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Abstract. Dimensionality curse and dimensionality reduction are two key issues that have retained high interest for
data mining, machine learning, multimedia indexing, and clustering. In this paper we present a fast, scalable algorithm
to quickly select the most important attributes (dimensions) for a given set of n-dimensional vectors. In contrast to older
methods, our method has the following desirable properties: (a) it does not do rotation of attributes, thus leading to
easy interpretation of the resulting attributes; (b) it can spot attributes that have either linear or nonlinear correlations;
(c) it requires a constant number of passes over the dataset; (d) it gives a good estimate on how many attributes should
be kept. The idea is to use the ‘fractal’ dimension of a dataset as a good approximation of its intrinsic dimension, and
to drop attributes that do not affect it. We applied our method on real and synthetic datasets, where it gave fast and
correct results.

Categories and Subject Descriptors: Information Systems [Database Management]: Database applications

Keywords: Data mining, Feature selection, Intrinsic dimensionality, Multi-scale space mapping

1. INTRODUCTION AND MOTIVATION

When managing the increasing volume of data generated by the organizations, a question that fre-
quently arises is: “What part of this data is really relevant to be kept? ”. Notice that usually the
relations of the database have many attributes that are correlated with the others. Attributes that
are correlated to others do not introduce any new knowledge, so they can be dropped without losing
information.

Attribute selection is a classic goal, as well as battling the “dimensionality curse” [Berchtold et al.
1998; Pagel et al. 2000]. A carefully chosen attribute subset improves performance and efficacy of a
variety of algorithms. This is particularly true with redundant data, as many datasets can largely be
well-approximated in fewer dimensions. This can also be seen as a way to compress data, as only the
attributes that maintain the essential dataset characteristics must be kept [Fayyad 1998].

In this paper we introduce a novel technique that can discover how many attributes are significant to
characterize a dataset. We also present a fast, scalable algorithm to quickly select the most significant
attributes of a dataset. In contrast to other methods, such as Singular Value Decomposition (SVD)
[Faloutsos 1996], our method has the following desirable properties:
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(1) it does not rotate attributes, leading to easy interpretation of the resulting attributes;
(2) it can spot attributes that have either linear or nonlinear, even non-polynomial correlations;
(3) it is fast, with computational complexity linear on the number of objects in the dataset;
(4) it gives a good estimate on how many attributes we should keep.

The main idea is to use the ‘fractal’ dimension of the dataset, and to drop attributes that do
not affect it. The fractal dimension (D) is relatively unaffected by redundant attributes, and our
algorithm can compute it in linear time with respect to the number of objects. Thus, we propose a
kind of backward-elimination algorithm to take advantage of the fast D computation. This algorithm
sequentially removes attributes that contribute minimally to D.

The remainder of the paper is structured as follows. In the next section, we present a brief survey
on the related techniques. Section 3 introduces the concepts needed to understand the proposed
method. Section 4 presents the fractal dimension algorithm developed as well as the datasets used in
the experiments. Section 5 gives the proposed method for attribute selection. Section 6 discusses the
experiments and evaluation of the proposed method. Section 7 gives the conclusions of this paper.

2. SURVEY

Numerous attribute selection methods have been studied, including genetic algorithms; sequential
feature selection algorithms such as forwards, backwards and bidirectional sequential searches; and
feature weighting [Aha and Bankert 1995; Scherf and Brauer 1997; Vafaie and Jong 1993]. A survey
on attribute selection using machine learning techniques is presented in [Blum and Langley 1997].

The singular value decomposition (SVD) technique provides a way of reducing the dimensionality
of data by generating an ordered set of additional axes [Faloutsos 1996]. However, this is not attribute
selection, but instead axis generation as SVD returns vectors that do not need to correspond to the
original attributes. These vectors may be inappropriate for assorted situations, such as those involving
the presentation of data for human understanding; tasks where accessing additional attributes may
be expensive; and when creating a training set to derive a classifier.

