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Abstract. In this paper, we study the problem of processing K-nearest neighbors (KNN) queries in road networks
considering tra�c conditions, in particular the case where the road speed is time-dependent. For instance, given that
the user is at a given location, the query returns the K points of interest (e.g., gas stations) that could be reached in the
minimum amount of time. Previous works have proposed solutions to answer KNN queries in road networks where the
speed in each road is constant. Obviously, these solutions cannot be simply applied to the problem we are interested
in. Our approach extends the well-known A* search algorithm by applying incremental network expansion and pruning
undesirable vertices. We discuss the design and correctness of our algorithm and present experimental results that show
the e�ciency and e�ectiveness of our solution.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications�Spatial databases and

GIS; H.2.4 [Database Management]: Systems�Query processing; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval�Search process

Keywords: K-Nearest Neighbors Queries, Query Processing, Spatial Pruning, Time-Dependent Networks

1. INTRODUCTION

Travel time on road networks heavily depends on the tra�c and typically the time it takes to traverse
a segment depends on departure time. To exemplify, consider Figure 1(a) where a partial network is
seen. The structure of a network can be modeled by a graph where the vertices represent the network
junctions, starting and ending points of a road segment (e.g. a street, an avenue) and, depending
on the application, additional points can represent a change in curvature or maximum speed of a
segment; the edges connect vertices. The travel time is modeled by a time-dependent graph, where a
function of time models the cost to traverse an edge at a speci�c departure time. Figure 1(b) shows
us a graph representing the network in Figure 1(a). The travel time is given by functions, shown in
Figure 1(c). Each edge in the graph has its respective travel time function.

Figure 1 exempli�es time-dependent travel time. There are two paths to go from vertex b to c. One
can take a path 〈b, c〉, that goes from b to c directly, or 〈b, a, c〉, that pass by a. The fastest path from b
to c depends on departure time ts. Let ts = 10h, path 〈b, c〉 takes 30min. In path 〈b, a, c〉 travel from
b to a, takes 20min and the arrival time in a is 10h20min. The time to traverse 〈a, c〉 at 10h20min is
25min, then a path 〈b, a, c〉 takes 45min, for departure time 10h. Similarly, if ts = 16h, a path 〈b, c〉
takes 50min and a path 〈b, a, c〉 takes 30min. It is fastest go directly to c in the morning, but at 16h
the best choice is go through a and then to c.

Unfortunately, previous solutions for shortest paths, k-nearest neighbors and others common queries
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in static networks no longer work when the costs (travel time) itself depends on time. Speed-up
techniques for original shortest path problem have been developed, see [Wagner and Willhalm 2007]
for a survey, but they cannot be applied directly in time-dependent networks because their correctness
depends on the fact of network edges costs be constant.

This paper is organized as follows. In Section 2, we introduce some important de�nitions, explain
the road network model used in our approach and formalize the problem of processing KNN queries
in time-dependent networks. In Section 3, a brief description of related works is presented. In Section
4, we explain our approach and show the correctness of our algorithm. The experimental evaluation
and results are showed in Section 5. Finally, Section 6 concludes this paper.

2. PRELIMINARIES

In this section, we formalize the concept of time-dependent graph and explain how we model the
points of interest on a network. We give others basic de�nitions as travel-time, fastest path and
time-dependent distance, useful for de�ning the problem.

De�nition 2.1. A Time-Dependent Graph (TDG) G = (V,E,C) is a graph where: (i) V =
{v1, . . . vn} is a set of vertices; (ii) E = {(vi, vj)|vi, vj ∈ V, i 6= j} is a set of edges; (iii) For all
(vi, vj) ∈ E, exists c(vi,vj)(t) ∈ C where c(vi,vj) : Π(G) → R+ and is a function which attributes a
positive weight for (vi, vj) depending on a time instant t ∈ Π(G).

