

Fraction of nearby instances of different classes
N1IHM(xi): in this measure, first a minimum spanning
tree MST is built, where each instance of the dataset
D corresponds to one vertex and nearby instances
are connected according to their distances in order to
obtain a tree of minimal cost concerning the sum of
the edges’ weights. N1IHM gives the percentage of
instances of different classes xi is connected to in the
MST:

N1IHM(xi) = ♯{xj |(xi, xj) ∈ MST(D) ∧ yi ̸= yj}
♯{xj |(xi, xj) ∈ MST(D)}

.

(10)
Larger values indicate that xi is close to examples of
different classes, either because it is borderline or noisy,
making it hard to classify.

Ratio of the intra-class and extra-class distances
N2IHM(xi): takes the complement of the ratio of
the distance of xi to the nearest example from its class
to the distance it has to the nearest instance from a
different class (nearest enemy - NE):

N2IHM(xi) = 1 − 1
IntraInter(xi) + 1

, (11)

where:

IntraInter(xi) = d(xi,NN(xi) ∈ yi)
d(xi,NE(xi))

, (12)

where NN(xi) represents a nearest neighbor of xi

and NE(xi) is the nearest enemy of xi (NE(xi) =
NN(xi) ∈ yj ̸= yi). Larger values of N2IHM indicate
that xi is closer to an example from another class than
to an example from its own class, making it harder to
classify.

Local Set Cardinality LSCIHM(xi): the Local-Set (LS) of
an instance xi is the set of points from class yi in D
whose distances to xi are smaller than the distance be-
tween xi and xi’s nearest enemy [Leyva et al., 2014]:

LS(xi) = ♯{xj |d(xi, xj) < d(xi, NE(xi))}, (13)
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LSCIHM outputs the complement of the relative cardi-
nality of such set:

LSCIHM(xi) = 1 − |LS(xi)|
♯{xj |yi = yj}

. (14)

Larger local sets are obtained for easier examples,
which are in dense regions surrounded by instances shar-
ing their class labels. For standardization, we output a
complement of the relative local set cardinality.

Local Set Radius LSR(xi): takes the normalized radius of
xi’s local set:

LSR(xi) = 1 − min
{

1,
d(xi,NE(xi))

max(d(xi, xj)|yi = yj)

}
(15)

Larger radiuses are expected for easier instances, which
are surrounded by many instances from their class, so
we take the complement of such measure.

Usefulness U(xi): corresponds to the fraction of instances
having xi in their local sets [Leyva et al., 2015]:

U(xi) = 1 − ♯{xj |d(xi, xj) < d(xj ,NE(xj))}
♯{xj |yj = yi}

(16)

Ifxi is easy to classify, it will be close tomany examples
from its class and therefore will bemore useful. We take
the complement of this measure as output.

Harmfulness H(xi): is the number of instances having xi

as their nearest enemy [Leyva et al., 2015]:

H(xi) = ♯{xj |NE(xj) = xi}
♯{xj |yj ̸=yi}

(17)

If xi is the nearest enemy of many instances, this indi-
cates it is harder to classify and its harmfulness will be
higher.

Degree centrality DegreeIHM(xi): this measure is based on
a complexity measure originally taken at a dataset-level
[Lorena et al., 2019], which models the dataset as a
proximity graph. First a graph G = (V, E) is built
from D, connecting pairs of instances from the same
class for which the distance is inferior to a threshold ϵ,
set as 15% of the smallest distances, as in [Morais and
Prati, 2013; Garcia et al., 2015]. This graph presents at
least C connected components, one for each class, con-
necting elements from a same class which are similar to
each other. The complement of the density of the con-
nections a vertex vi has in the graph gives its hardness
level:

DegreeIHM(xi) = 1 − E(vi)
♯{xj |yj = yi} − 1

, (18)

where E(vi) the number of edges of the vertex corre-
sponding to xi.
If xi is easy to classify, it will be surrounded by close
elements from its class and will have a lower Degree
value as measured by Equation 18.

