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Abstract. Mutual Information (MI) estimation is an important component of several data mining tasks (e.g feature
selection). In classi�cation settings, MI estimation essentially depends on the estimation of the ratio of two probability
densities. Using a recently developed method of density-ratio estimation, which is constructive in nature, new estimators
for MI can be derived. In this article, we consider one such new estimator � VMI � and compare it experimentally to
previously proposed MI estimators. The �rst batch of experiments is conducted solely on mutual information estimation,
and shows that VMI compares favorably to previous estimators. The second batch of experiments applies MI estimation
to feature selection in classi�cation tasks, evidencing that VMI leads to better feature selection performance. Combining
the results of both experimental batches, we conclude that the development of improved density-ratio estimators can
positively impact MI estimation and feature selection.

Categories and Subject Descriptors: I.5.1 [Pattern Recognition]: Models�Statistical; H.1.1 [Models and Princi-

ples]: Systems and Information Theory; G.1.9 [Numerical Analysis]: Integral Equations�Fredholm equations

Keywords: classi�cation, density-ratio estimation, mutual information estimation, feature selection

1. INTRODUCTION

The mutual information between two random vectors X and Y is one of the most important concepts
in Information Theory [Cover and Thomas 2006]. For continuous X and Y , it is often written as

I(X,Y ) =

∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dx dy, (1)

where p(x, y) is the joint probability density function of X and Y , and p(x) and p(y) are the marginal
density functions associated with X and Y (resp.). Intuitively, mutual information measures how
much information is shared by X and Y : if they are independent of each other, p(x, y) = p(x)p(y)
and then I(X,Y ) = 0. On the other hand, if X and Y are the same random vector, the value of the
mutual information achieves its upper bound � the di�erential entropy of X (or Y ).

Mutual information plays an important role in data mining tasks like feature selection [Guyon and
Elissee� 2003] and Independent Component Analysis [Hyvärinen and Oja 2000]. For these tasks, it is
typical for the distributions involved in MI calculation to be unknown. This way, it becomes impor-
tant to develop methods of mutual information estimation using data sampled from these unknown
distributions [van Hulle 2005; Kraskov et al. 2004; Suzuki et al. 2009].
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When Y is a categorical variable, the estimation of the mutual information essentially depends on
the estimation of a �nite number of ratios of probability densities [Sugiyama et al. 2011; Vapnik et al.
2014]. Previous work [Suzuki et al. 2009] has already attempted to cast MI estimation as density-ratio
estimation. Still, the approach taken in this work is new. We consider an estimator � namely VMI �
that di�ers from previous estimators in two aspects. The �rst one is in the form of the MI estimator
itself, which is more robust. The other one is related to the method of density-ratio estimation
employed in VMI, which can be proven to construct the real density ratio with high probability.

In this article, we experimentally evaluate this new approach to mutual information estimation.
We �rst consider a set of synthetic two-dimensional models for which the real value of the mutual
information is known. Since evaluation on real data is also desirable, we conduct a second batch of
experiments considering the task of feature selection for classi�cation.

The analysis of the results allows us to draw interesting conclusions about mutual information
estimation and feature selection. Regarding MI estimation alone, the results on synthetic models
corroborate the theoretical advantages of the new approach, as VMI outperformed other estimators.
The feature selection experiment, in its turn, evidences that using VMI in a MI-based feature selection
scheme improves upon the use of other MI estimators. Altogether, these results point to unexplored
opportunities for improving MI estimation and feature selection by improving density-ratio estimation.

The remainder of this article is organized as follows. Section 2 describes the approach to mutual
information estimation taken in this work as well as previous ones. As the new approach depends
on density-ratio estimation, this topic is covered in Section 3. Section 4 reviews the Joint Mutual
Information (JMI) feature selection method [Yang and Moody 1999] used in our experiments. Section 5
is devoted to the experimental evaluations. Section 6 concludes with the �ndings of this work and
indications of future research.