Basically, a TDG is a graph where the edge costs varying with the time. For each edge (u, v),
a function c(u,v)(t) gives the cost of traverse (u, v) at departure time t. We call Π(G) a interval
time when c(u,v)(t) ∈ C is de�ned, that represents the system time. For example, we can suppose
Π(G) = [0h, 24h), that means c(u,v)(t) is de�ned for each instant of a day.

Note that our de�nition allows di�erent edge costs to bidirectional segments, such that given a edge
(u, v) and its opposite (v, u), it is possible that c(u,v)(t) 6= c(v,u)(t). Furthermore, we assume that C

(a) A partial road
network.

(b) A graph represent-
ing the road network in
(a).

(c) Travel-time functions.

Fig. 1. A road network example, its equivalent graph and travel-time functions for their edges.
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Algorithm 1: IncludePOI

Input: A TDG G = (V,E,C), a POI p = 〈(u, v), τp〉
Include vp in V ;
Remove (u, v) from E;
Include (u, vp) and (vp, v) in E;
c(u,vp)(t)← τp × c(u,v)(t);
c(vp,v)(t)← (1− τp)× c(u,v)(t);
Remove c(u,v)(t) from C;
Include c(u,vp)(t) and c(vp,v)(t) in C;

if (v, u) ∈ E then
Remove (v, u) from E;
c(v,vp)(t)← (1− τp)× c(v,u)(t);
c(vp,u)(t)← τp × c(v,u)(t);
Remove c(v,u)(t) from C;
Include c(v,vp)(t) and c(vp,u)(t) in C;

end

is a set of piecewise-linear functions that satisfy the FIFO property. Basically, FIFO property states
that if an object A starts traverse an edge before an object B, then A have to �nish traverse that edge
before B. The time-dependent shortest path problem has a polynomial solution in FIFO networks,
however it is NP-hard in non FIFO-networks [Orda and Rom 1990].

We represent any location, like points of interest or query points, in a TDG is by a pair p =

〈(u, v), τ(u,v)〉, such that (u, v) is an edge in G where p is on and τ(u,v) = d(u,p)
d(u,v) , d(pi, pj) is the

euclidean distance between pi and pj , if pi, pj are on the same edge, and unde�ned, otherwise. If the
edge (u, v) has an opposite edge (v, u), the same point could have two di�erent representations, e.g.
p = 〈(u, v), τp〉 and p = 〈(v, u), 1− τp〉, one for each direction. To simpli�es, we consider that only one
of them is given and another can be directly obtained from it.

We assume a process that generates a TDG from a road network. Given a TDG G = (V,E,C)
generated by this process and a set S of points of interest (POIs), we include each point of interest
in G as a vertex. Algorithm 1 is a procedure that receives as input a TDG G and a point of interest
p = 〈(u, v), τp〉, generates a vertex in G equivalent to p and calculates the cost function for new
edges. Figure 2 presents an example of how to include a point of interest as a vertex in the TDG in
Figure 1(b). Figure 1(c) presents how the travel-time functions of the same TDG change according
by a new vertex included. In this example, a restaurant R = 〈(B,C), 1

3 〉 is a point of interest of
application.

First, we have to include R as a vertex in V . As R is a point on (B,C), (B,C) and is removed from
E to originate two new edges (B,R) and (R,C). The travel time functions for (B,R) and (R,C) are
c(B,R) = 1

3c(B,C) and c(R,C) = 2
3c(B,C), respectively, and the old travel time function c(B,C) is removed

from C. Now, we have to check if (C,B) is an edge in E. In that case, similarly, we have to remove
(C,B) from E and c(C,B) from C and edges in the other direction, (C,R) and (R,B), and calculate
the function cost for another direction. To calculate the new functions, we consider the complement
of 1 − pR and c(C,B) instead of pR and c(B,C). The new cost functions are c(C,R) = 2

3c(C,B) and

c(R,B) = 1
3c(C,B). Note that this process assumes there is no velocity variations when an object travel

an edge. This assumption is acceptable since we suppose only have information about the travel time
to go through a entire edge.

