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Abstract. Matrix Factorization (MF) has become the predominant technique in recommender systems. The model
parameters are usually learned by means of numerical methods, such as gradient descent. The learning rate of gradient
descent is typically set to lower values in order to ensure that the algorithm will not miss a local optimum. As a
consequence, the algorithm may take several iterations to converge. Ideally, one wants to �nd the learning rate that
will lead to a local optimum in the �rst iterations, but that is very di�cult to achieve given the high complexity of the
search space. Starting with an exploratory analysis on several recommender systems datasets, we observed that there is
an overall linear relationship between the learning rate and the number of iterations needed until convergence. Another
key observation is that this relationship holds across the di�erent recommender datasets chosen. From this, we propose
to use simple linear regression models for predicting, for an unknown dataset, a good learning rate to start with. The
idea is to estimate a learning rate that will get us as close as possible to a local optimal in the �rst iteration, without
overshooting it. We evaluate our approach on 8 real-world recommender datasets and compare it against the standard
learning algorithm, that uses a �xed learning rate, and adaptive learning rate strategies from the literature. We show
that, for some datasets, we can reduce the number of iterations up to 40% when compared to the standard approach.

Categories and Subject Descriptors: I.2.6 [Arti�cial Intelligence]: Learning

Keywords: Gradient Descent, Learning Rate, Matrix Factorization, Recommender Systems

1. INTRODUCTION

Matrix factorization is one of the most successful techniques in recommender systems nowadays [Koren
et al. 2009]. MF features high accuracy, scalability, robustness against sparsity, and implementation
ease, which explains its success and popularity. Moreover, the winning method of the Net�ix chal-
lenge1, a very important recommender systems challenge that provided major advances in the area,
used MF as a key component. By now, there are many variations of MF [Paterek 2007] and [Gantner
et al. 2010], each one handling a di�erent aspect of recommender systems. In this paper, we investigate
MF for the classic problem of rating prediction, i.e., how to predict the ratings that users would give
to items they still not accessed (e.g. movies still not watched).

The model parameters of MF are usually learned by means of numerical methods such as gradient
descent, given that the loss function is non-convex. The learning rate of gradient descent is typically
set to lower values (usually 0.01 or 0.02 [DeCoste 2006]) in order to ensure that the algorithm will
not miss a local optimum and diverges. As a consequence, the algorithm may take several iterations
to converge, which ends up increasing the computational costs of the training phase. [Rendle and
Schmidt-Thieme 2008], for example, report 200 iterations until convergence in the Net�ix dataset
with the learning rate set to 0.01.

1http://www.net�ixprize.com/
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(a) Default Learning Rate (b) High Learning Rate for �rst iteration

Fig. 1: Illustration of gradient descent: (a) using a small learning rate over all iterations. (b) using a larger rate for the
�rst iteration

Ideally, one wants to �nd the learning rate that leads to a local optimum in the �rst iterations, but
that is very di�cult to achieve given the high complexity of the search space. However, if in one shot
one gets close enough to the local optimum, one will need only a few iterations until convergence, hence
saving iterations and speeding up the learning process. Figure 1 illustrates an hypothetical execution
of gradient descent for learning the parameters Θ0 and Θ1 under the loss function J(Θ0,Θ1) and the
idea of how to reduce the number of iterations (represented by the dots on the surface's function)
with a good initial learning rate value.

In this paper, we investigate the intrinsic relationship between the learning rate and the number
of iterations of MF applied to recommender systems datasets. Our problem is to predict a good
estimation of the initial value of the learning rate in order to minimize the number of iterations,
leading to rapid convergence on yet unseen recommendation datasets. We observed that, for most of
the recommender systems datasets we used (7 of 8), there is a positive linear relationship between the
learning rate and the number of iterations needed until convergence. Surprisingly, this relationship
holds across the di�erent datasets, with only minor variations in the regression line. Assuming that
MF presents similar learning behavior when applied to similar datasets, i.e., datasets that share
the same entities (users and items), domain (recommender systems), and rating scale (5 star rating
scale). From this observation, we propose to use simple linear regression models for predicting, for an
unknown dataset, which learning rate would lead to the minimum number of iterations.

We conduct experiments in three real world datasets and show that we can reduce the number of
iterations up to 40% when compared to the standard approach which uses a �xed learning rate value.
Furthermore, we compare our approach to four learning rate adaptive techniques from the literature.