Closeness centrality ClosenessIHM(xi): this measure is
based on the same graph G built previously. The close-
ness centrality measure of a vertex vi ∈ G is the re-
ciprocal of the sum of the length of the shortest paths

between the vertex and all other vertices of the graph.
The more central a vertex (instance) is in the graph, the
closer it is to all other nodes.

ClosenessIHM(xi) = 1 − ♯{xj |yj = yi} − 1∑
vj∈yi

d(vi, vj)
, (19)

where vi and vj are vertices of the network and d(vi, vj)
is the distance between these two vertices. The close-
ness measure as previously defined returns lower val-
ues for instances in regions containing a high density of
points of their class.

3.2 IHM for Regression
The IHM for regression are based on complexity mea-
sures and meta-features for regression problems taken at the
dataset-level [Lorena et al., 2018], which are decomposed
here at the instance-level.

Collective Feature Efficiency CFE(xi): this measure
starts by identifying the feature with highest correlation
to the output vector in D. All examples with a small
residual value (|εi| ≤ 0.1) after a linear fit between
this feature and the target attribute are removed. Then,
the most correlated feature to the remaining data
points is found and the previous process is repeated
until all features have been analyzed or no example
remains. For an instance xi, we take the round li where
it is removed from the analysis, normalized by the
maximum number of rounds:

CFE(xi) = li
m

. (20)

The li value can range between 1 and m, where m is the
number of input features the dataset has. Higher CFE
values are obtained for harder instances, which require
more features to get a linear fit. The CFE values range
in
[ 1

m , 1
]
.

Absolute Error after Linear fit LE(xi): first a statistical
model of a Multiple Linear Regression is fit to D. For
each xi, a residual or error εi in relation to the actual
output yi can be measured and LE is given as:

LE(xi) = |εi|. (21)

Larger values of this measure are attained for harder in-
stances according to the interpretation of this measure,
meaning they deviate much from a linear fit.

Output Distribution S1IHM(xi): As in N1IHM for classifi-
cation, first a MST is generated from input data, where
each instance corresponds to a vertex of the graph, while
the edges are weighted according to the distance be-
tween the examples in the input space. The MST will
greedily connect examples nearest to each other. Next
S1IHM monitors whether the instances joined in theMST
have similar output values. Lower values are obtained
for simpler instances, who have similar outputs to their
neighbors in the input space as represented in the MST.
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As an instance xi can have multiple neighbors in the
MST, we take the average of the differences between
their outputs:

S1IHM(xi) =
1

♯{xj |(xi, xj) ∈ MST(D)}

∑
(xi,xj )∈MST(D)

|yi−yj |,

(22)
where the denominator gives the number of neighbors
of xi in the MST. Higher values will be obtained for
harder instances, which are connected to neighbors with
more dissimilar outputs.

Input Distribution S2IHM(xi): S2IHM first orders the in-
stances according to their output values yi and then
computes the Euclidean distance between pairs of ex-
amples that are neighbors. This measure complements
S1IHM by measuring how similar in the input space are
instances with similar outputs. Lower values S2IHM are
obtained for simpler instances.
In the ordering, each element will either have one or two
neighbor examples. For two neighbors, the average of
the distances should be taken. Otherwise, the distance
to the unique neighbor is output. Given that y1 ≤ y2 ≤
. . . ≤ yn, that is, that the examples are already ordered
according to their output values, we have:

S2IHM(xi) =


d(x1, x2), for i = 1

d(xn, xn−1), for i = n
d(xi,xi−1)+d(xi,xi+1)

2 , otherwise.
(23)

Squared Error of k-nearest neighbor S3IHM(xi): calcu-
lates the squared error (SE) of a k-nearest neighbor
regressor (NN), using leave-one-out. As in kDN, the
value of k is set to 5.