A common research challenge in attribute selection methods so far is the exponential growth of
computing time required [Blum and Langley 1997]. Indeed the induction methods proposed so far
had super-linear or exponential computational complexity [Langley and Sage 1997], as is the case with
nearest neighbors, learning decision trees [John et al. 1994; Kira and Rendell 1992], and Bayesian
Networks [Singh and Provan 1995]. Notice that these approaches are highly sensitive to both the
number of irrelevant or redundant features present in the dataset, and to the size of the dataset,
avoiding the use of samples [Langley and Sage 1997].

Fractal dimension has been a useful tool for the analysis of spatial access methods [Belussi and
Faloutsos 1995; Kamel and Faloutsos 1994], indexing [Böhm and Kriegel 2000], join selectivity esti-
mation [Faloutsos et al. 2000], and analysis of metric trees [Traina Jr. et al. 2000]. However, to the
best of the authors’ knowledge, it was never used before to perform attribute selection.

3. FUNDAMENTAL CONCEPTS

The most common way to store data is through tables with as many columns as there are features
represented in the data, and as many lines as there are data elements. In this paper we are calling
these tables as datasets, the features as attributes, and the data elements (or objects) as points in the
space of features. In this way, a dataset is seen as points in an E-dimensional space, where E is the
number of attributes. Table I summarizes the symbols used in this paper.

We are especially interested in datasets comprising complex data, usually composed of numerical
attributes. Features extracted from images are well-known examples of high-dimensional datasets,
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Table I. Definition of Symbols
Symbols Definitions

E Embedding dimension (Euclidean dimensionality)
D Fractal dimension (intrinsic dimensionality)
N Number of points in the dataset

Cr, i Count (‘occupancies’) of points in the i-th grid cell of side r

r Side of a grid cell
S(r) Total occupancies for a specific grid cell side r

R Number of side sizes r to plot S(r)

which are used in content-based image retrieval systems. For these datasets, it is difficult to choose
the set of attributes that can be assigned as keys of the dataset. In this way, if one is interested in
creating an index structure for the dataset the whole set of attributes needs to be considered. This
leads to the previously mentioned dimensionality curse.

3.1 ‘Embedding’ and ‘intrinsic dimensionality’

Our objective in this paper is to find a subset of the attributes that can be discarded when creating
indexes or applying data mining techniques, without compromising the results. Attributes that can
be calculated from others are immediate candidates to discard, if the way to calculate them is known.
However, in general, their correlations are not known. Thus, our objective is to detecting correlations
between attributes in a dataset, and how many redundant attributes the dataset has, even if we
cannot represent the correlation expression. This leads to the definition of the embedding and intrinsic
dimensions.

Definition 3.1. The embedding dimension E of a dataset is the dimension of its address space. In
other words, it is the number of attributes of the dataset. The dataset can represent a spatial object
that has a dimension lower than the space where it is embedded. For example, a line has an intrinsic
dimensionality one, regardless if it is in a higher dimensional space.

Definition 3.2. The intrinsic dimension D of a dataset is the dimension of the spatial object rep-
resented by the dataset, regardless of the space where it is embedded.

Conceptually, if a dataset has all of its variables independent from the others, then its intrinsic
dimension is the embedding dimension (D = E). However, whenever there is a correlation between
two or more variables, the intrinsic dimensionality of the dataset is reduced accordingly. For example,
each polynomial correlation (linear, quadratic, etc.) reduces the intrinsic dimension by a unit. Other
types of correlations can reduce the intrinsic dimension by a different amount, even a fractional
amount, as will be shown later.

Usually the embedding dimensionality of the dataset hides the actual characteristics of the dataset,
and in general correlations between the variables in real datasets are not known and even the existence
of correlations is not known either. This motivated us to look for a technique that allows one to find the
intrinsic dimension of the dataset even when the existence of correlations is not identified. Knowing
its intrinsic dimension, it is possible to decide how many attributes are in fact required to characterize
a dataset.