2. MUTUAL INFORMATION ESTIMATION

The estimation of the mutual information I(X,Y ) based on a sample (x1, y1), . . . , (xn, yn)
i.i.d∼ p(x, y)

is a long-standing problem in applied statistics. Several attempts of solving this problem have been
made by considering the equality

I(X,Y ) = H(X) +H(Y )−H(X,Y ). (2)

That is, I(X,Y ) is estimated by �rst estimating the di�erential entropies H(X), H(Y ), and H(X,Y ),
and then plugging these estimates into Expression (2). A potential problem with the entropy approach
is that the errors in the estimation of the individual entropies do not necessarily cancel out.

Two popular entropy estimators are the non-parametric k-NN estimator [Kraskov et al. 2004] and the
parametric Edgeworth-expansion estimator [van Hulle 2005]. These estimators have some drawbacks
of their own. To wit, there is no systematic way of selecting the best value of k in the k-NN estimator.
Moreover, the Edgeworth estimator is based on the assumption that the densities p(x, y), p(x), and
p(y) are each normally distributed, which is often not satis�ed in practice.

Motivated by the problems of these entropy estimators and the indirect nature of MI estimation
through entropy estimation, a direct estimator of I(X,Y ) was proposed in [Suzuki et al. 2009]. The
resulting estimator replaces Expression (1) by its empirical average

Î(X,Y ) =
1

n

n∑
i=1

log
p(xi, yi)

p(xi)p(yi)
. (3)

Since the value of the ratio inside the log function is unknown, the authors proposed the KLIEP
method [Sugiyama et al. 2008] for estimating this ratio using a sample drawn from p(x, y). The
resulting estimator was named Maximum Likelihood Mutual Information (MLMI).
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In this work, we put forward a di�erent direct approach to mutual information estimation. For the
case where Y is discrete (classi�cation), we will also stumble upon the unavoidable task of estimating
the ratio of two probability densities. The di�erence from previous work is that we use an improved
mutual information estimator and a constructive method of density-ratio estimation.

The reader might be wondering why do we need yet another MI estimator. The answer is that the
estimator in Expression (3) will be very susceptible to errors in the estimation of the involved ratios,
since log(z) goes to −∞ very fast when z → 0� Figure 1. Any estimation error of the ratios that may
happen in this direction will be greatly magni�ed, causing a large error in MI estimation. Fortunately,
there is an equivalent formulation for MI [Vapnik et al. 2014] which provides a more robust estimator
by considering the better behaved function z log(z) � Figure 1. Even though z log(z) goes to ∞
faster than log(z) when z →∞, the value of z will be bounded from above in MI estimation.

In order to arrive at this improved estimator, let us �rst rewrite I(X,Y ) as

I(X,Y ) =

∫
X

∫
Y

p(x, y)

p(x)p(y)
log

p(x, y)

p(x)p(y)
p(x)p(y) dx dy = EXEY [r(x, y) log r(x, y)], (4)

where E is the expectation operator and r(x, y) = p(x,y)
p(x)p(y) is a density-ratio function. Whenever Y

takes only on a �nite number of values {a1, . . . , am}, Expression (4) is written as

I(X,Y ) =

m∑
i=1

p(ai)EX [r(x, ai) log r(x, ai)]. (5)

In this case, r(x, ai) =
p(x|ai)
p(x) can be considered as a density-ratio function that depends only on x.

Therefore, the problem of estimating the mutual information in classi�cation settings is equivalent
to estimating the value I(X,Y ) in Expression (5) when the densities p(x, y), p(x), and the probability

p(y) are unknown but a sample (x1, y1), . . . , (xn, yn)
i.i.d∼ p(x, y) is available. Denoting by ni the

number of elements from class ai and considering that n = n1 + . . .+ nm, the probabilities p(ai) can
be readily estimated by pi =

ni

n . Using the values pi and approximating the expectation in Expression
(5) by its empirical average, we arrive at the following estimator for I(X,Y )