S3IHM(xi) = (kNN(xi) − yi)2, (24)

where kNN(xi) represents the k-nearest neighbor pre-
diction for xi. Larger values are observed for harder
instances.

The measures TD and Degree from the previous section can
also be applied to regression problems. While TD will need
a regression tree to be induced from D instead of the deci-
sion tree, Degree will take a proximity graph between the
instances in D, disregarding their outputs.

4 Experiments
In this section we perform experiments to show how the IHM
behave for classification and regression datasets with differ-
ent sources and levels of difficulty. All measures described
previously are implemented in Python and distributed in the
PyHard package library1 [Paiva et al., 2022].

4.1 Classification datasets
Using the make_blobs package from the scikit-learn library
[Pedregosa et al., 2011], we generated synthetic datasets

1https://pypi.org/project/pyhard/

where different characteristics which may affect the diffi-
culty in solving a classification problem are varied. This
package generates isotropic Gaussian blobs in the space,
which can be regarded as classes. By adjusting one source
of difficulty at a time, several datasets were generated, as
follows:

1. Number of instances: datasets with two classes and
two input features, varying the number of instances as:
25, 50, 100, 250, 500, 1000, 2000 and 4000. The greater
the number of observations for a same number of input
features, a lower level of difficulty in classifying the in-
stances is expected.

2. Number of features: datasets with two classes and
1000 instances, varying the number of features as: 2, 10,
50, 100, 250, 500, 1000, 2000 and 3000. The greater the
number of features for a same number of instances, the
greater the expected level of difficulty, since the data
tend to become sparse in the input space.

3. Number of classes: datasets with 1000 instances and
two dimensions, with the “Centers” (number of groups
or blobs, where each blob corresponds to one class) pa-
rameter varied as: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20.
As the number of classes increases, a higher level of dif-
ficulty in classifying the instances correctly is expected.

4. Overlap of the classes: datasets with 1000 instances,
two attributes and two classes, where the position of the
centers of the classes is varied, making them to progres-
sively overlap: [(1,1),(10,10)], [(3,3),(8,8)], [(4,4),(7
,7)], [(5,5),(6,6)], [(5.5,5.5),(6,6)], [(6,6),(6,6)]. The
more overlapped are the classes, a higher level of dif-
ficulty is expected.

5. Label flip: datasets with 1000 instances, two attributes
and two classes and initially no overlap, where the la-
bels of some instances are flipped at the following rates:
1%, 5%, 15%, 25%, 35% and 45%. The objective is to
test the effects of a wrong data labeling in classification
complexity, which is expected to increase.

We first verify how the instance hardness values behave
for the different datasets’ variants by using Equation 1 with
the following pool L of classification techniques of distinct
biases: Support Vector Machine (SVM) with linear Ker-
nel, SVM with RBF Kernel, Random Forest (RF), Gradient
Boosting (GB), Bagging, Logistic Regression andMultilayer
Perceptron (MLP). All classification techniques were run in
a 5-fold cross-validation procedure and had hyperparameters
tuned by an inner 3-fold cross-validation on the training folds.
Figure 1 presents the boxplots of the IH values for each set
of datasets (instance hardness on the y axis and dataset in
the x axis). For standardization purposes, the order of the
datasets in the x axis is presented in expected increasing or-
der of classification complexity. Therefore, in Figure 1a, the
datasets are placed in decreasing order regarding the number
of instances they contain (from the largest to the smallest).

Observing Figure 1, we may notice that some sources of
classification difficulty affect more the performance of the
ML techniques than others. For instance, as more overlapped
the classes are, the higher tends to be the difficulty in classi-
fying the instances. This also happens for higher flip rates,
which ultimately also results in an overlap of instances of

https://pypi.org/project/pyhard/
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(a) ♯ Instances (b) ♯ Features (c) ♯ Classes

(d) Overlap (e) Flip

Figure 1. IH values measured at datasets of increasing complexities according to different difficulty sources.

different classes. Increasing the number of classes also leads
to a steady increase of the instance hardness values. But de-
creasing the number of instances in our datasets did not in-
fluence much on the instance hardness observed, nor did in-
creasing the number of input features, for which most of the
instances remained easily classified.

