DeweylIDs - The Key to Fine-Grained Management of XML
Documents

Michael P. Haustein, Theo Harder, Christian Mathis, Markus Wagner

University of Kaiserslautern
D-67653 Kaiserslautern, Germany
{haustein,haerder,mathis,m_wagner}@informatik.uni-k1l.de

Abstract. Because XML documents tend to be very large and are more and more collaboratively processed, their fine-
grained storage and management is a must for which, in turn, a flexible tree representation is mandatory. Performance
requirements dictate efficient query and update processing in multi-user environments. For this reason, three aspects
are of particular importance: index support to directly access each internal document node if needed, navigation along
the parent, child, and sibling axes, selective and direct locking of minimal document granules. The secret to effectively
accelerate all of them are DeweyIDs. They identify the tree nodes, avoid relabeling of them even under heavy node
insertions and deletions, and allow, at the same time, the derivation of all ancestor node IDs without accessing the
document. In this paper, we explore the concept of DeweylDs, refine the OrdPath addressing scheme, illustrate its
implementation, and give an exhaustive performance evaluation of its practical use.

Categories and Subject Descriptors: Information Systems [Miscellaneous|: Databases

Keywords: Tree node labeling; Dewey order; XML document storage; Huffman codes; Prefix compression

1. MOTIVATION

Because messages are data and have to be managed in the same way as database data, XML DBMSs
(XDBMSs for short) are rapidly evolving to seamlessly support XML applications which dramatically
grow in number and complexity and need to process increasing data volumes under tight schedules.
Furthermore, collaborative applications often require concurrent read as well as write access to such
XML data [W3C 2004].

Although the language layers of XDBMSs typically provide declarative interfaces such as XQuery
and XPath to process XML documents, their requests have to be mapped to procedural operators
at the access and storage layers to achieve efficient and direct access of document nodes. On the
other hand, standardized XML interfaces such as DOM [W3C 2004] enable direct requests using
navigational operators. Without index support, for example frequent scans of the entire document
would make response times intolerable. Hence, directly locating internal nodes of an XML document
is the key to fast query processing. Furthermore, multi-user access needs effective and minimum-
granule locking of tree nodes. Otherwise, collaborative (and concurrent) processing would often be
blocked although no read/write or write/write conflicts are present. Of course, predicate locking of
XQuery statements [XQu 2004]—and, in the near future, XUpdate statements—would be powerful and
elegant, its implementation rapidly leads to severe drawbacks such as undecidability problems and the
need to acquire large lock granules for simplified predicates—a lesson learned from the (much simpler)
relational world. To provide for an acceptable solution, we necessarily have to map XQuery operations
onto node accesses to accomplish fine-granular concurrency control. Such an approach implicitly

Copyright(©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010, Pages 147-160.

148 . M. P. Haustein, T. Harder, C. Mathis and M. Wagner

supports other interfaces like DOM and SAX [W3C 2004], because their operations correspond more
or less directly to navigational accesses.

Most influential for efficient access to and locking of the XML tree nodes is a suitable node labeling
scheme for which several candidates have been proposed in the literature [Tatarinov et al. 2002]. In
particular, the set of labels used to identify nodes in a lock protocol must be immutable (for the life time
of the nodes), must, when inserting new nodes, preserve the document order, and must easily reveal the
level and the IDs of all ancestor nodes. We believe that very few of the existing approaches—classified
into range- and prefix-based schemes [Cohen et al. 2002; Silberstein et al. 2005]—can fulfill these
strong requirements. Here, we explore a scheme supporting efficient insertion and compression while
providing the so-called Dewey order (defined by the Dewey Decimal Classification System) described
in [Dewey |. Conceptually similar to the OrdPath scheme [O’Neil et al. 2004], our scheme refines the
mapping and solves practical problems of the implementation. Furthermore, we illustrate its use in
the XDBMS context and summarize the results of an extensive empirical evaluation.

In Section 2, we outline our storage model for XML documents, called taDOM model, which is
implemented in our XTC prototype (XML Transaction Coordinator [Haustein and Héarder 2007]),
introduce the labeling of nodes using DeweylIDs, and illustrate how they are used for indexing, nav-
igation, and locking. Section 3 discusses the initial allocation of DeweyIDs and their maintenance
under insertions and deletions. In Section 4, we illuminate the use of DeweyIDs in B*-trees and their
implementation details. A substantial empirical evaluation of DeweyID storage consumption is given
in Section 5, before we summarize our results and conclude in Section 6.

2. SYSTEM ASPECTS OF XTC
2.1 taDOM Storage Model

Efficient and effective processing and concurrent operations on XML documents are greatly facilitated,
if we use a specialized internal representation which improves fine-granular management and locking.
While we use DOM trees—containing element, attribute, and text nodes as defined in [W3C 2004]—for
the representation of XML documents on external storage, in our XTC system we have implemented
for their memory representation a slight extension, the so-called taDOM storage model illustrated in
Figure 1. In contrast to the DOM tree, we do not directly attach attributes to their element node,
but introduce separate attribute roots which connect the attribute nodes to the resp. elements. String
nodes are used to store the actual content of an attribute or a text node. Via the DOM API, this
separation enables access of nodes independently of their value. Our representational enhancement
does not influence the user operations and their semantics on the XML document, but is solely
exploited for optimized lock management. To prove our concepts, we have designed and implemented
the XTC system which embodies a multi-layered architecture and, most important to our discussion,
which offers a native storage structure for XML documents tailored to our objectives. In summary,
our storage mechanism provides an extensible file structure as a container of single XML documents
such that updates of an XML document (by IUD operations) can be performed on any of its nodes;
furthermore, a very high degree of storage occupancy (> 96%) is achieved [Haustein and Hérder 2007].

