
Revisiting the DBM-Tree

Marcos R. Vieira1, Fabio J. T. Chino2, Agma J. M. Traina2, Caetano Traina Jr.2

1 University of California at Riverside

mvieira@cs.ucr.edu
2 University of São Paulo at São Carlos

jun-chino@uol.com.br, {agma,caetano}@icmc.usp.br

Categories and Subject Descriptors: Information Systems [Miscellaneous]: Databases

Keywords: indexes, metric access methods, similarity queries

1. INTRODUCTION

In [Vieira et al. 2004] we presented a new dynamic Metric Access Method (MAM) called DBM-tree.
This structure, unlike any other MAM, explores the varying density of elements in the dataset that
allows creating, in a controlled way, unbalanced trees. Every dynamic MAM that works with persistent
data proposed so far uses the same principle employed in conventional trees, like the B+-tree [Comer
1979]. This principle is to maintain the height of the tree as minimal as possible, and it is widely
applied for data domains for which the total ordering property holds. Since the total number of disk
operations required to retrieve a register is direct correlated with the height of the tree, one way to
perform a search with minimum number of disk accesses is to keep the structure height-balanced.

Unfortunately, the total ordering property does not hold for data in metric domains. This means
that several subtrees of a MAM must need to be evaluated during a search (breadth-search), making
the total number of disk operations required directly correlated also with the amount of node overlap
in the tree. This behavior happens for metric and also for domains that holds only the partial ordering
(not the total ordering) property, like the spatial domains.

When MAM are built with a very strict constraint on the tree height-balance, there is little flexibility
for these structures to decrease the overlapping among their nodes. Node overlapping is very common
in structures like the M-tree [Ciaccia et al. 1997] and Slim-tree [Traina Jr. et al. 2000], and leads
to many breadth-searches for each subtree in order to evaluate a query. Therefore, maintaining the
height of the tree low is achieved in expense of increasing the overlapping among subtrees. The direct
consequence of this is that the performance of MAM deteriorates very fast since several subtrees at
each tree level has to be analyzed in order to evaluate a query.

Since the performance of MAM is direct proportional to how many breadth-searches are required
to evaluate a search, as well as the cost of the depth-search in each subtree, increasing the node
overlapping among subtrees also increases the cost related to evaluate a query. The DBM-tree was
the first MAM to have a tradeoff between the height-balance of the tree and the number of breadth-
searches in order to achieve better query performance. The main idea of the DBM-tree is to keep a
“compromise” between the number of disk accesses required to perform a breadth-search in several
subtrees and to perform a depth-search in one subtree. In this way, the tree is expected to be deeper
in regions of higher density of elements and shallower in lower density regions.

To show some properties of the DBM-tree, we indexed 25,376 geographical coordinates of US cities,
villages, boroughs and towns (available at www.census.gov) using a DBM-tree. We employed the
MAMViewer tool [Chino et al. 2005] to visualize a DBM-tree. Figure 1 presents elements (cities) with

Journal of Information and Data Management, Vol. 1, No. 1, February 2010, Pages 129–132.



130 · Marcos R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

Fig. 1. Visualization of a DBM-MM indexing the USCities dataset. (a) Elements and the covering node radius; (b)
Only the elements. It is possible to verify that the structure is deeper (darker colors) in high-density regions, and

shallower (lighter colors) in low-density regions.

different colors representing the different levels in the tree where they are stored. Figure 1(a) shows
all elements and the covering radius of each node in the tree. Figure 1(b) shows only the elements in
the tree. The elements with darker colors (dark red and black) are in deeper levels than those with
lighter colors (light and dark green). As it can be seen, The tree depth is larger in higher density
regions (Great Lakes, Atlanta and Washington/Philadelphia/New Jersey/New York areas) and that
elements are stored in every level of the structure, as expected. It visually shows that the tree depth
is smaller in low density regions of elements (Porto Rico, Hawaii, Alaska and Northwestern states).
Moreover, the number of elements at the deepest levels is small, even in the high-density regions.