Î(X,Y ) =
1

n

m∑
i=1

pi

n∑
j=1

r(xj , ai) log r(xj , ai). (6)
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Fig. 1. Plot of functions log(z) and z log(z). In MI estimation, z will be an estimated ratio value. Hence, the estimated
value of z log(z) is less susceptible to estimation errors than log(z) (see the explanation in the above paragraph).
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When the n values of the m di�erent density ratios r(xj , ai) are known, the consistency of Î(X,Y )
is guaranteed by the law of large numbers as n → ∞. As these ratios are not known in advance, we
show in the next section a constructive method for estimating them from data. Note that, when only
two classes exist, just n values r(x1, a1), . . . , r(xn, a1) need to be estimated, since the other n values
r(x1, a2), . . . , r(xn, a2) can be computed from the �rst ones by applying the law of total probability.

3. CONSTRUCTIVE DENSITY-RATIO ESTIMATION

Several settings for the problem of density-ratio estimation have been proposed [Sugiyama et al. 2011].
Here we focus on a recently developed one, which is distinguished by being constructive, i.e for an
increasing amount of data, the method provides solutions that converge in probability to the real
density ratio regardless of the choice of metric used for evaluating the distance between the solutions
and the real density ratio. For brevity, we omit the derivations. The reader is referred to [Vapnik et al.
2014] for details. Hereafter, we consider a random vector X = (X1, . . . , Xd), although the notation
used will be that of random variables.

In the realm of mathematical statistics, the density function p(x) of X (if it exists) is de�ned as

the derivative of the cumulative distribution function P (x) of X: p(x) = dP (x)
dx . Let us consider two

probability densities p(x) and q(x). When q(x) > 0, the density-ratio function between p(x) and q(x)
is de�ned as

r(x) =
dP (x)/dx

dQ(x)/dx
=
p(x)

q(x)
. (7)

From the �rst equality in Expression (7), the problem of estimating the density ratio from data is
the problem of solving the integral equation∫ x

−∞
r(t) dQ(t) = P (x) (8)

when the distribution functions P (x) and Q(x) are unknown but samples x1, . . . , x`
i.i.d∼ P (x) and

x′1, . . . , x
′
n

i.i.d∼ Q(x) are given. The constructive setting of this problem is to solve Expression (8)
using the empirical (multidimensional) cumulative distribution functions1

P`(x) =
1

`

∑̀
i=1

d∏
k=1

θ(xk − xki ) and Qn(x) =
1

n

n∑
i=1

d∏
k=1

θ(xk − xk
′

i ),

instead of the actual cumulative distributions Q(x) and P (x). It is known that any cumulative
distribution is well-approximated by the empirical cumulative distribution function and that fast
convergence takes place [Vapnik 1998, Section 4.9.3] � Figure 2.

Solving the integral equation in Expression (8) using approximations to its right hand side and to
its integral operator is ill-posed [Vapnik 1998, Section 1.12], which means that these approximations
can lead to large deviations in the �nal solution r(x). In order to solve it properly, the regularization
method must be used. In accordance with this method, the following minimization problem, param-
eterized by γ > 0, can be considered for obtaining estimates of r(x) at the �denominator points�
x′1, . . . , x

′
n [Vapnik et al. 2014]:

argmin
r(x′

1),...,r(x
′
n)

 ∥∥∥∥∥ 1n
n∑

i=1

r(x′i) θ(x− x′i)−
1

`

∑̀
i=1

θ(x− xi)

∥∥∥∥∥
2

L2

+ γ

∫
r(t)2 dQn(t)

 . (9)

1Step-function θ(t) is de�ned as θ(t) =

{
1, if t ≥ 0
0, otherwise.
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Fig. 2. Cumulative distribution functions (in blue) of a univariate Gaussian distribution and its empirical distribution
(ECDF, step function in black) based on points drawn from the same distribution.