2.2 Essentials of the Access Model

Fast access to and identification of all nodes of an XML document is mandatory to enable effective
indexing primarily supporting declarative queries and efficient processing of direct-access methods
(e. g., getElementByld()) as well as navigational methods (e. g., getNextSibling()). Our solution is
based on the concept of Dewey order. For this reason, we have implemented the related node label-
ing scheme whose advantages should be illuminated by referring to Figure 1, before we discuss the
DeweylID mechanism in detail in Section 3. For example, the DeweyID for price is 1.3.5 which consists
of three so-called divisions separated by dots (in the human-readable format). The root node of the

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DeweylDs — The Key to Fine-Grained Management of XML Documents . 149

publisher

1.7.3.3
last

element

1.34333.1 attribute

text node

> sstring node

AN
. attribute root
O

Fig. 1. A sample taDOM tree labeled with DeweyIDs

document (at level 0) is always labeled by DeweyID 1. The children obtain the DeweyID of their
parent and normally attach another division whose value increases in the ordered set of children from
left to right. To allow for later node insertions at a given level, we introduce for the assignment of
division values a parameter distance which determines the gap initially left free in the labeling space.
In Figure 1, we have chosen the minimum distance value of 2. Furthermore, assigning at a given level
a distance to the first child, we always start with distance+1, thereby reserving division value 1 for
attribute roots and string nodes (illustrated for the attribute root of 1.3 with DeweyID 1.3.1). Hence,
the mechanism of the Dewey order is quite simple when the IDs are initially assigned, e. g., when
all nodes of the document are bulk-loaded. As a result, the lexicographic ordering of the DeweylIDs
represents the document order, i. e., the order of a left-most depth-first document traversal.

In the above tree example, the node author is inserted later within the gap between the nodes title
(d1=1.3.3) and price (ds=1.3.5) and receives DeweylD d3=1.3.4.3. Note, so far we have only used odd
values for divisions. If we would use even division values in the same way as odd divisions, it is true
that we could insert in this situation the author node assigning 1.3.4 to it, but further insertions in this
position at this level would be impossible. Therefore, we need a kind of overflow mechanism indicating
that the labeling scheme remains at the same level when an odd division value is not available anymore
for a gap. Thus, we reserve even division values for that purpose. Hence, d; < d3 < ds holds in our
example thus preserving the document order among the DeweylDs. Several even division values may
consecutively occur in a DeweyID (depending on the insertion history); such a continuous sequence of
even values just states that the same node level is kept. Assume the element second author is inserted
after author; then its node is labeled with DeweyID d4=1.3.4.5. On the other hand, the node of a
new element subtitle after title and before author would obtain DeweyID dy=1.3.4.2.3 (explained in
Section 3.2). Note, d; < d2 < d3 < dy < dj still holds. Because even values are not considered, when
the level of a node is determined, for all DeweyIDs (e. g., 1.3.4.3, 1.3.4.5, 1.3.4.2.3) built using the
overflow mechanism we obtain level 2. Obviously, order and ancestor relationships are also preserved.
Furthermore, the subtree insertion under node with DeweyID 1.3.4 also reveals that overflows affect
the lengths of the DeweyIDs in the entire related subtree.

The salient features of a scheme assigning a DeweyID to each tree node include the following
properties: Referring to the DeweylID of a node, we can determine the level of the node in the tree
and the DeweyID of the parent node. Hence, we can derive its entire ancestor path up to the document
root without accessing the document. By comparing the DeweyIDs of two nodes, we can decide which
node appears first in the document’s node order. If all sibling nodes are known, we can determine

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

150 . M. P. Haustein, T. Harder, C. Mathis and M. Wagner

a) Storage structure b) Element index

1.3.15.1
1 133 athor last
e e P
1 bib1.3 book |—»{1.3.1.5.1 1]1.3}—»{1.3.5 price | 4
13.0.. | .. |le—{3title] S
13531 . |

13.15id 134 1.5 book | ... 1343
353.1 W]

Fig. 2. Document storage using B*-trees

the exact position of the node within the document tree. It is also possible to insert new nodes at
arbitrary locations without relabeling existing nodes. In addition, we can rapidly figure out all nodes
accessible via the typical XML navigation steps (Section 2.3), if the nodes are stored in document
order. However, DeweylDs may become quite long.

Fast (indexed) access to each node is provided by variants of B*-trees tailored to our requirements
of node identification and direct or relative location of any node. Figure 2a illustrates the storage
structure—consisting of document index and document container as a set of chained pages—sketching
the sample XML document of Figure 1, which is stored in document order; the key-value pairs within
the document index are referencing the first DeweyID stored in each container page. In addition to the
storage structure of the actual document, an element index is created consisting of a name directory
with (potentially) all element names occurring in the XML document (Figure 2b); for each specific
element name, in turn, a node-reference indexr may be maintained which addresses the corresponding
elements using their DeweyIDs. In all cases, variable-length key support is mandatory; additional
functionality for prefix compression of DeweyIDs is very effective. Because of reference locality in
the B*-trees while processing XML documents, most of the referenced tree pages (at least the ones
belonging to the upper tree layers) are expected to reside in DB buffers—thus reducing external
accesses to a minimum. As you can see in the next section, these tree-based storage structures are
building the fundamentals for very efficient navigational and declarative access to XML documents.