This paper is organized as follows. In Section 2, we present the related work. In Section 3, we
formalize the research problem this paper investigates. In Section 4, we investigate the relationship
between the learning rate and the number of iterations needed until convergence in the most popu-
lar recommender systems datasets available to the public. In Section 5 we present the results and
conclusions of the experiments conducted. Finally, in Section 6, we conclude the paper and discuss
opportunities for future work.

2. RELATED WORK

In general, the value of the learning rate is determined by a search among candidate values. Using a
validation set, a MF model for each candidate is learned and evaluated. The candidate that leads to
the best model is chosen. This approach is expensive since it trains several models, especially when
the search space is large. Moreover, this is a very common approach to �nd other hyperparameters,
such as the ones related to regularization. In fact, [Rendle 2012] propose an adaptive approach for
speeding up the learning of the regularization hyperparameters. In this paper we are only interested
in the learning rate of gradient descent.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.



Predicting the Learning Rate of Gradient Descent for Accelerating Matrix Factorization · 3

Gradient descent is a generic approach used as the subroutine of many learning and optimization
algorithms, e.g., arti�cial neural networks (ANN) [Moreira and Fiesler 1995]. In fact, some of the
most recent advances on gradient descent algorithms come from di�erent research areas other than
recommender systems. A common approach is to adapt the learning rate over the iterations of the
gradient descent, i.e., algorithms dynamically incorporate knowledge of the geometry of the data
observed in earlier iterations to perform more informative updates [Bartlett et al. 2007] and [Auer
and Gentile 2000]. The method introduced in [Duchi et al. 2011], for example, starts with a default
learning rate that is divided by the norm of the previous gradients in subsequent iterations. MF
models, on the other hand, have a large number of parameters which makes it di�cult to grasp the
geometry of the search space.

Indeed, as learning rate adaptation has proven to be an e�ective solution to the problem of tuning the
learning rate in the ANN �eld, [Luo et al. 2013] propose di�erent versions of gradient descent to learn
the parameters of the MF. They adapted 3 techniques, namely, Deterministic Step Size Adaptation
(DSSA), Incremental Delta Bar Delta (IDBD) and Stochastic Meta Descent (SMD) and compare them
to his own method, Gradient Cosine Adaptation (GCA). In DSSA, IDBD and SMD methods there is
an independent learning rate for each parameter of MF, and in CGA method, on the other hand, one
for each rating. All these adaptive strategies update the learning rate based on the gradient of the
previous iterations. In DSSA, if two successive iterations update the gradient in the same direction,
then the learning rate is increased to make the learning process faster, and vice-versa. In IDBD, an
exponential function of learning rate is applied and all past iterations are considered rather than the
last two, like DSSA. In SMD, the update rule of the learning rate takes into account the gradient of
related parameters, unlike DSSA and IDBD, which considers its respective parameters. Finally, the
GCA strategy is similar to DSSA, but it uses the cosine of the gradients of two successive iterations.
One drawback of the aforementioned techniques, and also the main di�erence to our approach, is that
they consider several learning rates (one for each parameter), which leads to a memory overhead since
this information needs to be cached during the learning process.

Except [Luo et al. 2013], none of the related works deal with MF or recommender systems. Moreover,
the aforementioned works follow a bottom-up approach trying to adapt the learning rate based on
previous values, while we follow a top-down approach, trying to predict, from the beginning, the
learning rate that will lead to the minimum number of iterations.

Another line of research worth mentioning concerns distributed versions of gradient descent, as
presented in [Zinkevich et al. 2010] for the domain of arti�cial neural networks, and in [Gemulla et al.
2011] for recommender systems.

3. PROBLEM SETTING

In this paper, we tackle the problem of accelerating matrix factorization, estimating a good value to
initialize the learning rate of gradient descent. The idea is to use a learning rate that gets as close as
possible to a local optimum. As pointed out in Section 1, the learning rate is a low constant value
determined by cross-validation (usually 0.01 or 0.02 [DeCoste 2006]). Before formalizing our problem,
we brie�y recall MF and gradient descent.