Now we move our attention to how the IHM reflect the
previous trends in instance hardness increase. For such, the
previous datasets were input to the PyHard tool to obtain
the IHM listed in Section 3.1. Figure 2 presents boxplots
of some of the IHM values obtained for each set of datasets.
Each plot presents the values of one IHM (y axis) along the
different datasets (x axis) of increasing complexities. They
all tend to increase their values for more complex datasets.
For instance, datasets with less instances (Figure 2a) have
lower N2IHM values, meaning the intra-class distances be-
come larger compared to the inter-class distances. When the
number of input features increase while keeping the number
of instances fixed, the dataset becomes more sparse, which
reflects on an increase of the DegreeIHM measure (Figure 2b).
The larger the number of classes, the more the instances are
mixed in disjuncts formed by DT on data, as reflected in Fig-
ure 2c for the DCP measure. The larger the overlap of the
classes in Figure 2d, the ClosenessIHM values become also
higher, as there will be less connections between elements
of the same class in the graph built from data. And the CLD
values increase for higher flip rates (Figure 2e), as the likeli-
hood an instance belongs to its class is low when its label is

flipped into that of another class. But there are other combi-
nations of IHM that are not so favorable towards representing
an increased complexity level (the complete set of plots can
be consulted at Appendix A).

For summarizing the relationship between the IHM and
the instance hardness level of the instances in the datasets,
Figure 3 presents a heatmap of the correlations (measured
by Spearman correlation) between the IH as measured by a
pool of classifiers (Equation 1) and the IHM values, for each
of the types of datasets generated in this section. The higher
the correlation, the redder the color, representing that as IH
increases, the IHM values also increase. At a first glance, we
can clearly see that the overlap is the type of difficulty cap-
tured more effectively by most of the IHM, with the excep-
tion of TD. Next comes the variation of the flip rate, which
tends to create an overlap of the classes too. For the other
sources of difficulty, the results are not so evident, except
for CLD when the number of instances and the number of
classes is varied. Indeed, CLD was one of the most effec-
tive measures in capturing the increase of difficulty of the
instances in all of the scenarios tested, presenting high corre-
lations to the IH values as measured by Equation 1. TD, in
contrast, was not effective in capturing most of the sources
of complexity tested in this paper and turned out to be more
affected by the decrease in the number of instances and the
increase in the number of classes of the datasets.

Although the previous analysis summarizes the overall be-
havior of the metrics, by examining the individual plots of
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(a) N2IHM for different ♯ Instances (b) DegreeIHM for different ♯ Features (c) DCP for different ♯ Classes

(d) ClosenessIHM for different levels of overlap (e) CLD for different flip rates

Figure 2. IHM values measured at datasets of increasing complexities according to different difficulty sources.

Figure 3. Correlations between IHM and instance hardness measured by multiple classifiers for the different classification datasets generated.
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the IHM per dataset type (which can be consulted in A), we
have observed that:

• The growth in the number of observations is most
frequently identified by the measures CLD, N2IHM
and ClosenessIHM. CLD is based on the probabilities
of the features values given the class using a Naïve
Bayes rule, N2IHM is a neighborhood-based measure
and ClosenessIHM is also based on data similarity and
neighborhood information.

• Although the growth in the number of features (higher
dimensionality) was not captured by the classifiers,
threemeasures identified such an increase of dimension-
ality, namely DegreeIHM, ClosenessIHM and N2IHM. In
fact, the more attributes are considered, while the num-
ber of observations is kept fixed, data becomes more
sparse and the density of points in the input space de-
creases, a feature that these IHM are able to capture.