2.3 Supporting Navigation, Declarative Queries, and Lock Management

Typical XML navigation (accessing the parent, previous or next sibling, and first or last child of a
given context node) is efficiently supported by the DeweylD addressing algorithm and the B*-trees.
The siblings of a context node may reside in leaf pages located “far away” from each other. But
using the document index, the pages containing the siblings can be rapidly located. At best, the
corresponding objects reside in the page of the given context node ¢n. When accessing the previous
sibling ps of cn, e. g., of node 1.5 in Figure 2, an obvious strategy would be to locate the page of 1.5
requiring a traversal of the document index from the root page to the leaf page where 1.5 is stored.
This page is often already present in main memory because of reference locality. Hence, we inspect
the ID d of the directly preceding node of 1.5 in document order, which is 1.3.5.3.1 in the example.
If ps exists, d must be a descendant of ps. With the level information of cn, we can infer the ID of
ps: 1.3. Now a direct access to 1.3 suffices to locate the result. This strategy ensures independence
from the document structure, i. e., the number of descendants between ps and cn does not matter.
We found similar search algorithms for the remaining four axes. The parent axis, as well as first-child
and next-sibling is retrieved directly, requiring only a single document index traversal. The last-child
axis works similar to the previous-sibling axis and, therefore, needs two index traversals in the worst
case.

For certain declarative queries, set-at-a-time processing can exploit the semantic information carried
by DeweyIDs which promises great advantages over the navigational node-at-a-time approach. For
example, the XPath query //author/last on the document in Figure 1 may be evaluated in two steps:

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DeweylDs — The Key to Fine-Grained Management of XML Documents . 151

At first, element index scans (Figure 2b) return two lists of DeweyIDs, List4 = 1.3.4.3, ... for all author
elements, and List;, = 1.3.4.3.3, 1.7.3.3, ... for all last elements, respectively. Then a structural join
between these two lists is performed using as the join predicate the parent-child relationship, which
can easily be deduced from the given DeweyIDs. For example, because the DeweyID a = 1.3.4.3
from List, is a prefix of b = 1.3.4.3.3 from List;, and the difference between the levels of a and b is
one, 1.3.4.3.3 matches the join predicate and has to be added to the result list. For 1.7.3.3, no such
match can be found, because List4 does not contain the DeweyID 1.7.3 (which belongs to a publisher
node). Such structural join algorithms relying on a range-based labeling scheme and only focusing on
the parent-child and ancestor-descendant relationships, have been proposed recently [Al-Khalifa et al.
2002; Bruno et al. 2002]. Currently, we are adjusting these algorithms to the more flexible DeweylD
mechanism. Because they can effectively be applied in algebraic frameworks for declarative query
processing, DeweyID-based methods greatly improve selection and join operations and drastically
reduce I/0.

High-performance hierarchical lock management on XML data [Haustein and Harder 2008] requires
an efficient acquisition of locks along complete node paths starting at the context node (on which
the actual lock is requested) up to the document root. For performance reasons, accessing the stored
document for acquiring a lock must be prevented in any case (e. g., accessing a single context node
at level | would additionally require | document accesses to fetch all predecessor nodes up to the
document root at level 0, before they can be locked in an adequate mode). By simply calculating
each DeweylD in the ancestor path of a given context DeweylID, lock management can be performed
completely independent from the XDBMS storage engine. As a consequence, accessing a single node
also requires only a single document access (to get the actually requested node), although a possibly
large number of predecessor nodes has to be locked for this operation.

3. ASSIGNMENT OF DEWEYIDS

So far, we have motivated that DeweylD order and use is of paramount importance for the efficiency
and effectiveness of performance-critical processing tasks in an XDBMS. Therefore, we want to elab-
orate on a suitable application of the Dewey ordering mechanism to dynamic document trees and its
efficient representation as objects in main memory and on external storage. For the DeweylIDs, it
is essential to explore their initial assignment when the nodes of the XML documents are (typically
bulk-) loaded. In contrast, their behavior under (heavy) node insertions has to be considered, too.

Distance is the prime parameter of the initial DeweyID assignment (while loading the document)
which determines the numerical distance between the IDs of two sibling nodes. It is used as a kind of
reserving ID space in the labeling scheme enabling the insertion of new nodes without using an overflow
mechanism. The value of the distance parameter influences the ID assignment of nodes inserted during
document maintenance. An actual distance > 2 between two consecutive sibling IDs enables the
allocation of a sibling in between without the need to assign an even division. Hence, the larger the
actual distance, which may be increased by sibling deletions, the more nodes can be inserted without
using even divisions. However, larger distance values require more bits for their representation. On
the other hand, small distance values (= 2) immediately enforce the use of additional, even divisions
during insertion and, in turn, increase the lengths of DeweyIDs. Of course, for static documents
(almost insertion-free) we should always choose the minimum distance size. As a consequence, we
may face a design trade-off between distance size and increased use of even divisions depending on the
growth and volatility of an XML document. Furthermore, if a maximum length for DeweyIDs is defined
(inevitable in a real implementation) and if it is exceeded due to excessive point-like insertions between
two initially assigned IDs—a very rare case when reasonable parameters are used—an expensive
reassignment of DeweylIDs (relabeling of nodes) may be provoked for the document.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

152

3.1

M. P. Haustein, T. Harder, C. Mathis and M. Wagner

Table I. DeweyID assignment using distance
l [node type [rule [DeweyID

bib element 1 1
book element 2 1.9
attribute root 3 1.9.1
year attribute 3 1.9.1.3
1994 string 4 1.9.1.3.1
id attribute 3 1.9.1.5
1 string 4 1.9.1.5.1
title element 2 1.9.9
text 4 1.9.9.9
TCP/IP ... string 4 1.9.9.9.1
author element 2 1.9.17
last element 2 1.9.17.9
text 4 1.9.17.9.9
Stevens string 4 1.9.17.9.9.1
author element 2 1.9.17.17
text 4 1.9.17.17.9
W. string 4 1.9.17.17.9.1
price element 2 1.9.25
text 4 1.9.25.9
65.95 string 4 1.9.25.9.1
book element 2 1.17
book element 2 1.25
publisher element 2 1.25.9
last element 2 1.25.9.9

Initial Document Loading

While a new document is loaded—typically bulk-loaded in document order—, the DeweyIDs for its
nodes are dynamically assigned guided by the following rules:

(1)
(2)

3)

Element root node: It always obtains DeweyID 1.