Extensive experiments performed over synthetic and real datasets showed that the DBM-tree per-
formed better wrt distance calculations and running time to answer similarity queries than both
M-tree and Slim-tree. Not surprisingly, the DBM-tree performed less disk accesses than the balanced
structures M-tree and Slim-tree. This is due the fact that there is less overlapping in the DBM-tree
nodes than both balanced structures.

2. FOLLOW UP RESEARCH

Since the DBM-tree publication in [Vieira et al. 2004], we worked on several research related projects,
as well as in MAMs in general. One interesting project related to the DBM-tree is the MAMView

framework [Chino et al. 2005]. The framework is intended to visualize the data indexed and the
operations performed by a MAM (insertion, deletion, query execution, etc.). The MAMView has two
components: the first one is a set of APIs that are installed in the target MAM under evaluation;
the second component is the MAMViewer tool which reads the code generated by the first compo-
nent and displays an iterative visualization of the MAM being evaluated. The FastMap algorithm
[Faloutsos and Lin 1995] is the core piece in the second component, where elements in metric space are
mapped to a 2-dimensional Euclidean space. The MAMView framework is available for downloading
at www.gbdi.icmc.usp.br/download.

The MAMView framework, allows MAM developers to better understand the behavior of the
DBM-tree, as well as of other structures implemented in the GBDI Arboretum Library (gbdi.icmc.
usp.br/arboretum), allowing developers to interact with the MAMView generated visualization of
the DBM-tree. Here we show some screenshots of the MAMViewer tool. In Figure 2(a), some ele-
ments and their representatives are displayed using different colors to represent different levels of the
tree. The elements are “connected” to their representatives in Figure 2(b) and their covering radius is
presented in Figure 2(c). In Figure 2(d) a rotation was applied in the visualization (c).

A cost model for the DBM-tree that does not rely on the height of tree as well as a new splitting
algorithm were proposed in [Vieira et al. 2006]. This cost model is based on some node statistics and

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.



Revisiting the DBM-Tree · 131

Fig. 2. The MAMViewer tool: (a) elements (dots) and representatives (stars with ids); (b) elements connected to their

representatives represent nodes; (c) covering radius of each node; and (d) a different view of the same visualization as
in (c).

the distance distribution of elements indexed by a DBM-tree.

Following the idea that a controlled unbalancing can improve performance, a new structure was
investigated, aiming at quickly creating a temporary index in main-memory, which can execute a
point query without node overlap. The resulting MAM, called the MM-tree [Pola et al. 2007], showed
that, indeed, performing similarity queries in this structure is faster than in the main-memory MAMs
that present overlaps. A further MM-tree extension generated the Onion-tree, a structure that allows
a point query overlap-free execution over data stored in disk [Carelo et al. 2009] and strengthened
that not enforcing, but controlling the height-balancing of a metric tree is in fact the best policy.

3. FUTURE TOPICS FOR RESEARCH

Here we enumerate three directions of future research that can be explored for the DBM-tree. The
first one is to explore the idea of extend node, firstly proposed for the X-tree in [Berchtold et al. 1996],
for the DBM-tree. The general idea is that, instead of splitting a node covering a high density region
into two new ones, a new extended node is created and some elements are moved to it. In this way,
the extended node can accommodate some elements and the splits can be postponed. Splitting a node
can result in node overlapping where the split happens and, possibly increasing the node radii in the
upper tree levels. The new tree would thus have smaller overlapping among its nodes, increasing the
query performance, at the expense of performing sequential scanning in the extended nodes.

The second possible direction is developing bulk-loading algorithms for the DBM-tree, exploiting

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.



132 · Marcos R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

the fact that height balancing is not strictly required. As the construction possibilities are larger
than for balanced structures, a bulk-loading algorithm can employ novel strategies that can achieve
better performance than the bulk-loading algorithms existing for balanced structures (e.g. [Ciaccia
and Patella 1998] and [Vespa et al. 2007]). Evaluating re-insertion as an optimizing strategy for the
tree is also an interesting investigation to pursue here.