• The increase in the number of classes is best identified
by the measures kDN, DCP, CLD, N1IHM, N2IHM and H.
While kDN, N1IHM, N2IHM and H are all neighborhood-
based measures, DCP relies on a decision tree separa-
tion of the data and CLD is based on the Naïve Bayes
rule.

• Class overlap is most often identified by the measures
kDN, DCP, CLD, N1IHM, N2IHM, LSCIHM, LSR, F1IHM,
U, DegreeIHM and ClosenessIHM. Almost all measures
were able to capture this complexity variation, which
was reflected even in the ability of the input features to
individually separate the classes (F1IHM).

• The increase in the flip rate, representing the insertion of
noise in the dataset, is most often identified by the mea-
sures kDN, DCP, CLD, N1IHM, N2IHM, LSCIHM, LSR,
U, DegreeIHM and ClosenessIHM. They are almost the
same IHM as those highlighted when class overlap was
varied, except from the feature-based IHM.

4.2 Regression datasets
The regression datasets were generated using the
make_regression package from the scikit-learn Python
library [Pedregosa et al., 2011]. It generates datasets with
a linear relationship between the input features and the
output values, where some types of noise can be added. The
different characteristics which may affect the difficulty in
solving a regression problem varied in this work are:

1. Number of instances: datasets with two informative
input features and no noise, varying the number of in-
stances as: 25, 50, 100, 250, 500, 1000, 2000 and 4000.
The greater the number of instances for the same num-
ber of input features, the lower the difficulty level ex-
pected.

2. Number of features: datasets with 1000 instances and
no noise, varying the number of features as: 2, 10, 50,
100, 250 and 500. Lesser features were tested in the
case of regression problems due to an increased com-
putational cost for higher dimensions. The greater the
number of input features for the same number of in-
stances, the greater the expected difficulty level, as data
becomes more sparse in the input space.

3. Noise: datasets with two informative input features
and 1000 instances, varying the standard deviation of
a Gaussian noise applied to the output with the levels:
1, 5, 10, 15 and 20. The higher the noise level, the more
difficult to solve the regression problem it is.

4. Tail strength: datasets with two informative input fea-
tures, 1000 instances and no noise, but varying the val-
ues for tail strength from 0 to 1.0 with steps of 0.1. In-
creasing the tail strength makes the regression problem
more difficult, as data becomes bad conditioned and the
tail can be considered a noisy part of the data too.

5. Effective rank: datasets with two informative input fea-
tures, 1000 instances and no noise, varying values for ef-
fective rank from 1 to 10 with steps of 1. The larger the
effective rank value, the more correlated are the input
features, which tends to affect negatively the regression
results.

The same procedures adopted for the classification
datasets are repeated here. First we compute the instance
hardness levels as measured by Equation 2 for the regression
datasets. The pool L of regression techniques used in Equa-
tion 2 was: AdaBoost, ν-SVM, RF, Extremely Random-
ized Trees, Regression Tree, GN, MLP, Bagging, Bayesian
Automatic Relevance Determination, Kernel Ridge Regres-
sion, Stochastic Gradient Descent Regression and Passive-
Agressive Regression. All regression techniques were run
in a 5-fold cross-validation procedure and had hyperparame-
ters tuned by an inner 3-fold cross-validation on the training
folds.

The boxplots of the IH values for the datasets with differ-
ent difficulty levels are shown in Figure 4, with the IH values
in the y axis and the increasing levels of difficult in the x axis
(in the case of the variation of number of instances, the values
in the x axis are shown in decreasing order). As we can see
in the plot, the IH values follow an increasing trend in most
of the cases, except for when the number of instances is var-
ied. In the last case, the results are inconsistent and there
is no clear trend. The characteristics which seem to impact
more the results of the regressors is an increased amount of
noise in the labels and an increase in the tail strength. Both
corresponds to the introduction of some type of noise in the
regression problem.