Element nodes: The first node at a level receives the DeweyID of its parent node extended by a
division of distance+1. If a node N is inserted after the last node L at a level, DeweyID of L is
assigned to N where the value of the last division is increased by distance.

Attribute nodes: A node N having at least one attribute, obtains (in taDOM) an attribute root
R for which the DeweyID of N extended by a division with value 1 is assigned. The attribute
nodes yield the DeweyID of R extended by a division. If it is the first attribute node of R, this
division has the value 3. Otherwise, the division receives the value of the last division of the
last attribute node increased by 2. In this case, the distance value does not matter, because the
attribute sequence does not affect the semantics of the document. Therefore, new attributes can
always be inserted at the end of the attribute list.

Text nodes: A node containing text is represented in taDOM by a text node and a string node.
For text nodes, the same rules apply as for element nodes. The value of an attribute or a text
node is stored in a string node. This string node obtains the DeweyID of the text node resp.
attribute node, extended by a division with value 1.

To illustrate the effect of these rules, we have applied them to the document fragment of Figure 1
under the assumption that all nodes are bulk-loaded. Table I shows the result using a distance value
of 8; if appropriate, this value is also used in the examples of the next section.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DeweylDs — The Key to Fine-Grained Management of XML Documents . 153
3.2 Insertion of New Nodes

When new nodes are inserted at arbitrary logical positions, their DeweylDs must reflect the in-
tended document order as well as position, level, and type of node without enforcing modifications
of DeweylIDs already present. For element nodes and text nodes, the same rules apply. In contrast,
attribute roots, attribute nodes, and string nodes do not need special consideration by applying rule
3, because order and level properties do not matter.

Assignment of a DeweyID for a new last sibling is similar to the initial loading, if the last level
only consists of a single division. Hence, when inserting element node year after price (with DeweyID
1.9.25), addition of the distance value yields 1.9.33. In case, the last level consists of more than one
division (indicated by even values), the first division of this level is increased by distance-1 to obtain
an odd value, i. e., the successor of 1.3.14.6.5 is 1.3.21.

If a sibling is inserted before the first existing sibling, the first division of the last level is halved and,
if necessary, ceiled to the next integer or increased by 1 to get an odd division. This measure assures
that the “before-and-after gaps” for new nodes remain equal. Hence, inserting a type node before title
would result in DeweyID 1.9.5. If the first divisions of the last level are already 2, they have to be
adopted unchanged, because smaller division values than 2 are not possible, e. g., the predecessor of
1.9.2.2.8.91is 1.9.2.2.5. In case the first division of the last level is 3, it will be replaced by 2.distance+1
(see Section 2.2). For example, the predecessor of 1.9.3 receives 1.9.2.9.

The remaining case is the insertion of node dy between two existing nodes d; and d3. Hence, for ds
we must find a new DeweylID with d; < d2 < d3. Because they are allocated at the same level and
have the same parent node, they only differ at the last level (which may consist of arbitrary many
even divisions and one odd division, in case a weird insertion history took place at that position in
the tree). All common divisions before the first differing division are also equal for the new DeweyID.
The first differing division determines the division becoming part of DeweyID for ds. If possible, we
prefer a median division to keep the before-and-after gaps equal. Assume for example, d; = 1.9.5.7.5
and d3 = 1.9.5.7.16.5, for which the first differing divisions are 5 and 16. Hence, choosing the median
odd division results in do = 1.9.5.7.11. As another example, if dy = 1.5.6.7.5 and dg = 1.5.6.7.7, only
even division 6 would fit to satisfy ds < ds < dg. Remember, we have to recognize the correct level.
Hence, having distance value 8, d5 = 1.5.6.7.6.9. The reader is encouraged to construct DeweyIDs for
further weird cases.

Let us summarize the advantages of the introduced form of ID assignment:

—Existing DeweylIDs allow the assignment of new IDs without the need to reorganize the IDs of
nodes present. A relabeling after weird insertion histories® is only required, when implementation
restrictions are violated, e. g., the max. key length in B*-trees.

—The DeweyID of the parent node can be determined in a very simple way; this is frequently needed,
because a jump into the tree requires locking the entire ancestor path.

—Comparison of two DeweylIDs allows ordering of the resp. nodes in document order.

—Checking whether node d; is an ancestor of dy only requires to check whether DeweyID of d; is a
prefix of DeweyID of ds.

—High distance values reduce the probability of overflows. They have to be balanced against increased
storage space for the representation of DeweylDs. Nevertheless, DeweylDs may become quite long,
especially in trees with large max. depth values.