Denoting by ~r the n × 1 vector [r(x′1), . . . , r(x
′
n)]
>
and by ~1 the ` × 1 vector [1, . . . , 1]

>
, the opti-

mization problem in Expression (9) has the following form in vector-matrix notation

argmin
~r

[
1

2
~r>V ′′~r − n

`
~r>V ′~1 +

γ

n
~r>~r

]
. (10)

This density-ratio estimation method is termed DRE-V. The elements of the matrices V ′′ and V ′ come
from the expansion of the �rst term (norm) in Expression (9), and are computed from sampled data.
For a �xed value of γ, the optimization problem in Expression (10) can be constrained to take into
account the positivity of ~r, in which case a standard quadratic optimization routine can be used to
solve it. For the unconstrained problem, the minimum of this functional may be computed faster by
just solving a system of linear equations (O(n3) time complexity in the worst case for a dense system).

Obtaining good estimates of the density ratio using �nite samples depends on the proper selection
of the regularization parameter γ. In DRE-V, this selection is carried out by cross-validation on
several candidate values of γ [Vapnik et al. 2014, Section 7]. A special feature of the unconstrained
optimization problem in Expression (10) is that a leave-one-out cross-validation procedure can be
leveraged with the same computational complexity of solving the problem for a single value of γ, for this
optimization problem has the same structure as that of the Regularized Least-Squares method [Rifkin
2006]. For the experiments in Section 5, we exploit this special feature for selecting γ. The constrained
problem is used only to obtain the �nal solution.

From now on, we employ the name VMI to refer to the method of MI estimation that uses DRE-
V to estimate the density ratios in Expression (6). This estimator has some advantages over the
Edgeworth and k-NN estimators, for it is non-parametric and its parameter γ can be optimized using
the available data. Moreover, VMI uses a method of density-ratio estimation that was experimentally
shown to outperform KLIEP [Vapnik et al. 2014], the latter being the estimator used in MLMI.

4. FEATURE SELECTION BASED ON MUTUAL INFORMATION

In this section, we describe how mutual information estimation can be used as a component of a
feature selection scheme in classi�cation tasks. Remind that in feature selection the goal is to use
only a fraction of the original d features used to describe the training set (x1, y1), . . . , (xn, yn), xi =
[x1i , . . . , x

d
i ]. The need for such procedure may have di�erent reasons, the most common ones being:

1) only a small portion of the features are relevant to discriminate the classes; or 2) too many features
are available, rendering the training phase of a classi�er computationally unfeasible.

From the theoretical point of view, this problem breaks down into two stages:
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(1) Among the original d features, select the k features that provide the largest mutual information
towards the target variable Y ;

(2) Train a classi�er using the training set restricted to the k selected features.

Taking mutual information as a criterion of feature set importance is justi�ed for it bounds the
probability of erroneous classi�cation of the optimal decision rule � the so-called Bayes function. A
higher value of I(X,Y ) implies a smaller probability of erroneous classi�cation of the optimal decision
rule. To illustrate this relationship, consider Figure 3. Each one of the four scatter plots depicts
two-class data points sampled from a di�erent arti�cial two-dimensional feature model. Since the
model used to generate the data is known, the mutual information I(X,Y ) = I([X1, X2], Y ) can be
calculated in each case. This illustration shows that, as mutual information increases, the clearer is
the separation between the points from the two classes.

Given enough time and data, it would be possible to estimate mutual information for each com-
bination of d features taken k at a time and, afterwards, choose the k-combination with the largest
estimated value of MI. However, this is unfeasible in practice. Data is usually scarce, which impairs
k-dimensional density-ratio estimation when k is large. In addition, even if we had enough data for
estimating the density ratio for a single combination of k features, the time it would take to run this
procedure for all possible combinations of features is prohibitive for typical2 values of k and d.

2For instance, for k = 4 and d = 100, around 4 million combinations should be investigated. The number goes up to
around 400 billion combinations if k = 4 and d = 1000.