3.2 Fractals and Fractal Dimension

A fractal dataset is known by its characteristic of being self-similar. This means that the dataset has
roughly the same properties for a wide variation in scale or size, i.e., parts of any size of the fractal are
similar (exactly or statistically) to the whole fractal. This idea is illustrated in Figure 1, which shows
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the first three steps to build the Sierpinski triangle, a well-known point-set fractal. The Sierpinski
triangle is constructed from an equilateral triangle ABC, excluding its middle triangle A’B’C’ and
recursively repeating this procedure for each of the resulting smaller triangles. The Sierpinski triangle
is generated after infinite iterations of this procedure. The Sierpinski triangle has an infinite perimeter,
so it is not a 1-dimensional object. And it has no area, so it is not a 2-dimensional object either. In
fact, it has an intrinsic dimension, equal to log(3)/log(2) = 1.58 [Schroeder 1991]. For a real set of
points, we measure the fractal dimension with the box-count plot, which is the basis of the algorithm
to be proposed in Section 4.

Fig. 1. Recursive construction of the Sierpinski triangle.

Definition 3.3. (Correlation Fractal dimension): Given a dataset presenting self-similarity in
the range of scales [r1, r2], its Correlation Fractal dimension D2 for this range is measured as

D2 ≡
∂ log

∑
i C2

r,i

∂ log r
, r ∈ [r1, r2]

As shown in [Belussi and Faloutsos 1995], the correlation fractal dimension corresponds to the intrinsic
dimension of the dataset. Thus, from now on, we will use D2 as the intrinsic dimension D.

Observation 3.4. - The fractal dimension of an Euclidean object corresponds to its Euclidean di-
mension and it is always an integer number.

For example, a set of points along lines, circumferences and all standard curves have D = 1; planes,
circle disks, squares and surfaces have D = 2; Euclidean volumes have D = 3, and so on. Indeed, a
line segment in any n-dimensional space will always have D = 1, as well as a square will always have
D = 2, even if the points are in a higher-dimensional space.

Observation 3.5. - The fractal dimension of a dataset cannot be greater than its embedding dimen-
sion.

Many real datasets are fractals [Traina Jr. et al. 1999b; Schroeder 1991]. Thus, for these datasets we
can take the advantage of working with their correlation fractal dimension as their intrinsic dimension
D.

Observation 3.6. - The intrinsic dimensionality gives a lower bound of the number of attributes
needed to keep the essential characteristics of the dataset.

This observation states that the minimum number of attributes to be retained is equal to the ceiling
function on dDe.
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4. THE FRACTAL DIMENSION ALGORITHM

This section presents an algorithm to compute the fractal dimension D of any given set of points in
any E-dimensional space. A practical way to estimate D from a spatial dataset is using the box-
counting approach [Schroeder 1991]. Theoretically, this method gives a close approximation of the
fractal dimension, and our experiments showed that it indeed does [Traina Jr. et al. 2000; 1999a].
One of the best published algorithm to calculate D of a dataset is an O(Nlog(N)) algorithm, where
N is the number of points in the dataset [Belussi and Faloutsos 1995]. However, we developed a new,
very fast, O(N) algorithm to implement it, which is presented as follows.

Consider the address space of a point-set in an E-dimensional space, and impose an E-grid with
grid-cells of side size r. Focusing on the i-th cell, let Cr,i be the count (‘occupancies’) of points
in each cell. Then, compute the value S(r) =

∑
i C2

r,i. The fractal dimension is the derivative of
log(S(r)) with respect to the logarithm of the radius. As we assume self-similar datasets, we expect
this derivative results in a constant value. Thus, we can obtain the fractal dimension D of a dataset
plotting S(r) in log-log scales for different values of the radius r, and calculating the slope of the
resulting line.

It is needed to process S(r) for a quantity R of values of r, so we can achieve a suitable statistical
approximation of the line. To avoid reading the dataset again for each value of the radius, we propose
to create a multi-level grid structure, where each level has a radius the half of the size of the previous
level (r = 1, 1/2, 1/4, 1/8, etc.). Each level of the structure corresponds to a different radius, so
the depth of the structure is equal to the number of points in the resulting graph. The structure
is created in main memory, so the number of points in the graph is limited by the amount of main
memory available. If this graph is linear for a suitable range of radii, the dataset is a fractal and its
fractal dimension D is the slope of the fitting line of this graph.

The proposed algorithm is linear on the number of points in the dataset. The computational
complexity of the algorithm is O(N ∗ E ∗ R), where N is the number of objects in the dataset, E is
the embedding dimensionality, and R is the number of points used to plot the S(r) function. This
shows that the algorithm is scalable to datasets of any size.