1For example, point insertions of thousands of nodes between two existing nodes may produce large DeweyIDs. Espe-
cially insertions before the currently inserted node may enforce increased use of even division values thereby extending
the total length of a DeweyID.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

154 . M. P. Haustein, T. Harder, C. Mathis and M. Wagner

4. IMPLEMENTATION OF DEWEYIDS

Due to the large variance of XML documents in number of levels and, even more, number of elements
per level, we cannot design a (big enough) fixed-length storage scheme of DeweyIDs; such a scheme
would mean fixed for individual divisions and fixed for the number of maximum allowed repetitions
per level. Even if the first sibling at a level has division value distance, the bulk-loaded millionth
sibling would have a value of 10° - distance (e. g., requiring the representation of ~ 8- 10° as an
individual division value using the example in Table I). On the other hand, we have more smaller
division values—assigned to the “first” children of a node—than larger ones constructed for children
inserted later. Of course, there are definitely more “first” children. Therefore, we urgently need
adaptivity for our storage scheme.

For the sake of space economy and flexibility, the storage scheme must be dynamic, variable, and
effective in each aspect and, at the same time, it must be very efficient in storage usage, encod-
ing/decoding, and value comparison. The critical question is how can we provide for such a scheme?

4.1 Encoding Divisions

A division value O needs a variable-length representation which could be achieved in the simplest
case by attaching a fixed-length field L; representing the actual length of O. However, what is an
adequate length value [for L;? Because

Ly <2l
each division value is limited by O < 22"

Most division values are expected to be rather small (< 100), but some of them could reach > 4-10°.
While for the former example value Ly = 7 and [y = 3 would be sufficient, the latter would require
Ls > 32 and [y > 6. Furthermore, whatever reasonable value for [is chosen, it is not space optimal
and additionally introduces an implementation restriction. Hence, we should make the length indicator
itself of variable length. A straightforward approach is to spend a fixed-length field LL of length lif
to describe the actual length of L, resulting in an entry LLg|L,|O. A length ll; of LL; allows the
representation of a length value in L,

I, < 2
limiting the length of divisions O to Lo < 92"" and their values to 250,

While ll; = 2 restricts values of O < 2!¢ and is not big enough for the general case, ll; = 3
(allowing values of O < 2256) definitely is for all practical applications. However, such a scheme
carries the penalty for the frequent divisions with small values. Other approaches considered include
Golomb codes and exponential Golomb codes [Teuhola 1978]| to allow for space saving representations
of O, but with similar disadvantages.

Another encoding approach [Yu et al. 2005] is using a k-based representation where the length of the
encoding unit is determined by m = loga(k+1). The idea is to reserve one m-bit code to represent the
separator “.”, while a sequence of m-bit codes is interpreted as a number with base k. An appropriate
value is k = 3 delivering the following codes: 00: “0”, 01: “1”, 10: “2”, 11: *.”. Hence, 1.7.11 is encoded
by 01 11 10 01 11 01 00 10 which reads (1-3%) . (2-3' +1-3% . (1-324+0-3' +2-3%. Other
codes with base k are possible. While k = 1 delivers a “funny” and very inefficient encoding, k = 7
may be appropriate for specific value distributions. [Yu et al. 2005] claims that k& = 3 is superior to

other Dewey encodings.

We hope to beat this encoding by Huffman codes ad-
justed to the value distributions of the divisions used for |TL| CO|OO|C1|OI| ICk|Ok|
DeweylIDs. Therefore, they offer an extra degree of freedom

Fig. 3. DeweylID template

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DeweylDs — The Key to Fine-Grained Management of XML Documents . 155

for optimization. We have designed an overall template for

a DeweyID as illustrated in Figure 3. TL of fixed length contains the total length in bytes of the
actual DeweyID, belongs to the externally stored DeweyID format, and is kept in a respective entry
of the B*-tree managing the collection of DeweyIDs on external storage. Each division consists of a
C;/O; pair where, based on a code table, C; allows to determine the length of O; and O; the actual
division value.

4.2 Use of Huffman Codes

We use the idea of Huffman trees to determine codes standing for variable lengths for the C; (without
explicit length information). As a prerequisite, the set of C; values must be prefix free. A given encoded
DeweyID is decoded as follows: As soon as a code given in Table II is matched while scanning the
field Cy, the associated length information is used (assume code 101 in row 3) to extract the Oy value
contained in the subsequent 6 bits. Encoding is performed in such a way that 000000 is assigned to
the first value 24 and 111111 to the last value 87 of the related range. Therefore, if we have extracted
001010, we can decode it to value 34. Then we scan field C; and so on, until Oy, is reached. Because
the actual k is not explicitly stored, TL helps to determine the proper end of the DeweyID. Encoding
is accomplished the other way around. Assume the encoding of a division O; with value 13. Hence,
the second row in Table II delivers code 100 and C; = 4. Because 13 is the sixth value of range 8 —
23, we yield an encoding of 0101, which is composed to the C;/O; encoding of 1000101.

The codes of Table II are only an example Table 1L

. Assigning codes to L; fields
used for our experiments. They can be con-

structed using a Huffman tree thereby ad- [code C; | Li | value range of O; |
justing the code lengths to the anticipated 0 3 1-7

O; length distributions. For this reason, we 100 4 8 —23

can achieve the optimal assignment of code 101 6 24 - 87

lengths/O; length distributions, if the latter 1100 8 88 — 343

are known in advance or are collected in an 1101 12 344 — 4,439
analyzing run or by a representative sam- 11100 16 4,440 - 69,975

ple before bulk-loading of XML documents. 11101 20 69,976 — 1,118,551

By default, we expect the larger numbers 11110 24 1,118,552 — 17,895,767

of divisions in the smaller value ranges of 11111 31 | 17,895,768 — 2,165,379,414

O; and use this heuristics for the Huffman
codes and length assignments.