Let U denote the set of users and I the set of items, and S the sparse matrix, where rows represent
users, columns represent items, and values represent the ratings that users gave to items. As the name
suggests, MF attempts to decompose S ∈ R|U |×|I| into the product of the two lower rank matrices
P ∈ R|U |×k and Q ∈ R|I|×k, such that S ≈ PQT . Here k denotes the number of latent factors used,
i.e., the latent factors that explain the interactions between users and items. After the factorization,
users and items are represented by vectors lying in the same space of k dimensions. Predictions are
now done by simple dot products between user and items vectors, i.e., rows of P and columns of QT

resp. MF is cast as an optimization problem (cf. equation 1). For the rating prediction problem the
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loss function err is the well known squared error. Since matrix S is sparse, the error is computed only
w.r.t. to the observed values.

argmin
P, Q

err(P ×QT ;S) (1)

As mentioned before, the model parameters, here represented by the vector Θ = (P, Q), are usually
learned by gradient descent. Gradient descent uses the partial derivative of the loss function w.r.t.
to each parameter to guide the search for the local optimum. In each iteration gradient descent gives
another step towards it, where the size of the step is given by the learning rate α. The equation 2
depicts, in high level, the update step of gradient descent.

Θ = Θ− α
(
∂

∂Θ
err(P ×QT ;S)

)
(2)

In the following, we de�ne the overall problem we investigate in this paper. Let β denote the learning
rate used in the �rst iteration of equation 2 and α the learning rate of the remaining iterations. Let
iter(β, α, P,Q) be a function that returns the number of iterations needed to learn P and Q (by means
of formula 1) with a given con�guration of β and α. In this paper, we assume that α is �xed and focus
on �nding the β that minimizes the number of iterations until convergence. The basic idea is to start
with a β that gets as close as possible to a local optimum and then use a �xed α for the remaining
iterations until convergence. In all, our problem is formalized as follows:

argmin
β

iter(β, α, P,Q) (3)

4. LEARNING RATE PREDICTION

Ideally, we would like to �nd a learning rate capable of reaching a local optimum in the �rst iterations
of the gradient descent. As we do not know what value yields this result, we do a search. In this
search, we start with a given learning rate to be used only in the �rst iteration, here called β, and
then, after the very �rst iteration, we set it back to a conservative (or default) value called α. What
we want to do is to get as close as possible to a local optimum, without overshooting it. The rest of
the way we do it as before, i.e., using small step sizes. Doing that, we expect to decrease the overall
number of iterations needed until convergence.

To investigate the impact of di�erent β values in the learning phase of MF, we �rst de�ne a metric
that indicates the percentage of iterations' reduction in comparison to the standard procedure using
a �xed and small α. For example, given a dataset, assume that MF needs 20 iterations to achieve
convergence in the validation set with the default learning rate α, and 12 iterations with a given β
as initial learning rate. Now, the reduction is of 0.4 or 40%, if compared to the original number of
iterations, and is calculated as 1− (12/20).

For further investigating the relationship between β and the percentage of iterations' reduction,
we varied the β values from 0.01 to 0.1 with increments of 0.005 and used the default α = 0.01
to proceed until convergence. The choice for 0.01 is based on the literature, in which it was used
in several experiments with di�erent datasets as a conservative value. We have chosen this range,
because we noticed that, for most of the datasets, when β > 0.1 the gradient descent diverges, which
might indicate that we are overshooting a local optimum. In Figure 2 we plot the β values used (x
axis) versus the percentage of iteration reduction (y axis) for all datasets.

In fact, for all datasets we have used in our experiments, we observed a positive linear relationship
between the β and the percentage of iterations' reduction, i.e., the higher the β, the higher is the

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.



Predicting the Learning Rate of Gradient Descent for Accelerating Matrix Factorization · 5

Table I: Evaluation of linear models based on statistic R2. Max. reduction indicates the greater percentage of iterations
reduced when compared to the #iterations using default α (learning rate)

Dataset R2 % max. reduction #iter. with default α = 0.01

Movielens-100K 0.9801 38.1% 21

Movielens-1M 0.8184 39.2% 51

Movielens-10M 0.662 21.6% 37

Net�ix 0.7525 0% 35

Yahoo-Movies 0.9694 41.6.5% 24

Epinions 0.9838 40.9% 22

Amazon 0.9779 43.7% 16

Dating 0.9514 36.8% 19

iterations reduction. To con�rm this relationship, we �tted a simple linear regression model to each
dataset and observed the goodness of �t (R2 values). The R2 varies between 0 and 1, indicating the
percentage of the observations explained by the model. In this case, R2 explains the proportion of
the reduction of iterations that can be explained by the variation in β. The higher the R2, the better
the model �ts the data. The R2 values are close to 1, which indicates strong linear correlation (cf.
Table I). In the last column of Table I we show the number of iterations needed by the standard MF
using the default α = 0.01.