The boxplots of some of the IHM are presented in Fig-
ure 5 (complete plots are presented in B). All of them follow
the increasing trends of the different difficulty levels being
considered. In Figure 5a, the smaller the size of the dataset
concerning the number of instances, the S1IHM values tend
to increase. This happens because the dataset becomes less
dense for lesser instances, making the outputs or neighbor
instances more distant. As the number of input features in-
creases, so does the S2IHM values (Figure 5b). That is, for
more features, the average distance between instances with
neighboring outputs tends to be larger than that computed for
lesser features. This is an effect of a higher sparsivity of the
input data whenmore features are added, while the number of
instances remains fixed. By introducing more noise into the
output labels of the instances in the datasets (Figure 5c), the
S3IHM also increases, which corresponds to the Squared Error
(SE) of a nearest neighbor regressor prediction. In fact, the
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(a) ♯ Instances (b) ♯ Features (c) Noise

(d) Tail Strength (e) Effective Rank

Figure 4. IH values measured at regression datasets of increasing complexities according to different difficulty sources.

average predictions given by the nearest neighbor rule will
be influenced by the perturbation of the output values. Vary-
ing the tail strength influences in the density of the proximity
graphs built from data, which is reflected in the DegreeIHM
values, as shown in Figure 5d. Finally, the LE values tend
to increase for higher effective rank values (Figure 5e). This
variation concerns the input features, whose correlation af-
fects the results of the linear regressor employed in LE com-
putation.

Figure 6 shows a heatmap of the Spearman correlation be-
tween the IHM and the IH as measured by Equation 2. The
redder the color, the higher the correlation. We can notice
that, in the case of regression dataset, the correlations are usu-
ally lower than those observed for the classification datasets.
There are some specific combinations of IHM and sources
of difficulty that present highlighted results. For instance,
S1IHM and S2IHM are very correlated to the increase in the
number of features, while noise was better captured by LE.
CFE did not present much variations and was not so effec-
tive in our scenarios. But one must notice that in almost all
datasets generated, the number of input features is only two,
which may have affected the results. TD again had unstable
results in our tested scenarios.

Looking at the individual plots from the measures (pre-
sented in Appendix B), we can highlight the following
trends:

• The growth in the number of instances did not affect
the predictive results of the regressors uniformly. But

IHM such as S1IHM, TD and DegreeIHM were able to
reveal the variation in the number of instances, that is,
these measures increase uniformly as the number of in-
stances decreases. S1IHM and DegreeIHM are both based
on neighborhood information, while TD is based on par-
titioning the input space with regression trees. In con-
trast, the dynamics of the IHmeasured by the regressors
when the number of instances is varied seems to be bet-
ter captured by measures S2IHM (neighborhood-based)
and LE (based on linear fit).

• Again, the predictive results of the regressors were not
affected uniformly for increased numbers of input fea-
tures. But the IHM S1IHM, S2IHM and DegreeIHM were
effective to detect the dimensionality increase imposed
by varying the number of features, that is, these mea-
sures increase uniformly as the number of input features
increases. A higher dimension implies in more sparsity
in the dataset, which these neighborhood distance-based
measures are able to capture. Here, the dynamics of the
IH measured by the regressors when the number of in-
put features is varied seems to be better captured by the
neighborhood-based measure S3IHM.

• Varying the noise levels in the labels was better captured
by the IHMLE and S3IHM. They both consider the error
of some simple regressors, being a linear regressor for
LE and a nearest neighbor regressor for S3IHM.

• Another source of noise is input by varying the tail
strength parameter of the data generator, whose increase
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(a) S1IHM for different number of instances (b) S2IHM for different number of features (c) S3IHM for different noise values

(d) DegreeIHM for different tail strength values (e) LE for different effective rank values

Figure 5. IHM values measured at datasets of increasing complexities according to different difficulty sources for regression problems.