Because DeweylDs are stored as byte-structured sequences in B*-trees, storing a bit-encoded DeweyID
in a byte structure may need a padding of bits for alignment reasons. By using Table II, DeweyID
1.13.27, for example, results in the bit sequence 00011000.10110100.0011 where we have inserted dots
to indicate byte boundaries for improved clarity. Because the last byte is incomplete, it is padded by
zeros®. Consequently, the TL value is 3 and the stored DeweyID is 00011000.10110100.00110000.

5. EMPIRICAL EVALUATION
To evaluate the performance of the DeweyID concept and especially that of our implementation, we

have explored a variety of XML documents [Miklau 2002] as listed in Table III. They represent a wide
spectrum of different structural properties which were checked w.r.t. space consumption.

2Because value 000 is not used, padded zeros can be distinguished from encoded values.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

156 . M. P. Haustein, T. Harder, C. Mathis and M. Wagner

Table III. taDOM characteristics of the XML documents considered

file description size no. of no. of max. - max. -
name (MByte) | elements attrib. depth | depth fan. fan.
1) Wall Street

treebank Journ. recs 86.082 2437666 1 38 8.97 56385 2.33
2) protein

psd7003 sequences 716.853 21305818 | 1290647 9 6.2 262527 | 3.99
3) TPC-H

customer benchmark 0.515 13501 1 5 3.92 1501 8.99
4) auction

ebay data 0.035 156 0 7 4.76 12 5.0
5) TPC-H

lineitem benchmark 32.295 1022976 1 5 3.96 60176 17.0
6) geograph.

mondial database 1.784 22423 47423 8 5.25 955 4.43
7) astronom.

nasa data 25.050 476646 56317 10 6.62 2435 2.79
8) TPC-H

orders benchmark 5.378 150001 1 5 3.93 15001 10.0
9) protein

SwissProt sequences 114.820 2977031 2189859 7 4.9 50000 6.75
10) University

uwm courses 2.337 66729 6 7 4.83 2112 4.21

5.1 Consumption of Storage Space

In all cases, the DeweyIDs were assigned during bulk-loading where the distance value was systemati-
cally varied from the minimum of 2 (where almost no inserts are expected) to 256. The growth of the
distance value reflects the probability that the nodes of the entire document are randomly inserted in
a step-by-step manner and that even divisions (which represent a kind of overflow handling) should
be avoided as far as possible. Obviously, the number of divisions together with the chosen distance
value exert the largest influence on the DeweyID length. Strongly depending on these factors, the
most expressive indicator for the quality of DeweyID encoding is the number of bytes per DeweylD
needed in the average (¢-size). This again is essentially determined by the document’s average depth
and fanout (¢-depth, ¢-fanout). Having this interrelationship in mind, we have collected the most
influential document properties summarized in Table III.

The ¢-size of DeweylIDs as a function of

. . . Table IV. Document classification
the distance parameter is shown in Figure

4. To facilitate interpretation, we have @-fanout || f > 6 f > 3 |f=3
. -depth high | medium | low

coarsely classified our document collec- .

tion in Table IV according to the factors d>8 hlg_h ? ? 1

¢-depth and ¢-fanout into classifiers (low, d>4.5 | medium 9 2,4,6,10) 7

medium, high). Some classes are either of d<45 low 3,58 ? ?

little practical value (low/low) or will not

occur in real applications (high/high). For the classes (high/medium) and (low/medium), we did
not have representatives, but we can infer on their behavior. Of course, all graphs exhibit the same
principal characteristics with strong storage space growth depending on increasing distance values
where, however, the ¢-size of DeweylIDs is strongly correlated to the ¢-depth. Although computed
for all 10 files, we focus for reasons of space limitation and clarity on 5 graphs in Figure 4 (marked
bold in Table IV). Their comparison clearly reveals the strong dependency of ¢-size on ¢-depth of
a document. Documents with lower ¢-depth (files 3, 5, and 8) are the clear “winners” in terms of
short IDs, whereas the files 2, 4, 6, and 10 form the middle group. ¢-depth of 8.97 is the decisive
factor making the IDs of file 1 the “losers” in terms of space consumption. File 9 (medium/high), but

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DeweylDs — The Key to Fine-Grained Management of XML Documents . 157

15) 6 dde di e d "y i
14 4 644 64 |
13 1 a4 0 8 04 04 y |
12 |

. treeban
2. psd7003
7. nasa]

avg. number of bytes per DeweylID

B 3. customer)
0 32 64 9% 128 160 192 24 256
Fig. 4. ¢-size of DeweylDs grouped by the document distance

almost classified as low depth, is closer to the (low/*) group, whereas file 7 as the representative of
(medium/low) is closer to the middle group.

A first space optimization is already included in the ¢-size values of Figure 4. Because all DeweylDs
start with “1.”, we don’t store this first division on disk and save 4 bits per DeweyID. To estimate
the portion of ¢-size due to the distance parameter, we refer to a practical design space reasonably
restricted by distance = 32 in Figure 4. In Figure 5, the average fraction of the ¢-size caused by the
distance parameter (distance < 32) on ¢-size is illustrated for all 10 sample files. Note, these ¢-size
values are comparable to those anticipated for TID encodings in relational DBMSs. The interesting
measures to estimate this distance influence are ¢-size@dist(x) and Distanceln fluence per file which
we have defined as DI(file) = (¢-size@dist(32) — ¢-size@dist(2))/¢p-size@dist(2). Applied to files 1, 2,
and 8 (the main classification axis), we yield DI(1) = 0.73, DI(2) = 0.49, and DI(8) = 0.39. DI(1)
corresponds to the (high/low) case, where the average DeweyID is composed of more divisions, but
smaller division values per level. Therefore, larger distance values have stronger influence on ¢-size
(higher DI). In contrast, DI(8) characterizes the (low/high) class with fewer division values per average
DeweylID using higher division values. Because—relative to smaller division values—the representation
of higher division values is more economical, Distanceln fluence is less distinctive (smaller DI). The
(medium/medium) class is somewhere in the middle. Note, however, this influence is superposed in
all cases by the document’s attributes and their different labeling scheme.