For each given cell side r, only the cells having at least one already processed point are maintained,
counting the sum of occupancies Cr,i of this cell. In this way, each new point is directly associated to
a cell in each level, without the need to be compared with the previously read points. Figure 2 shows
the structure used in the algorithm for 2- and 3-dimensional datasets.

Fig. 2. Representation of grid-cells in 2- and 3-dimensional spaces.

The largest cell side of the space of points generates 2n cells. In the next level, each cell is split into
other 2n cells, and so on. Given that the position of each cell in the space is always known, each cell
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is represented by: the sum of occupancies Cr,i in this cell, and the pointers to the cells in the next
level covered by this cell (see Figure 2). This structure is a kind of a multidimensional “quad-tree”
(oct-tree for a 3D space, or E-dim-tree). Figure 3 shows an example of this structure for a dataset
with five points in three levels in a 2-dimensional space.

Fig. 3. Example of the data structure used for calculating the Sum of Occupancies of a dataset with 5 points (with
three levels of resolution).

Notice that new cells are added to the structure on demand. Thus, only cells occupied by at least
one point are created (Cr,i > 0). The algorithm processes the points set only once, so it is indeed very
fast. Algorithm 1 summarizes this computation process.

Algorithm 1 Compute the fractal dimension D of a dataset A (box-count approach).
Require: Normalized dataset A (N rows, with E dimensions/attributes each)
Ensure: Fractal dimension D
1: for each desirable grid-size r = 1/2j , j = 1, 2, ..., l do
2: for each point of the dataset do
3: Decide which grid cell it falls in (say, the i-th cell)
4: Increment the count Ci (occupancy’)
5: end for
6: Compute the sum of occupancies S(r) =

∑
C2

i

7: end for
8: Print the values of log(r) and log(S(r)), generating a plot;
9: Return the slope of the linear part of the plot (linear regression) as the fractal dimension D of

the dataset A.

As the grid side increases, the number of pointers to empty cells increases as well. Thus, for high-
dimensional datasets it is worthwhile to keep the cells as linked lists instead of arrays. We implemented
this structure as an object in C++, using an array for datasets with the embedding dimension less or
equal three, and using a linked list for datasets with higher dimensionality.

4.1 Datasets used in the experiments

We used synthetic and real datasets to evaluate our method. Figure 4 shows a mapping in a 3-
dimensional space of the higher-dimensional datasets used in the experiments. This mapping was
done through the FastMap algorithm [Faloutsos and Lin 1995]. We used two synthetic datasets built
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Fig. 4. Three-dimensional mappings of the datasets used in the experiments of the proposed method (“FDR”).

over a Sierpinski triangle (9,841 points in a 2-dimensional space), adding three more attributes to the
dataset in order to test our method. The synthetic datasets are:

Sierpinski. (see Figure 4(a)) - The original 2D points of the original dataset (x, y) became 5D points
(a = x, b = y, c = a + b, d = a2 + b2, e = a2− b2). The three latest coordinates included in the dataset
are strongly correlated with the two first coordinates. Thus, the fractal dimension (1.68) of the new
dataset is close to the fractal dimension of the original Sierpinski triangle.
Hybrid5. (see Figure 4(b)) - The original 2D points of the Sierpinski triangle (x, y) became 5D points

(a = x, b = y, c = f(a, b), d = random1, e = random2). As the two latest coordinates include random
noise to the dataset, the fractal dimension of the dataset is equal to 3.62, basically the dimensionality
of the Sierpinski (1.58) plus the dimensionality of a square in 2D (2.00). The third variable (‘c’)
depends non-linearly on the others. It is obtained by the algorithm during the Sierpinski triangle
generation.

It is also important to assess the algorithm’s behavior for real data. Thus, two real datasets were
also employed to evaluate our proposed method:

Eigenfaces. (see Figure 4(d)) - a dataset of 11,900 face vectors given by the Informedia project
[Wactlar et al. 1996] at Carnegie Mellon University. Each face was processed with the eigenfaces
method [Turk and Pentland 1991], resulting in 16-dimensional vectors.
Currency. (see Figure 4(c)) - This is a 6-dimensional dataset, presenting the normalized exchange

rate of currencies based on Canadian Dollar. The data was collected from 01/02/87 until 01/28/97.
This resulted in N = 2, 561 measurements made on working days. Each attribute corresponds to a
currency (a = Hong Kong Dollar, b = Japanese Yen, c = American Dollar, d = German Mark, e =
French Franc, f =British Pound).