The temporal cost to execute a path at a speci�c departure time in a TDG, called travel time, and
the arrival time of that path are calculated supposing that stops are not permitted. They are formally
de�ned as follows.

De�nition 2.2. Arrival-time (AT):Given a TDG G = (V,E,C), the arrival-time when an edge
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(a) Road network and
a restaurant R.

(b) TDG considering the
point of interest R.

(c) Travel Time function to new edges.

Fig. 2. Time-dependent graph representing a network and points of interest.

(vi, vj) ∈ E is crossed at departure t ∈ Π(G) is given by AT (vi, vj , t) = t+ c(vi,vj)(t) mod Π(G).

De�nition 2.3. Travel-time (TT): Given a TDGG = (V,E,C), a path inG, p = 〈vp1
, . . . , vpi

, vpi+1
, . . . , vpk

〉
and a departure time t ∈ Π(G), the travel-time of p is a time-dependent cost to execute this path,

given by TT (p, t) =
∑k−1

i=1 c(vpi ,vpi+1
)(ti), where t1 = t and ti+1 = AT (vpi

, vpi+1
, ti).

Using TT as the cost of a path, new versions of shortest path and distance are given. A Time-
Dependent Fastest Path TDFP (u, v, t) is the path between u and v starting at t with minimum TT.
In this case, the travel time is called Time-Dependent Distance (TDD).

2.1 Problem Statement

We consider the problem of processing KNN queries in road networks where the speed is time-
dependent. For instance, given that the user is at a given location, at a speci�c time instant, the
query returns the K points of interest (e.g. gas station) that could be reached in the minimum
amount of time.

De�nition 2.4. Let G = (V,E,C) a TDG and POI ⊆ V a set of points of interest in G. Given a
query point q and a departure time t, a Time-Dependent KNN query returns a set R = {vr1 , . . . vrk} ⊆
POI such that ∀v ∈ POI \ R, TDD(q, vri , t) ≤ TDD(q, v, t), 1 ≤ i ≤ k. In other words, a TD-KNN
query returns a k of points of interest that are closest from q than the others points considering a
departure time t.

Previous works have proposed solutions for answer KNN queries in road networks where the speed
in each road is constant. Obviously, these solutions cannot be simply applied to the problem we are
interested in.
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3. RELATED WORK

3.1 Time-Dependent Shortest Path

The more usual solution to shortest path problem in static graphs is Dijkstra's algorithm [Dijkstra
1959]. [Wagner and Willhalm 2007] presents many others ideas that have been proposed to �nd
point-to-point shortest paths. Unfortunately, these ideas would fail when time-dependent networks
are considered. Much less work have been proposed to this case. The �rst algorithm that considers
time-dependent variant of shortest paths is addressed by [Cooke and Halsey 1966], it extends Dijk-
stra's algorithm to dynamic case, based on assumption that the FIFO property holds in the network.
Basically, FIFO property states if an object A starts cross a edge before an object B, then A have to
�nish crossed that edge before B. The time-dependent shortest path problem has a polynomial solution
in FIFO networks, however it is NP-hard in non FIFO-networks [Orda and Rom 1990]. [Nannicini
et al. 2008] proposed an algorithm that applies bidirectional search on a time-dependent network to
calculate the shortest path between two vertices, their method is based on A∗ search with landmarks.

3.2 KNN Queries in Spatial Networks

The problem of KNN queries in spatial networks was introduced by [Papadias et al. 2003]. In that
paper, the authors present two di�erent solutions to this problem, the Incremental Euclidean Re-
striction (IER) and the Incremental Network Expansion algorithms (INE). IER uses the assumption
that the euclidean restriction between two points on network is less than the network distance. This
assumption allows to use their network distance of euclidean KNN points as a upper bound. INE is
an adaptation of Dijkstra's algorithm. [Kolahdouzan and Shahabi 2004] presented an approach based
on pre-computing the network voronoi polygons (NVP) [Erwig and Hagen 2000], indexed by a spatial
access method. Using NVPs one can immediately �nd the �rst nearest neighbor of a query object
and reduce the on-line cost in a KNN search. All these approaches cannot be directly applied to solve
TD-KNN queries.