XML documents converted from relational tables fall into the (low/high) class, i. e., their DeweyID
size is less sensitive to the selection of larger distance values. In contrast, the deeper the XML
documents are, the more critical is the appropriate selection of distance d. If documents are bulk-
loaded and experience less modifications, d = 2 is the right choice. However, frequent updates need
some serious considerations to reduce the danger of “gap overflows” while limiting space consumption.
An overflow lengthens the DeweyIDs in the entire subtree and, if several of them in the same “tree
area” accumulate even division values in some DeweylID, the first one violating the implementation
restrictions on key length provokes a reorganization run (limited to a particular subtree would ease
this situation). Thus, optimal assignment of the DeweyID parameters is complex and could be greatly
supported by a physical structure advisor which could use our findings.

5.2 Frequency of Reorganizations
Reassignment of DeweyIDs (node relabeling) becomes necessary when the byte representation of any
DeweylD exceeds a defined length, e. g., the maximally allowed key length of the B*-tree implemen-

tation. Large distance values are the prime measure to avoid such undesirable events to the extent

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

158 . M. P. Haustein, T. Harder, C. Mathis and M. Wagner

[a)
3 1 distance 32 4]
@ distance 16 .
03, hlJ . distance 8]
[a} ®) distance 4 Ll
5 9 distance 2]
=% g é b
3 6) y ‘ . g
> ‘ .
= | w S ¢ & 7
G 4 6 & . P
g 3 - :
2
€ 1
< 0 ' ' ' ' : ' ' ' i '
g’ = > E=] =} @ = 3 =} c
© o b 8 5 I 2 o s s
o ® S S) < = 2) 3
£l S 3 2 < 2
= . @ . 3 =X
Fig. 5. Influence of the distance parameter
8 1400 hypothetical implementation restrictions on DeweylID size: 128 bytes
s} L
<)
=
B 1200 96 bytes
é 1000 |
;*g 800 1 64 bytes
E 600 |
% 4001
200
0

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
distance
Fig. 6. Provoking DeweyID reorganizations: worst-case node insertions

possible. To determine how many nodes can at least be inserted at the first level, before such an
undesired event occurs, we construct a worst-case scenario which provokes a DeweyID to grow as fast
as possible. When the boundary of the mechanism—defined as the difference of the actual DeweyID
length after initial loading to the implementation-dependent key-length restriction—is pushed, label
reorganization is needed to make room for further insertions. We start with the minimal scenario such
that the hypothetical maximal DeweyID sizes (see Figure 6) can be considered as the threshold values
to be passed. The test scenario consists of root 1 and a child with DeweyID 1.distance+1; for all cases
considered, their space consumption including padding is 2 bytes. The insertion of siblings always
takes place before the last inserted one. As example, using distance 16 and “halving the gap”, the
sequence of assigned DeweylIDs is 1.17, 1.9, 1.5, 1.3, 1.2.17, 1.2.9, 1.2.5, 1.2.3, 1.2.2.17, ... Therefore,
the insertion history resembles the backward-oriented storage of documents. As illustrated in Figure
6, our labeling scheme is quite stable. For example, using a distance value of 32 and having thresholds
of ~(64 — 2) or ~(128 — 2) bytes, we can stress-insert > 500 resp. > 1000 nodes, before relabeling of
a subtree is needed.

When considering hypothetical implementation restrictions, we have to observe the maximum length
(max-size) of a DeweylID occurring in a document which is, of course, strongly dependent on the max-
depth values (longest paths). In file 1 with max-depth = 38, we obtain ¢-size@dist(2) = 6.67 and
¢-size@dist(32) = 11.57 bytes, whereas the corresponding max-sizes are 22 and 46 bytes. Hence,
reorganization frequency depends on the document’s max-size, the distance parameter used in the
DeweyIDs, and the location of (weird) insertions in the document. In summary, although some care
has to be exercised, DeweylIDs are not challenged concerning their practical usability.

6. CONCLUSIONS AND OUTLOOK
In this paper, we have discussed the need for fast node identification when managing XML documents
in databases. For dominant processing tasks such as declarative, index-based query evaluation, tree

navigation, and concurrency control, fine-grained access to the documents is indispensable. Thus,

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DeweylDs — The Key to Fine-Grained Management of XML Documents . 159

efficient and effective node labeling resilient to arbitrary document modifications is of outmost im-
portance. In this way, we have discovered how the Dewey order can be exploited for dynamic XML
documents and have tailored the DeweyID mechanism in the lines of [O’Neil et al. 2004] to our proven
taDOM storage model. An extensive empirical evaluation has explored the solution space for the
critical design parameters and has pinpointed its practical usability even under weird application
conditions.