Looking at Figure 5, we can see that Observation 3.4 indeed holds for these datasets. As it can be
seen, the correlation fractal dimension gives the fractal dimension of the datasets, regardless of their
embedding dimension. Figure 6 shows the correlation fractal dimension of the real datasets used in
this paper.

5. THE ATTRIBUTE SELECTION ALGORITHM

5.1 Intuition

In this Section we present an approach to quickly discard some attributes (dimensions) from the
original dataset, taking advantage of the fractal dimension concept. We stated in Observation 3.5 that
the fractal dimension D of a dataset cannot exceed its embedding dimensionality E. Moreover, there
are at least dDe attributes that cannot be determined from the others. Since D ≤ E, there are at least
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Fig. 5. Fractal dimension of synthetic datasets embedded in 2- and 3-dimensional spaces. (a) Line; (b) Square; (3)
Sierpinski triangle.

Fig. 6. Fractal dimension of real datasets. (a) Currency dataset; (b) Eigenfaces dataset.

E−dDe attributes that can be correlated with the others. Correlated attributes contribute to increase
the complexity of any treatment that the dataset must be submitted to, such as spatial indexing
in a database, and knowledge retrieval in data mining processes, without adding new information.
Moreover, the correlated attributes can be re-obtained from the other attributes. Hence, whenever it
is possible, such attributes should be detected and dropped from the dataset.

Definition 5.1. - (Partial fractal dimension – pD) : Given a dataset A with E attributes, the Partial
fractal dimension is obtained evaluating the correlation fractal dimension of the dataset excluding one
or more attributes from the dataset.

Figure 7(a) illustrates the intuition behind our approach. This is the ‘Quarter-circle’ dataset, whose
points are in E = 2 dimensions, but has fractal dimension D = 1. Notice that the two attributes x and
y are nonlinearly correlated, because y =

√
1− x2. Also notice that the traditional dimensionality
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Fig. 7. Example of points sets in E = 2-dimensional space. (a) Quarter-circle; (b) Line; (c) Spike.

reduction method, SVD, only works well for linear correlations. Even without knowing how the
correlation is expressed, knowing that the fractal dimension D ≈ 1 gives a hint that likely the two
attributes are correlated. Thus, the points projected on one axes (say x) probably will preserve
the original distances. The fractal dimension of the projected points reveals how well preserved the
intrinsic properties of the dataset are. In this specific case, the pD for x is pD = 0.9, which means
that the mode of the dataset was kept after projection. Consider also Figure 7(b) and 7(c) presenting
the ‘Line’ and ‘Spike’ examples respectively. Again, our approach correctly flag attributes x and y for
omission, but it will not allow to drop the attribute y in the ‘Spike’ picture.

5.2 The Proposed Algorithm - “FDR”

We propose the Fractal Dimension Reduction (FDR) algorithm, which uses the backward elimination
of attributes approach. The proposed idea is to calculate the correlation fractal dimension of the
whole dataset, and also to calculate its pD dropping one of its E attributes at a time. Thus, it will
result in E partial fractal dimensions. The process continues selecting the attribute that leads to the
minimum difference in the pD for the whole dataset. If this difference is within a small threshold,
we can be confident that this attribute contributes almost nothing to the overall characteristics of
the dataset. Therefore, this attribute can be dropped from the list of important attributes that
characterizes the dataset. The threshold depends on how precise the resulting dataset needs to preserve
the characteristics of the original dataset. As a rule of thumb, and considering that each polynomial
correlation drops the fractal dimension by one unit, the threshold could be set around the same value
allowed for the error in fitting the line that retrieves the fractal dimension. In our experiments, we
used a threshold of 0.015, allowing an error of 1.5% to fit the line.