The exception is the Net�ix dataset that do not follow the same pattern of the other datasets. We
do not have a concrete explanation for that yet, but one guess is that 0.01 already represents a good
initial learning rate, and thus does not leave much room for improving upon.

Furthermore, the linear pattern remains when the number of latent factors varies as shown in
Figure 3. The results with 50 and 100 latent factors have a slightly better percentage of reduction,
but the error after convergence is also slightly higher. We show the results for one dataset only, but

Fig. 2: Relationship between β and the percentage of iterations' reduction. The red lines show a linear model �tted to
this data.
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Fig. 3: Relationship between β and the percentage of iterations' reduction when the number of latent factors varies
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this behavior holds for all datasets used.

5. EXPERIMENTS

In this Section, we describe how to use the prediction model for accelerating the learning phase of
MF and compare this approach with other learning rate adaptive strategies introduced in [Luo et al.
2013].

5.1 Experimental Reproducibility

For the sake of experimental reproducibility, we have chosen well-known recommender systems datasets,
all of them public and available online2. We employ 5-fold cross-validation and use the MF default
setup values of the recommender system library MyMediaLite [Gantner et al. 2011]. The number
of latent factors k, regularization term and stop criterion are 10, 0.015 and 0.001 respectively. We
also implemented, on top of MyMediaLite, the learning rate adaptive strategies described in [Luo
et al. 2013] with the following meta-parameter settings (and using the same original nomenclature):
α = 0.0005 and β = 0.0005 for DSSA, θ = 0.002 for IDBD, K = 0.9 and θ = 0.005 for SMD. With the
exception of the Dating dataset, whose ratings are in the [1, 10] range, the ratings of all the datasets
are in the standard [1, 5] range. Similarly to [Luo et al. 2013], we normalized the Dating dataset to
the range [1, 5] so that all the algorithms can be compared in a common ground. The normalization
consisted in assigning ratings 1 and 2 to 1, 3 and 4 to 2, 5 and 6 to 3, 7 and 8 to 4 and 9 and 10 to
5. Table II presents the data characteristics of all the datasets used.

5.2 Learning Rate Prediction

As discussed in the previous Section, MF presents very similar learning behavior across di�erent
recommender datasets concerning the choices of β for the range [0.01, 0.1] (cf. Figure 2). For most
of the datasets, this behavior is highly explainable by a simple linear regression model. This suggests
that we can use the linear model �tted to one dataset for making predictions for others, yet unseen,
datasets. Given a new recommender systems dataset, the question we want to answer is this: �What
learning rate should I use if I want to reduce the number of iterations in x% in relation to the standard
algorithm?�

For evaluating our approach we devised the following experimental protocol. We have held one
dataset for testing, and used the other datasets, individually, for prediction. We then compare the

2The Dating dataset is available at http://www.occamslab.com/petricek/data; the Yahoo-Movies dataset is available at
http://webscope.sandbox.yahoo.com/catalog.php; the other datasets used are available at http://konect.uni-koblenz.de
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Table II: Dataset characteristics: number of users, items, ratings (instances), rating range and domain in datasets.

' Dataset |U | |I| # rating instances Original rating range Domain

Movielens-100k 943 1,682 100,000 [1, 5] Movies

Movielens-1M 6,040 3,706 1,000,209 [1, 5] Movies

Movielens-10M 69,878 10,677 10,000,054 [1, 5] Movies

Net�ix 480,189 17,770 100,480,507 [1, 5] Movies

Yahoo-Movies 7,642 11,916 221,364 [1, 5] Movies

Epinions 40,163 139,738 664,824 [1, 5] General Products

Amazon 2,146,276 1,231,018 5,744,088 [1, 5] General Products

Dating 135,359 168,791 17,359,346 [1, 10] Dating

number of iterations needed by MF using the standard gradient descent with the number of iterations
achieved with the β predicted by each of the other datasets. We excluded the Net�ix since it presents
a negative linear correlation, as pointed out in Section 4.