Figure 6. Correlations between IHM and instance hardness measured by multiple regressors for the different regression datasets generated.
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was better reflected by IHM such as LE, S2IHM, S3IHM
and DegreeIHM. They are neighborhood-based IHM
(S2IHM, S3IHM and DegreeIHM) and a measure devoted
to estimate deviations from a linear fit (LE).

• Increasing the correlation of the input features was
better captured by the IHM LE, S2IHM, S3IHM and
DegreeIHM, which concern on linearity (LE) and neigh-
borhood information (S2IHM, S3IHM and DegreeIHM).

To verify the effect of using more input features, we have
generated the same regression datasets but fixed the number
of input features in five (except for the scenario where the
number of features is varied, which remains the same). The
heatmap of this test is presented in B. Overall, the correla-
tions remained similar for the scenarios of varying the num-
ber of instances and noise levels. For tail strength and ef-
fective rank, the correlation increased for most IHMs. The
S1IHM measure was the one that most correlated to the hard-
ness measured by the multiple regressors, except for noise
variation.

5 Conclusions

This paper investigated different measures for estimating
how hard it is to predict the labels of individual instances of
a classification or regression dataset in ML, named instance
hardness measures. They present different perspectives on
why an instance is more difficult to predict than another in a
dataset. Instance hardness can also be assessed by the predic-
tive performance of multiple MLmodels for a given instance
and is higher when their predictions consistently differ from
the label registered in the dataset.

By generating synthetic datasets, we showed experimen-
tally that each IHM can be more effective in reflecting the
increase in the difficulty level of the instances when different
sources of complexity are concerned. In the case of classifi-
cation datasets, usually the overlap of the classes is captured
more effectively and by more IHM. For regression datasets,
varying the number of input features in the data has influ-
enced more the instance hardness values. In both cases, there
is a prominence of IHM based on neighborhood information,
which tend to be more effective in instance hardness analysis.

As future work, it is also important to validate the use of
the IHM in real datasets and try to identify different types
of problematic instances more effectively. Finally, validat-
ing the usage of the IHM in applications such as data pre-
processing, curriculum learning and active learning are re-
search paths worth future investigations.
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A Complete results for classification
datasets

Figures 7 to 11 present the boxplots of all IHM for the classi-
fication datasets generated in this work. The last set of box-
plots corresponds to the IH as measured by a collection of
classification algorithms (Equation 1), while the others are
the IHM presented in Section 3.1.

B Complete results for regression
datasets

Figures 12 to 16 present the boxplots of all IHM for the re-
gression datasets generated in this work. The last set of box-
plots corresponds to the IH as measured by a collection of
regression algorithms (Equation 2), while the others are the
IHM presented in Section 3.2. The heatmap between the
IHM and the instance hardness measured by the regressors
for datasets with five dimensions (except for the ♯Features,
which varies the number of input features) is presented in
Figure 17.
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Figure 7. IH and IHM when varying number of instances in each classification dataset (ordered from largest to smallest dataset).
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Figure 8. IH and IHM when varying number of features in each classification dataset.
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Figure 9. IH and IHM when varying number of classes in classification each dataset.
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Figure 10. IH and IHM when varying overlap of the classes in each classification dataset.
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Figure 11. IH and IHM when varying label flip in each classification dataset.
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Figure 12. IH and IHM when varying number of instances in each regression dataset.
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Figure 13. IH and IHM when varying number of features in each regression dataset.
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Figure 14. IH and IHM when varying noise in each regression dataset.
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Figure 15. IH and IHM when varying tail strenght values in each regression dataset.
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Figure 16. IH and IHM when varying effective strength values in each regression dataset.
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Figure 17. Correlations between IHM and instance hardness measured by multiple regressors for different regression datasets. Five dimensions are used in
all scenarios, except for the ♯ Features, which varied more in the number of features.
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