3.3 Time-dependent KNN (TD-KNN) Queries

The problem of KNN queries in time-dependent networks was introduced by [Demiryurek et al. 2010],
where the authors compares two di�erent baseline methods to solve this problem. The �rst approach
use time-expanded graphs to model the network. Time-expanded graphs allows us exploit previous
solutions in static networks to solve TD-KNN queries. However, this solution has numerous short-
comings, as high storage overhead, slower response time and correctness of results, as showed by
[Demiryurek et al. 2010]. The second approach is an adaptation of INE algorithm [Papadias et al.
2003] that does a blind search expanding while expanded the network. [Demiryurek et al. 2011]
proposed a pre-computation process that builds two di�erent indexes structures, the Tight Network
Index (TNI) and Loose Network Index (LNI). Both are composed for cells that reference the points
of interest such that, if a query point is in a tight cell of a point P, P is its nearest neighbor, and if
a q is out of a loose cell of P, P is not its nearest neighbor. As in NVP method, using TNI one can
immediately �nd the �rst nearest neighbor of a query object. However, it is not clear how this process
could work well when travel time functions in edges with opposite directions can be di�erent. That
is a important aspect in time-dependent networks, since the cost of a path can be determined by its
orientation.

4. A∗-TIME DEPENDENT INCREMENTAL NETWORK EXPANSION (A∗-TD-NE)

In this section, we describe our approach to process TD-KNN queries in time-dependent networks.
Our algorithm is based on incremental network expansion (INE), that was originally proposed for
static network in [Papadias et al. 2003]. With INE, starting from the query object q, all network
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vertices reachable from q are visited in order of their proximity until all k nearest neighbors objects
are located.

We incorporate a A∗ search directly in an INE expansion. To solve the shortest path problem,
A∗ search works similar to Dijkstra's algorithm. It uses a distance d(vi, vk) plus a heuristic function
H(vk) to determine the order in vertices are expanded in the search tree. The current distance plus a
heuristic function on a vertex vk is an estimate of the cost of a path between vi and vj that pass by
vk. The heuristic function H must be an admissible heuristic; that is, it must not overestimate the
distance to the goal. If H satis�es an additional condition H(x) ≤ d(x, y) +H(y) for every edge x, y
of the graph, then H is called monotone, or consistent. In such a case, A∗ can be implemented more
e�ciently because that approaches the solution in an incremental way without taking any step back.
A incremental expansion algorithm maintains the candidate vertices to expansion in order by their
distance from q.

Instead of to use an A∗ search to calculate each time-dependent distance from a query q to each
point of interest in a set of candidates, we incorporate a A∗ search directly in an incremental network
expansion. An incremental strategy avoids re-compute costs previously calculated. In our algorithm,
the heuristic function adds to each vertex an estimate of potential to it takes part of the fastest path
that leads to a nearest point of interest. The idea behind our search is avoid to continue the expand
nodes in a path that is fastest but is far from any point of interest in the network. We are motivated
by the fact that a vertex u be the closest node from q does not imply �nding a next nearest neighbor
when expanding u. To explain how our method works, we need introduce some de�nitions.

De�nition 4.1. Lower Bound Graph G and Upper Bound Graph G: The Lower Bound Graph of
a TDG G = (V,E,C) is a graph G = (V,E,C) where V and E are the same set of vertices and
edges in G and C is a set of costs cvivj = mint∈Π{cvivj (t)}, for all cvivj ∈ C. Similarly, an Upper

Bound Graph G = (V,E,C) has the same set of vertices and edges in G and C is a set of edges costs
cvivj = maxt∈Π{cvivj (t)}, for all cvivj

∈ C.

