
Example of algorithms in Action

Rogério Brito

May 29, 2005

1 Objective
The intent of this document is to serve as a simple example of how the algorithms
package can be used for typesetting pseudo-code.

It shows one recommended way of achieving this, but, of course, you are
free to use the package the way it suits you best. In particular, the algorith-
mic package is used with the option noend (so that things like end if, end
for etc clauses aren’t printed), saving vertical space, which is convenient when
submitting papers to journals.

To compensate for the lack of the “end” clauses, I have increased the inden-
tation of the statements from the default length of 1.0em (roughly the length
the letter “m”) to 2.0em. This is specially important for long algorithms, with
many nested constructions, so that the reader of your algorithm doesn’t loose
track of its structure.

Algorithm 1 Factorial(n)
Require: An integer n ≥ 0.
Ensure: The value of n!.

1: if n = 0 then
2: return 1
3: else
4: return n · Factorial(n− 1)

2 Hints for Typesetting Algorithms
Here are some short hints on typesetting algorithms:

• Don’t overcomment your pseudo-code. If you feel that you need to com-
ment too much, then you are probably doing something wrong: you should
probably detail the inner workings of the algorithm in regular text rather
than in the pseudo-code;

1

• Similarly, don’t regard pseudo-code as a low-level programming language:
don’t pollute your algorithms with punctuation marks like semi-colons,
which are necessary in C, C++ and Java, but not in pseudo-code. Re-
member: your readers are not compilers;

• Always document what the algorithm receives as an input and what it
returns as a solution. Don’t care to say in the \REQUIRE or in the \ENSURE
commands how the algorithm does what it does. Put this in the regular
text of your book/paper/lecture notes;

• If you feel that your pseudo-code is getting too big, just break it into sub-
algorithms, perhaps abstracting some tasks. Your readers will probably
thank you.

Of course, you should follow those hints with common sense. Well, anything
should be done with common sense.

3 Internals
Just as a starting point for you to typeset your algorithms with the algorithms
package, the output of the Algorithm 1 cited in the previous section was gener-
ated by the following sequence of commands:

\algsetup{indent=2em}
\newcommand{\factorial}{\ensuremath{\mbox{\sc Factorial}}}

\begin{algorithm}[h!]
\caption{$\factorial(n)$}\label{alg:factorial}
\begin{algorithmic}[1]

\REQUIRE An integer $n \geq 0$.
\ENSURE The value of $n!$.

\medskip

\IF {$n = 0$}
\RETURN 1

\ELSE
\RETURN $n \cdot \factorial(n-1)$

\ENDIF
\end{algorithmic}

\end{algorithm}

2

	Objective
	Hints for Typesetting Algorithms
	Internals