(a) I(X,Y ) = 0.10 (b) I(X,Y ) = 0.30

(c) I(X,Y ) = 0.99 (d) I(X,Y ) = 0.56

Fig. 3. Mutual information and a data sample of 120 points divided into two classes (circle/solid circle) for di�erent
two-dimensional models.
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Thus, the problem of feature selection as posed in this section requires a lot of engineering, in
which restrictions imposed by the real world play a prominent role. All sorts of heuristics have been
employed over the years to deal with this problem [Guyon and Elissee� 2003]. Some of them may
not even have an explicit connection to mutual information. In this work, we employ a heuristic
that does not give up on mutual information entirely: it tries to estimate mutual information for
low-order combinations of features (say, pairs of features), and, afterwards, selects k features based on
these estimates. In [Brown et al. 2012], several methods following this heuristic are investigated. The
conclusion was that the Joint Mutual Information (JMI) method [Yang and Moody 1999] was one of
the best methods of this category. Hence, we use JMI in our feature selection experiments described
in the next section.

The JMI procedure � which is a kind of forward selection � goes as follows. After the value of
mutual information I([Xi, Xj ], Y ) is estimated for every pair of features (i, j) using the training set
(x1, y1), . . . , (xn, yn), the pair with the largest I([Xi, Xj ], Y ) is singled out to compose the initial set
of selected features S. If k > 2, the method iterates over the remaining features, adding to S the
feature j that maximizes ∑

i∈S
I([Xi, Xj ], Y ).

The running time of this procedure is dominated by the estimation of the mutual information for
each pair of features. As datasets with 10000 features �gure in our experimental evaluation, the
whole procedure would be very time consuming. In these cases only, we rely on one-dimensional
mutual information estimation to reduce our working set of features. More precisely, we restrict the
application of JMI to the 50 features with the largest value of the estimated I(Xi, Y ).

5. EXPERIMENTS

The present experimental evaluation was conducted to guide the evaluation of the new approach
of mutual information estimation based on both Expression (6) and the constructive density-ratio
estimation method. For this, we use the simplest constructive density-ratio estimator: DRE-V [Vapnik
et al. 2014]. For comparison, we evaluate our approach against the popular k-NN and Edgeworth
(EDGEW) approaches and the MLMI [Suzuki et al. 2009] estimator.

First, we conducted experiments in 10 synthetic two-dimensional datasets. The 2D estimation
case is important, since it provides the basis for a number of existing feature selection algorithms,
as mentioned in Section 4. Using synthetic data allows us to compare the obtained estimates with
the real value of mutual information. Due to lack of space, a detailed description of these synthetic
models is provided online3. We consider datasets of size n = 40, 100, 200 and 400. For each sample

size, 20 di�erent samples are used for estimating I(X,Y ). The relative estimation error Î−Ireal

Ireal
of

each method is averaged over these 20 samples.

Table I reports the results of these experiments. In Table II, we present a summary for each method
of how many times their average MI estimation error was the smallest for a given dataset and sample
size, and also how many times it exceeded 50%. Note that VMI achieves the highest counts in �Best�
and the lowest in �50%�, with the exception of sample size 40, where all methods tend to achieve poor
results. The MLMI method delivers the worst results in most cases. The Edgeworth estimator starts
delivering reasonable results only when the sample size reaches 400. Finally, the k-NN estimators
deliver very similar performances for the tested values of k. It is worth remembering that, even if the
k-NN estimator could obtain better performance with a larger value of k, there is no way of selecting
the best value of k in mutual information estimation.

3 http://sites.google.com/site/igorabmi/
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Table I. Mean and standard deviation of the relative mutual information estimation error Î−Ireal
Ireal

Model Real MI n VMI MLMI EDGEW 3-NN 5-NN 7-NN
40 0.10 (0.11) 0.08 (0.06) 0.08 (0.11) 0.20 (0.10) 0.17 (0.14) 0.21 (0.13)

1 0.10 100 0.03 (0.02) 0.14 (0.19) 0.05 (0.03) 0.10 (0.04) 0.10 (0.08) 0.13 (0.10)
200 0.03 (0.02) 0.10 (0.04) 0.04 (0.02) 0.08 (0.06) 0.07 (0.04) 0.05 (0.04)
400 0.02 (0.01) 0.05 (0.02) 0.04 (0.01) 0.05 (0.04) 0.03 (0.03) 0.03 (0.03)
40 0.10 (0.07) 0.09 (0.09) 0.10 (0.05) 0.19 (0.18) 0.30 (0.13) 0.34 (0.16)