We de�ne the LTDD(vi, vj) and UTDD(vi, vj) as the travel time of the fastest path between
vi and vj in G and G, respectively. Note that, as the cost functions in G and G are constants,
LTDD(vi, vj) and UTDD(vi, vj) are not dependent of a departure time. We set our heuristic func-
tion H(u) to be equals the travel time from u to its nearest neighbor in G. The two followed lem-
mas prove that H(u) is admissible and consistent, thus it is feasible to be used in the A∗ search.

Lemma 4.2. H is an admissible heuristic.

Proof. To show that H is admissible consider a query point q = 〈(u, v), τq〉 and let nnq be the
nearest neighbor of q at departure time t in G. Let u be a vertex visited in the search and nnu
the nearest neighbor from u in G. Suppose that H(u) is not admissible, so we have TDD(q, u, t) +
H(u) = TDD(q, u, t) + LTDD(u, nnu) > TDD(q, u, t) + TDD(u, nnq, AT (q, u, t)). The inequality
LTDD(u, nnu) > TDD(u, nnq, AT (q, u, t)) is a contradiction because LTDD(u, nnu) is a lower bound
to all possible travel times from u to any point of interest. We can conclude that H(u) is admissible,
thus does not overestimate the distance to next nearest neighbor object.

Lemma 4.3. H is a consistent heuristic.

Proof. Given a TDG G = (V,E,C), and a set of points of interest S to show that H is consistent
for any departure time t w.r.t S, we need show that for any edge (u, v) ∈ E, H(u) ≤ c(u,v)(t) +
H(v). Let nnu be the nearest neighbor of u in G. Suppose that H(u) > c(u,v)(t) + H(v). Hence,
LTDD(u, nnu) = H(u) > c(u,v)(t) +H(v) > c(u,v) +H(v) = LTDD(u, p), for some vertex p ∈ S. In
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that case, p is a point of interest nearest than nnu from u, a contradiction against the hypothesis that
nnu would be the nearest neighbor of u.

We consider two preprocessing steps in our approach. In both of them an algorithm to �nd the
nearest point of interest in a network that does not varies with time is used. The �rst one calculates
the heuristic function value for each vertex in G. For each vertex v, the distance between v and its
nearest neighbor (NN) in G is calculated. This distance is attributed to H(v) to be used as the
heuristic function. Another step computes the NN of v in G, denoted by UNN(v), and its distance
from v in G, denoted by UTDD(v, UNN(v)). These values are used to prune vertices that lead to
points of interest furthest that a set of candidates.

The algorithm takes three parameters as input, the query object q = 〈(u, v), τq〉, the number
of nearest neighbors k and the departure time t. It works similar to previous network expansion
algorithm, but includes two strategies to guide the search and prune undesirable vertices. First, it
gets the edge (u, v) that represents the road covering q. Then it calculates the travel time between
q and each vertex of (u, v), at departure time t, TT (q, u, t) and TT (q, v, t). The vertices u and v are
inserted in a priority queue Q, that stores the set of candidates to expand in next step.

For each vertex vi in Q, the travel time from q to vi, TTvi = TT (q, vi, t), arrival time ATvi =
AT (q, vi, t) and the lower bound of travel time from it to its nearest neighbor Lvi = TTvi +H(vi) are
calculated. An entry in Q queue is like (vi, ATvi , TTvi , Lvi) and the elements of Q are ordered by Lvi

values.

Another priority queue QU is maintained to store upper bounds values. More precisely, if a ver-
tex v is expanded, we check if NN(v) is in QU . If it is not, we include NN(v) in QU , QU is
ordered by increasing order of UTDD(v,NN(v)). If NN(v) is already included in QU , we check if
UTDD(v,NN(v)) is less than the old upper bound to it, we update the position and upper bound
value of NN(v) in QU . QU is used to pruning process, more speci�cally if Lvi is greater than the kth
upper bound in QU , it can be discarded.

4.1 Running Example

4.1.1 O�ine Pre-processing. A result of our preprocessing step is showed in �gure 3(b). For each
vertex, a not time-dependent NN search is executed in graphs G and G. For example, consider vertex
f in �gure 3(a). The distance between f and b in G is LTDD(f, b) = 6 and between f and d is
LTDD(f, d) = 8, thus H(f) = 6. Furthermore, the distance between f and b in G is UTDD(f, b) = 8
and between f and d is UTDD(f, d) = 9, thus UNN(f) = b and UTDD(f,NN(f)) = 8.