We used the datasets Amazon, Movielens-10M and Dating as test datasets. The choice is supported
by the fact that, although both are recommender systems datasets, they represent di�erent domains
(cf. Table II). For the test datasets, we try to predict the β that achieves 40% of reduction in the
number of iterations, which is close to the empirical upper bound. Notice that the empirical upper
bound of reduction for the Amazon is 47.3%, for MovieLens-10M is 21.6% and 36.8% for Dating.

Table III shows the results. For the Amazon dataset, the best predicting dataset was Movielens-
10M. Surprisingly, this prediction led to a reduction of 62.5%, which is more than the empirical upper
bound. It was an exception, since values above 0.1 led to divergence. For the Movielens-10M, the
best predicting dataset was the Movielens-1M. In this case, the reduction was 21.6% which is far from
40%, but this is expected since the empirical upper bound suggests that 21.6% is already the best
we can get. For the Dating dataset, the best predicting datasets were Movielens-100k and Epinions,
again returning the empirical upper bound.

Figure 4 illustrates the reduction of iterations in Amazon when using the β predicted by Movielens-
10M for a 40% input value. MF with the standard gradient descent reached convergence in 13
iterations, while it drops to 6 with our approach. It is interesting to notice that di�erent local
minimum are achieved, where our approach reaches an even better local minimum.

We can see that all the results are very similar. In fact, the con�dence interval of the percentage of
iteration's reduction for the Amazon dataset is [36.2, 51.5], [14.1, 19.1] for MovieLens, and [26.9, 36.1]
for the Dating dataset, with signi�cance level of 0.05, which proves that all models provided similar
good prediction. We can speculate that this relationship stems from features shared by the datasets
e.g. all of these datasets have the same range of ratings [1, 5]. However, despite similar predictions,
these datasets di�er in the domain. This �nding is interesting because this approach tends to happen
regardless the domain considered.

5.3 Comparing to Learning Rate Adaptive Strategies

We compared our approach, Learning Rate Estimation (LRE), against four learning rate adaptive
strategies from the literature, namely, DSSA, IDBD, SMD and GCA.

DSSA strategy assigns a speci�c learning rate to each parameter pu,k ∈ P and qi,k ∈ Q, and
updates each learning rate according to the signs of two successive updating directions of the respective
parameter. The directions are the partial derivative of the loss function described in Section 3. The
idea is to penalize the learning rate if the sign the successive directions are distinct, multiplying it by
a value slightly lower than 1, which decreases the step size, thus making the learning of this parameter
slower. On the other hand, if successive updates of gradients are made in the same direction, then
the learning rate is multiplied by a value slightly larger than 1, thus increasing the step size and
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Fig. 4: RMSE (Root Mean Squared Error) relative to each iteration of gradient descent using the standard gradient
descent versus our approach.

making the learning of this parameter faster. So, there is two other auxiliary matrices to keep the
past gradients of each parameter to be compared with the current gradients. The meta-parameters
mentioned in Section 5.1 controls how larger or lower than 1 the aforementioned penalty values will
be.

In the IDBD strategy, there is a speci�c learning rate for each parameter. But all learning rates
are in the exponential form, which leads to two advantages. First, it assures that the learning rate
will always be positive. Second, it is a mechanism for making exponential steps, which is desirable
because some learning rates must become very small while others remain large. The central idea of

Table III: Prediction learning rate for Amazon, MovieLens-10M and Dating datasets with linear models extracted from
others datasets.

Dataset Test Dataset Train predicted β % iter. reduction #iter. with predicted β

Amazon

Ml-100K 0.097 43.7% 9
Ml-1M 0.087 37.5% 10
Ml-10M 0.159 62.5% 6

Yahoo-Movies 0.091 37.5% 10
Epinions 0.099 43.7% 9
Dating 0.098 38.4% 6

Movielens-10M

Ml-100k 0.097 18.9% 30
Ml-1M 0.087 21.6% 29

Yahoo-Movies 0.091 16.2% 31
Epinions 0.099 13.5% 32
Amazon 0.088 16.2% 31
Dating 0.098 13.5% 32

Dating

Ml-100k 0.097 36.8% 12
Ml-1M 0.087 31.5% 13
Ml-10M 0.159 21% 15

Yahoo-Movies 0.091 31.5% 13
Epinions 0.099 36.8% 12
Amazon 0.088 31.5% 13
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IDBD is to consider the e�ect of all past step-size values on the current parameters. This is made by
the two auxiliary matrices that keep all the past gradients of each parameter.