So far, fine-grained management of XML documents and its effects on all query processing aspects
are hardly discussed in the database literature. This is partly, because some existing systems use
relatively coarse storage units [Fiebig et al. 2003; Schoning 2001], and partly, because (almost all)
XDBMS focus on query processing and neglect concurrency control at all [Jagadish et al. 2002]. In
this sense, by elaborating on the DeweylD mechanism we have just found the key to fine-grained
management of XML documents in databases. It is obvious that the deeper the document tree,
the larger the DeweyID space consumption. But this may be compensated by processing advantages,
because such DeweylIDs carry the structure information of larger paths. As a consequence, the savings
for concurrency control and index use correspond to these path lengths.

We strongly believe that the concept of DeweyIDs is tailored to the dichotomy of fast main memory
and rather slow external storage devices (according to [Bruno et al. 2002|, disks are sequential devices)
keeping the voluminous XML data. It enables a large share of XML processing in memory, because
the DeweylIDs represent large portions of structure and content information supporting critical paths
of query processing and concurrency control (e. g., lock acquisition for ancestors) in main memory
and reducing external data access to a minimum. In this respect, it resembles—however, much more
complex and effective—the proceeding in flat relational databases where TID lists stored in B*-tree
indexes are used in Boolean set operations (N, U, —) to reduce the records to be fetched for query
evaluation from external devices to an absolute minimum. On the other hand, the precise derivation
of the ancestor path without disk access greatly improves locking costs.

There are many other issues that wait to be resolved: For example, we did not say much about
the usefulness of optimization features offered. In the XDBMS access layer, we currently evaluate
the storage of DeweyIDs using prefix compression within the data pages. This physical optimization
technique accomplishes an improved utilization of data pages (reducing storage space for documents)
and diminishes the probability of XML fragment reorganizations. System-driven self-optimization
from a more logical point of view (in contrast to the physical optimization) can be achieved by an
analysis run before the actual bulk-loading of the documents. In this analysis phase, the expected
average size of DeweylIDs, average document depth and fanout can be discovered and, in turn, used
to automatically adjust the distance parameter for assigning new DeweyIDs. This adjustment could
optionally accept user hints, e. g., the modification frequency for each document. Because of such
application-specific DeweylD maintenance, we hope to gain optimal physical management of XML
documents in our XDBMS.

REFERENCES

W3C Recommendations. In http://www.w3c.org, 2004.

XQuery 1.0: An XML Query Language. In W8C Working Draft, 2004.

AvL-KHALIFA, S., JagapisH, H. V., Pater, J. M., Wu, Y., Koupas, N., AND SrivasTava, D. Structural Joins:
A Primitive for Efficient XML Query Pattern Matching. In Proceedings of the International Conference on Data
Engineering. San Jose, USA, pp. 141-152, 2002.

Bruno, N., Koupas, N., AND Srivastava, D. Holistic Twig Joins: Optimal XML Pattern Matching. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. Madison, USA, pp. 310-321, 2002.

CoueN, E., KaprrLan, H., AND Miro, T. Labeling Dynamic XML Trees. In Proceedings of the Symposium on Principles
of Database Systems. Madison, USA, pp. 271-281, 2002.

DewEey, M. Dewey Decimal Classification System. In hitp://www.mtsu.edu/ vvesper/ dewey.html.

FieBic, T., HELMER, S., KaNNE, C.-C.;, MOERKOTTE, G., NEUMANN, J., ScHIELE, R., AND WESTMANN, T. Natix:
A Technology Overview. Web, Web-Services, and Database Systems 2002, LNCS 2593, 2003.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

160 . M. P. Haustein, T. Harder, C. Mathis and M. Wagner

HausTeIlN, M. P. AND HARDER, T. An Efficient Infrastructure for Native Transactional XML Processing. Data &
Knowledge Engineering 61 (3): 500-523, 2007.

HausteIN, M. P. AND HARDER, T. Optimizing Lock Protocols for Native XML Processing. Data € Knowledge
Engineering 65 (1): 147-173, 2008.

JacgapisH, H. V., Ar-Kuarira, S., CuarPmMaN, A., LaksuMANAN, L. V. S., NiErRMAN, A., Pararizos, S., PATEL,
J. M., Srivastava, D., WiwatwarTana, N., Wu, Y., anDp Yu, C. TIMBER: A native XML database. The VLDB
Journal 11 (4): 274-291, 2002.

Mikrau, G. XML Data Repository. In http://www.cs. washington.edu/research/xmldatasets, 2002.

O’NEemw, P., O'NEew, E. J., Par, S., CsEri, 1., SCHALLER, G., AND WESTBURY, N. OrdPaths: Insert-Friendly XML
Node Labels. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Paris, France,
pp- 903-908, 2004.

ScuoNiNGg, H. TaminoUA DBMS designed for XML. In Proceedings of the International Conference on Data Engi-
neering. Heidelberg, Germany, pp. 149-154, 2001.

SILBERSTEIN, A., HE, H., Y1, K., AND YANG, J. BOXes: Efficient Maintenance of Order-Based Labeling for Dynamic
XML Data. In Proceedings of the International Conference on Data Engineering. Tokyo, Japan, pp. 285-296, 2005.

TarariNnov, 1., VicLas, S., BEYER, K. S., SHANMUGASUNDARAM, J., SHEKITA, E. J., AND ZHANG, C. Storing and
Querying Ordered XML Using a Relational Database System. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. Madison, USA, pp. 204-215, 2002.

TeuHOLA, J. A Compression Method for Clustered Bit Vectors. Information Processing Letters 7 (6): 308-311, 1978.

Yu, J. X., Lvo, D., MENg, X., AND Lu, H. Dynamically Updating XML Data: Numbering Scheme Revisited. World
Wide Web: Internet and Web Information Systems 8 (1): 5-26, 2005.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