4.1.2 Query processing. As an example, consider the graph in Figure 3. The inputs for the
algorithm are a query point Q = 〈(f, e), 1

4 〉, k = 1, and the departure time t = 0. First, the algorithm
calculates the travel times Te and Tf from q to f and e, the the labels Lf and Le, and the arrival
times ATf and ATe. Then it initializes the queues Q = 〈(f,ATf = 1, Tf = 1, Lf = 7), (e,ATe =
3, Te = 3, Le = 7)〉 and QU = 〈(d, 8), (b, 9)〉, because TT (q, e, t) + UTDD(e, d) = 8 and d is the
nearest neighbor from e in G and TT (q, f, t) + UTDD(f, b) = 9 and b is the nearest neighbor from f
in G. Now, each iteration remove a vertex from Q to be expanded.

The �rst vertex expanded is f , its adjacency vertices not yet en-queued are a and g, the new entries
are (a,ATa = 4.5, TTa = 4.5, La = 7.5) and (g,ATg = 3.5, TTg = 3.5, Lg = 9.5). As Lg > QU (k), the
entry correspondent to g is not en-queued. As UNN(a) = b and TTa + UTDD(a, b) = 8.5, upper
bound less than 9.5 is found, so we have to update to Qu = 〈(d, 8), (b, 8.5)〉.

The second vertex expanded is e, the entries to its adjacency vertices are (g,ATg = 6, TTg = 6, Lg =
12) , (d,ATd = 8, TTd = 8, Ld = 8) and (a,ATa = 4, TTa = 4, La = 7). Vertex g can be discarded
because Lg > QU (k) and a has to be updated because it was found by a fastest path than before. Fur-
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Algorithm 2: TD-NE-A∗

Input: A query point q = ((u, v), τq), an integer value k, a departure time t
Output: The set of k nearest neighbors of q
TTv ← τq × c(u,v)(t);
ATv ← (t+ TTv) mod Pi;
Lv ← Tv +H(v);
En-queue (v,ATv, TTv, Lv) in Q;
if (v, u) ∈ E then

TTu ← (1− τq)× c(v,u)(t);
ATu ← (t+ TTu) mod Pi;
Lu ← Tu +H(u);
En-queue (u,ATu, TTu, Lu) in Q;

end

SNN ← ∅;
while Q 6= ∅ ∧ |SNN | < k do

(u,ATu, TTu, Lu)← De-queue Q;
Mark u as de-queued;
if TTu = H(u) then

// u is a point of interest;
SNN ← SNN ∪ {u};

end

for v ∈ adjacency(u) do
TTv ← TTu + c(u,v)(ATu));
ATv ← (t+ TTv) mod Pi;
Lv ← TTv +H(v);
if Lv ≤ QU (k) then

if v is not in Q then
En-queued (v,ATv, TTv, Lv) in Q;
Mark v as en-queued;

else
Update Q if according by TTv;
Re-order Q;

end

if NN(v) is not in QU then
UNN(v) ← TTv + UTDD(v,NN(v));
En-queued (NN(v), UTDD(v, UNN(v)) in QU ;

else
UNN(v) ← TTv + UTDD(v,NN(v));
Update QU if according by (NN(v), UNN(v));
Re-order QU ;

end

end

end

Mark v as visited;
end

Return SNN ;

thermore, QU is updated, its new con�guration is Qu = 〈(d, 8), (b, 8)〉. At this point, the state of queue
Q is Q = 〈(a,ATa = 4, TTa = 4, La = 7), (d, TTd = 8, TTd = 8, Ld = 8)〉. The next vertex expanded
is a. Although its adjacency vertex b is a point of interest, it is discarded because Lb = 8.5 > QU (k),
that means b can be found in a fastest path. After this we have Q = 〈(d,ATd = 8, TTd = 8, Ld = 8)〉,
d is expanded and included into SNN . As k = 1 the algorithm �nishes.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.



k-Nearest Neighbors Queries in Time-Dependent Networks · 9

(a) A network, a query point Q =
〈(f, e), 1

4
〉, represented by a triangle

and points of interest b and d, repre-
sented by squares.