The algorithm is iterative, i.e., using the resulting set of attributes, it repeat the previous reduction
steps, until there are no more attributes to be dropped without changing the previous partial fractal
dimension more than a fixed threshold.

If there are two or more correlated attributes, algorithm FDR will sequentially drop attributes
using this correlation, until only the number of attributes that corresponds to independent attributes
remain. For example, if there are three attributes {a, b, c}, where the third is a function of the previous
two, e.g., c = a + b, any of the three attributes can be dropped, because the others can be used to
derive the dropped one. However, if there is no other correlation linking the remaining attributes,
then no other attribute could be dropped without mischaracterizing the dataset. Algorithm 2 presents
the algorithm FDR, used to generate the attribute classification, which are presented ordered by their
significance. That is, the first attribute to be dropped is the least important attribute, the second
attribute dropped is the second least important one and so on. Based on the algorithm, the following
observation can be made.

Observation 5.2. - The most independent attributes are saved to the end of the process.

Due to the algorithm construction, the process can stop earlier, when the minimum number of
attributes is achieved.
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Algorithm 2 Fractal dimensionality reduction (FDR)
Require: Dataset A
Ensure: A list of attributes in the reverse order of their importance
1: Compute the fractal dimension D of the whole dataset;
2: Initially set all attributes of the dataset as significant;
3: Set the whole fractal dimension as the current D;
4: while there are significant attributes do
5: for every significant attribute i do
6: Compute the partial fractal dimensions pDi using all significant attributes excluding attribute

i;
7: end for
8: Sort the partial fractal dimensions pDi and select the attribute a that leads to the minimum

difference (current D − pDi);
9: Set the pDi obtained removing attribute a as the current D;

10: Output attribute a as irrelevant and remove it from the set of significant attributes;
11: end while

6. EXPERIMENTS AND EVALUATION

We did experiments to answer the following questions:

(1) How scalable are the proposed algorithms?
(2) How many attributes should be kept in order to reduce the dimensionality of the dataset?

The following sections will clarify these points. The experiments and measurements were taken on
a 450MHz Pentium II machine with 128 Mbytes of RAM under Windows NT4.0. All the proposed
algorithms were implemented in C++.

6.1 Scalability of the proposed method

The algorithm developed to obtain the correlation fractal dimension is linear over the number of points
in the dataset, i.e., O(N). As the embedding dimensionality E of the dataset is a constant and the
number of grid sizes R is fixed as a parameter for the algorithm, then the complexity of our algorithm
is O(N ∗ R ∗ E). However, R is typically set to 20 (the value used in all of our experiments) and E
is a small value, typically much smaller than the number of points in the datasets, which can be in
order of hundreds of thousands or more. Figure 8 shows the wall-clock time required to get the fractal
dimension against the size of the dataset. The datasets have a varying number of points in 2, 4, 8
and 16-dimensional spaces. There was generated 20 grid sizes for each dataset. Figure 8 shows that
the execution time of this algorithm is linear on the number of points in the dataset.

The algorithm developed to select the attributes of a dataset by their significance is very fast.
Instead of the super-linear time over the size of the dataset (N) being analyzed, as it is needed by the
machine learning techniques [Blum and Langley 1997], our FDR algorithm is linear on N (number
of objects) and quadratic on the embedding dimensionality E of the dataset. Table II shows the
wall-clock time needed to generate the classification of the attributes for the datasets we presented in
this paper. Table II also summarizes the meaningful information of the datasets.

6.2 Dimensionality reduction using fractal dimension

Figure 9 presents the graphs generated by the FDR algorithm on the test datasets. Figure 9(a) shows
the graph of the pD of the ‘Sierpinski5’ dataset when its attributes are sequentially dropped. From
this plot, it can be seen that just two attributes are enough to characterize this dataset. Our algorithm
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Fig. 8. Wall-clock time (in seconds) needed to obtain the fractal dimension of varying sized datasets. The curves show
the datasets with 2, 4, 8 and 16 dimensions.

Table II. Wall-clock time (in seconds) spent to run the backward-selection algorithm on the datasets presented. A
summarization of the datasets is also given.