A third research direction is related to the insertion operation in a DBM-tree. In order to find the
best node to accommodate a new element, new strategies similar to multi-way insertion [Lokoc and
Skopal 2008], [Skopal and Lokoc 2009] could be explored for the DBM-tree. This operation is more
expensive to perform when compared with a conventional insertion that takes a single path from the
root to a particular node of the tree.

REFERENCES

Berchtold, S., Keim, D. A., and Kriegel, H.-P. The X-tree: An index structure for high-dimensional data. In

Proceedings of the Int’l Conference on Very Large Data Bases. Morgan Kaufmann, Bombay, India, pp. 28–39, 1996.

Carelo, C. C. M., Pola, I. R. V., de Aguiar Ciferri, C. D., Ciferri, R. R., Traina Jr., C., and Traina, A.

J. M. The onion-tree: Quick indexing of complex data in the main memory. In Proceedings of the East European

Conference on Advances in Databases and Information Systems. Riga, Latvia, pp. 235–252, 2009.

Chino, F. J. T., Vieira, M. R., Traina, A. J. M., and Traina Jr., C. Mamview: A visual tool for exploring and

understanding metric access methods. In Proceedings of the ACM Symposium on Applied Computing. Santa Fe, New
Mexico, USA, pp. 1218–1223, 2005.

Ciaccia, P. and Patella, M. Bulk loading the M-tree. In Proceedings of the Australasian Database Conference. Perth,
Australia, pp. 15–26, 1998.

Ciaccia, P., Patella, M., and Zezula, P. M-tree: An efficient access method for similarity search in metric spaces.
In Proceedings of the Int’l Conference on Very Large Data Bases. Athens, Greece, pp. 426–435, 1997.

Comer, D. The ubiquitous B-tree. ACM Computing Surveys 11 (2): 121–137, 1979.

Faloutsos, C. and Lin, K.-I. Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and

multimedia datasets. In Proceedings of the ACM SIGMOD Int’l Conference on Management of Data Conference.
San Jose, USA, pp. 163–174, 1995.

Lokoc, J. and Skopal, T. On reinsertions in M-tree. In Proceedings of the First Int’l Workshop on Similarity Search

and Applications. IEEE Computer Society, pp. 121–128, 2008.

Pola, I. R. V., Traina Jr., C., and Traina, A. J. M. The mm-tree: A memory-based metric tree without overlap
between nodes. In Proceedings of the East-European Conference on Advances in Databases and Information Systems.
Varna, Bulgaria, pp. 157–171, 2007.

Skopal, T. and Lokoc, J. New dynamic construction techniques for M-tree. Journal of Discrete Algorithms 7 (1):
62–77, 2009.

Traina Jr., C., Traina, A. J. M., Seeger, B., and Faloutsos, C. Slim-trees: High performance metric trees mini-
mizing overlap between nodes. In Proceedings of the Int’l Conference on Extending Database Technology. Konstanz,
Germany, pp. 51–65, 2000.

Vespa, T. G., Traina Jr., C., and Traina, A. J. M. Bulk-loading dynamic metric access methods. In Proceedings of

the Brazilian Symposium on Databases. João Pessoa, Brazil, pp. 160–174, 2007.

Vieira, M. R., Traina Jr., C., Chino, F. J. T., and Traina, A. J. M. DBM-tree: A dynamic metric access method
sensitive to local density data. In Proceedings of the Brazilian Symposium on Databases. Braśılia, Brazil, pp. 163–177,

2004.

Vieira, M. R., Traina Jr., C., Chino, F. J. T., and Traina, A. J. M. DBM-tree: Trading height-balancing for

performance in metric access methods. Journal of the Brazilian Computer Society 11 (3): 37–52, 2006.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.