(b) Value of H function, near-
est neighbor in G, and the upper
bound travel time.

(c) Time dependent edges cost.

Fig. 3. A road network and its respective graphs considering points of interest.

Theorem 4.4. Let SNN = {vNN1 , . . . , vNNk
} the set of points of interest returned by TD-NE-

A∗(q, k, t). SNN is a set of the k nearest-neighbors from q = (a, b, τq) at departure time t.

Proof. To show that, it is enough show that when a point of interest r is removed from Q: (i)
its label Tr has the same value of travel time of the time-dependent fastest path from q to it and (ii)
there is no point of interest that has a fastest path from q faster than TDD(q, r, t).

(1) We will prove it by induction in the number of dequeued vertices. The case base is the �rst vertex
removed from Q, this case is trivial. Now, suppose that the i-th removed vertex the statement
is true, for all 1 ≤ i ≤ l − 1. Let be v the l-th dequeued vertex. Suppose that TvTDD(q, v, t).
Note that, there is a last vertex dequeued such that is in the fastest path from q to v. Let z
be this vertex. The next vertex in the fastest path from q to v is a neighbor of z. Let w be
this vertex. We have Lw = TDD(q, z, t) + c(z,w)(AT (q, z, t)) + H(w) = TDD(q, w, t) + H(w) <
TDD(q, w, t) + TDD(w, v,AT (q, v, t)) +H(v) < TDD(q, u, t) + TDD(u, v,AT (q, u, t)) +H(v) =
Lv. In this case, Lw was removed before Lv. A contradiction against the fact that z was a last
removed node in the fastest path. Thus, v was found by the fastest path and Tv = TDD(q, v, t) .

(2) Now, suppose by contradiction that a point of interest r was removed and there is another point
of interested r∗ such that TDD(q, r∗, t) < TDD(q, r, t) holds. Let v the last node enqueued in
the fastest path between q and r∗. According by (1) Tr = TDD(q, r, t) . As r was removed
before v, Lr = TDD(q, r, t) ≤ Tv +H(v) = TDD(q, u, t) + TDD(u, v,AT (q, u, t)) +H(v) , where
u is the node removed before v is enqueued. Hence, Lr ≤ TDD(q, u, t) + c(u,v)(AT (q, u, t)) +
H(v) = TDD(q, v, t) + H(v) ≤ TDD(q, v, t) + TDD(v, r∗, AT (q, v, t)) = TDD(q, r∗, t). Thus
Lr ≤ TDD(q, r∗, t), an absurd against hypothesis that the path between q and r∗ is more fastest
than the path between q and r. Thus TDD(q, r, t) = TDD(q, r∗, t) and (2) holds.
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(a) Pruning percentage of TD-NE-A∗. (b) Average values.

Fig. 4. Comparison when density of pois increases.

5. EXPERIMENTAL EVALUATION

5.1 Setup

We implemented an experimental system in C++ to compare our approach (TD-NE-A∗) with the
approach proposed by [Demiryurek et al. 2010] (TD-NE). We conducted our experiments on Unix
station with xxx CPU and 4 GB main memory. We generated synthetic time-dependent road networks
with temporal resolution of 96 points in time, a point at every 15 minutes of a day and average degree
4. We evaluated how our approach works according by number of vertices v, query size k and the
density of pois (i.e., the ratio of pois cardinality to vertex cardinality).

5.2 Prune Power

In the �rst experiments, we are interested to evaluate the prune power of our approach. We compare
the number of expanded nodes in the network with respect to the density of pois and query size.
We believe there is a strong correlation between the number of expanded vertices and the number
of accessed disk pages, when we have a disk-based implementation. In all of these experiments, for
each parameters con�guration we generated 10 distinct time-dependent road network and executed
10 queries randomly selected for each network, a total of 100 queries.