Dataset Number of Embedding Intrinsic Time
points – N dimensionality – E dimensionality – D (in seconds)

Sierpinski5 9,841 5 1.597 6.24
Hybrid5 9,841 5 3.627 7.03
Eigenfaces 11,900 16 4.250 132.82
Currency 2,561 6 1.980 2.54

drops c = a+ b, e = a2− b2 and a attributes, holding b and d = a2 + b2, with a resulting partial fractal
dimension pD = 1.568 (versus a whole pD = 1.597). Notice that knowing b and d = a2 + b2, the other
attributes can be recalculated.

Figure 9(b) presents the same plot of the pD for the ‘Hybrid5’ dataset when its attributes are
sequentially dropped. Looking at this plot, it can be seen that four attributes are needed to charac-
terize this dataset. Just the c = f(a + b) attribute can be dropped, as every other contributes with
a significant portion of D. This is correct, as the attributes a and b correspond to the original Sier-
pinski triangle points, and the attributes d and e depend on random numbers, which are independent
variables and cannot be obtained from the other attributes. Also, as ‘Hybrid5’ dataset has D = 3.62,
it is expected that four attributes should remain.

Figure 9(c) shows the plot of the pD for the ‘Eigenfaces’ dataset when its attributes are sequentially
dropped. Looking at this plot, we can see that, from the original 16 attributes, just five are enough
to characterize this dataset {b, d, f, a, e}. The resulting partial fractal dimension with five attributes
is 3.815, and the whole partial fractal dimension is 4.207 (that is, eleven attributes contribute only
0.392 to the whole fractal dimension).

Figure 9(d) shows the plot of the pD of the ‘Currency’ dataset when its attributes are sequentially
dropped. It shows that the Hong Kong Dollar is the only currency that can be immediately dropped.
This is correct, as we know that the Hong Kong Dollar is linked to the American Dollar, so there
is some strong correlation between both currencies. The other currencies have more independent
behaviors, as their contribution to the whole fractal dimension is a value between 0.16 and 0.68.
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Fig. 9. Plots of the number of points dropped versus the partial fractal dimensions of the following datasets: (a)
Sierpinski; (b) Hybrid5; (c) Eigenfaces; (d) Currency.

6.3 Discussion

Intuitively, the attribute selection could be performed in backward or forward direction. If there are
only polynomial correlations between the attributes, both backward or forward selection works well.
However, when there is a fractal correlation between the attributes (such as the x and y coordinates
in the Sierpinski triangle), the experiments showed that the backward selection works better.

The fractal dimension D is a guide to know when to stop the backward selection algorithm FDR.
Indeed, dDe is the minimum number of attributes that must be in the resulting set. This is due to
the fact that dDe attributes are enough to preserve the essential characteristics of the dataset.

7. CONCLUSIONS

The main contribution of this paper is the proposal of a novel approach in feature selection and
dimensionality reduction, using the concept of fractal dimension. This approach leads to a method to
reduce the dimensionality of spatial datasets with the following properties:

—It can detect the hidden correlations existing in the dataset, spotting how many attributes strongly
affect the behavior of the dataset regarding index and retrieval operations;

—It can show the attributes that have nonlinear and even non-polynomial correlations, where the
traditional SVD method fails;

—It provides a small subset of attributes that can represent the whole dataset.
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—It is scalable on the number N of elements in the dataset - O(N). This is a striking advantage
over methods from Machine Learning field [Blum and Langley 1997], which are super-linear on the
number of objects N .

—It can be applied to high-dimensional datasets as well.
—It does not rotate the address space of the dataset. Thus, it leads to easy interpretation of the
resulting attributes.

Other contributions are:

—The detailed design of the single pass algorithm to compute the correlation fractal dimension of
any spatial dataset. This algorithm is O(N), thus scaling up for arbitrarily sized datasets. This
algorithm works in main memory, but the amount of memory available limits only the resolution of
results, and not the size or dimension of the dataset.

—The quick backward attribute reduction algorithm. As it uses the quick algorithm to calculate the
fractal dimension, it is also linear on the size of the dataset. Moreover, it can quickly compute
the meaningful attributes (seconds), in contrast to current methods that take hours or days to give
answers.

—Experiments on synthetic and real datasets, showing the effectiveness and speed of the results.
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