Like DSSA and IDBD, in the SMD strategy there is a speci�c learning rate for each parameter.
All learning rates are adjusted in log-space and are optimized over an exponentially decaying trace
of gradients, similarly to the IDBD strategy. However, di�erently from IDBD where each learning
rate takes into account the previous values, SMD takes into consideration the e�ects of one speci�ed
learning rate on the other related parameters (related parameters are those that share the same user
or same item). In this case, there are also two auxiliary matrices to keep the gradients of each
parameters and its related parameters. The meta-parameters mentioned in Section 5.1 denotes a
discounting factor to penalize past iterations.

In the GCA strategy, there is a speci�c learning rate for each rating. The update of the learning rate
is based on the cosine of the angle between the learning directions of two successive iterations. Note
that this is similar to the DSSA strategy, but here, if the cosine is close to one (gradients pointing
to the same direction) the learning step increases, while it decreases for lower values of the cosine
(gradients pointing to di�erent directions). The meta-parameters mentioned in Section 5.1 control
the weight of the cosine on the update rule.

In the evaluation, we used our best predicted learning rate, estimated in the last Section, and set the
adaptive strategies to the default learning rate (0.01), in order to make the results comparable against
the traditional approach and LRE. Table IV shows the results. For almost datasets, our approach
needed fewer iterations than the methods compared, keeping similar RMSE values, i.e., our approach
reached convergence faster and kept equivalent accuracy. The exception is GCA in Movilens-10M
dataset, that reaches the convergence with 16 iterations, while our reach with 29.

It is worth mentioning that the compared methods are more complex than ours in terms of space
since they have to store additional matrices to keep the learning rates and the gradients, one for
each parameter. While our approach has space complexity of O((|U | + |I|) × k + |T |), where |T | is
the number of ratings, the DSSA, IBDB and SMD approaches have space complexity in the order
of O((|U | + |I|) × 3k + |T |). The GCA approach requires extra storage for maintaining each rating
speci�ed step-size values and the last gradient on the corresponding user/item feature vectors. So,
GCA has space complexity of O((|U |+ |I|)× k + |T | × (3 + 2k)).

6. CONCLUSIONS AND FUTURE WORK

In this work, we introduced an approach for predicting the learning rate of matrix factorization's
gradient descent. The main idea is to use this prediction to get as close as possible possible to a local
optimum in the �rst iteration.

Starting from an exploratory investigation on di�erent recommender datasets, we observed that
there is an overall linear relationship between the learning rate and the number of iterations needed
until convergence. From this, we propose to use simple linear regression for predicting, for an unknown
dataset, which learning rate leads to the minimum number of iterations. We have tested this hypothesis
on 8 real-world recommender datasets from di�erent domains, e.g. Movielens and Net�ix recommend
movies, while Epinions and Amazon recommend products. We show that, for some datasets, we can
reduce the number of iterations up to 40% when compared to the standard approach.

Moreover, we compared our approach against four learning rate adaptive strategies from the liter-
ature and showed that our method outperforms almost all of them in all the evaluated datasets.

As future work, we plan to combine our approach with adaptive algorithms in order to further reduce
the number of iterations needed until convergence. So, in addition to the initial value, we would have a
dynamic learning rate capable to adapt itself during the model learning. Finally, we plan to investigate
this behavior in another types of datasets, such as implicit feedback recommendation datasets.
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Table IV: Compare our approach with learning rate adaptive strategies.

Dataset Test Approach RMSE #it

Amazon

MF-LRE 1.2620 6
MF-DSSA 1.2680 16
MF-IDBD 1.2686 16
MF-SMD 1.2679 16
MF-GCA 1.2671 16

Movielens-10M

MF-LRE 0.8025 29
MF-DSSA 0.7980 36
MF-IDBD 0.7960 36
MF-SMD 0.7981 41
MF-GCA 0.8007 16

Dating

MF-LRE 0.8731 12
MF-DSSA 0.873 19
MF-IDBD 0.8728 19
MF-SMD 0.8723 19
MF-GCA 0.8758 13
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