E�ect of density First we examine the in�uence of density in the number of expanded vertices.
We set the density of networks to be 5%, 10% and 20% of points of interest uniformly distributed.
For each density, we generate 10 distinct time-dependent networks with 2000 vertices and executed 10
randomly selected queries with k=20 on each one. In our experiments TD-NE-A∗ pruned from 38%
to 60% of nodes expanded by TD-NE. Figures 4(a) illustrates how density interferes the percentage
of vertices pruned. We can observe that the pruning power of TD-NE-A∗ decreases as the network
becomes denser. The reason for that the number of candidate pois to be nearest that increases with
the density. Thus the quality of heuristic function decreases and the number of false hits increases.
In the same way, in both algorithms is necessary to expand less vertices when the network becomes
denser. This is reasonable since the number of points of interest grows for each evaluated subnetwork.
Figures 4(b) illustrates the di�erence between the average of expanded vertices in both algorithms.
The errors bars illustrate upper and lower 95% con�dence limits, assuming the data to be normally
distributed. That indicate our heuristic becomes less trusted when the density grows.

E�ect of query size In order to evaluate the e�ect of query size, we generated 10 distinct networks
with 2000 vertices and 10% of points of interest. To each one of them, we executed 10 queries randomly
selected with k = {1, 10, 20, 30}. Figure 5(a) shows the average percentage of expanded vertices by
TD-NE-A∗. For all values of k, TD-NE-A∗ outperforms TD-NE in number of expanded vertices in more
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(a) Pruning percentage of TD-INE-
A∗.

(b) Average values.

Fig. 5. Comparison when query size increases.

than 50%. Furthermore, when k grows the gap between TD-NE-A∗ and TD-NE also increases. Figure
5(b) compares the average number of expanded vertices when k increases. The number of expanded
vertices increases with k because more vertices have to be checked to �nd more pois. The errors bars
illustrate upper and lower 95% con�dence limits, assuming the data to be normally distributed. That
indicate our heuristic becomes more trusted when the k grows.

E�ect of network size In this experiment, we generate 10 time-dependent networks with 1000,
2000 and 4000 vertices. Each one with 10% of points of interest. We executed 10 randomly selected
queries with k=20 on each network. Figure 6(a) shows that the prune percentage of TD-NE-A∗ grows
with the network size. Figure 5.2 illustrates the average behavior of both algorithms when the network
size increases according by the number of expanded vertices. This experiment indicate that the size
of network does not a�ect the average number of expanded vertices. This occurs because we use a
uniform distribution of points of interest. Thus the number of expanded vertices in a bigger network
is the same of a small one since they have a similar structure. However, the CPU time increases
with network size. This increasing in CPU time is explained because when the network size grows
we have larger data structures to be managed in both of algorithms. The errors bars illustrate upper
and lower 95% con�dence limits, assuming the data to be normally distributed. That indicate our
heuristic becomes more trusted when the network size grows.

(a) Average values.

Fig. 6. Comparison when network size increases.
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6. CONCLUSION AND FUTURE WORKS

In this paper we propose incorporate an A∗ search and prune in an incremental expansion to processing
KNN queries in time-dependent road networks. The idea behind our approach is discard vertices that
are nearest from the query but far from any point of interest. Our approach adds to each vertex an
heuristic function that gives an expectation to �nd a point of interest quickly in a path that pass by this
vertex. Furthermore, we use the upper bound values to prune unwanted paths. Our experiments show
that TD-NE-A∗ can expanded 50% less vertices than TD-NE. We believe that this is a considerable
gain in the I/O cost in a disk-based implementation.

As future work, we will extend our method to a disk based implementation and develop and scheme
disk storage to time-dependent networks. It also would be interest for future research develop ap-
proaches to solve others popular queries that do not have solutions in time-dependent networks.
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