2 0.23 100 0.08 (0.06) 0.10 (0.05) 0.12 (0.04) 0.08 (0.07) 0.13 (0.08) 0.16 (0.10)
200 0.05 (0.03) 0.11 (0.03) 0.12 (0.03) 0.08 (0.04) 0.09 (0.06) 0.10 (0.07)
400 0.03 (0.02) 0.04 (0.04) 0.13 (0.01) 0.07 (0.04) 0.05 (0.04) 0.06 (0.05)
40 0.16 (0.11) 0.10 (0.08) 0.11 (0.11) 0.16 (0.13) 0.19 (0.12) 0.24 (0.14)

3 0.25 100 0.06 (0.05) 0.08 (0.06) 0.08 (0.06) 0.11 (0.11) 0.09 (0.07) 0.11 (0.09)
200 0.04 (0.03) 0.06 (0.03) 0.05 (0.05) 0.05 (0.04) 0.08 (0.05) 0.08 (0.06)
400 0.04 (0.03) 0.04 (0.03) 0.04 (0.04) 0.05 (0.04) 0.05 (0.03) 0.06 (0.04)
40 0.04 (0.05) 0.05 (0.05) 0.10 (0.09) 0.14 (0.12) 0.12 (0.10) 0.11 (0.10)

4 0.03 100 0.02 (0.04) 0.10 (0.28) 0.04 (0.04) 0.08 (0.07) 0.07 (0.07) 0.06 (0.05)
200 0.02 (0.02) 0.06 (0.08) 0.04 (0.04) 0.07 (0.05) 0.05 (0.03) 0.05 (0.03)
400 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.05 (0.05) 0.05 (0.04) 0.04 (0.03)
40 0.16 (0.10) 0.36 (0.60) 0.13 (0.16) 0.21 (0.16) 0.16 (0.11) 0.20 (0.12)

5 0.25 100 0.10 (0.06) 0.15 (0.05) 0.05 (0.04) 0.11 (0.08) 0.05 (0.05) 0.06 (0.05)
200 0.07 (0.04) 0.10 (0.06) 0.05 (0.04) 0.07 (0.07) 0.07 (0.06) 0.06 (0.05)
400 0.03 (0.02) 0.02 (0.02) 0.03 (0.02) 0.05 (0.04) 0.04 (0.03) 0.03 (0.03)
40 0.21 (0.31) 0.05 (0.05) 0.16 (0.11) 0.07 (0.04) 0.11 (0.10) 0.19 (0.20)

6 0.90 100 0.06 (0.04) 0.09 (0.02) 0.10 (0.06) 0.04 (0.03) 0.04 (0.02) 0.04 (0.02)
200 0.04 (0.03) 0.05 (0.02) 0.04 (0.03) 0.04 (0.02) 0.04 (0.02) 0.04 (0.02)
400 0.03 (0.02) 0.06 (0.04) 0.05 (0.04) 0.03 (0.02) 0.03 (0.02) 0.03 (0.02)
40 0.05 (0.04) 0.09 (0.04) 0.09 (0.09) 0.14 (0.10) 0.11 (0.10) 0.11 (0.10)

7 0.07 100 0.04 (0.02) 0.18 (0.35) 0.05 (0.04) 0.09 (0.07) 0.06 (0.05) 0.06 (0.05)
200 0.03 (0.01) 0.08 (0.10) 0.04 (0.03) 0.05 (0.04) 0.05 (0.04) 0.05 (0.04)
400 0.03 (0.01) 0.05 (0.03) 0.03 (0.03) 0.05 (0.04) 0.04 (0.03) 0.04 (0.02)
40 0.17 (0.17) 0.08 (0.07) 0.15 (0.16) 0.13 (0.09) 0.11 (0.10) 0.21 (0.14)

8 0.67 100 0.08 (0.07) 0.08 (0.06) 0.12 (0.08) 0.09 (0.08) 0.11 (0.07) 0.10 (0.07)
200 0.06 (0.04) 0.03 (0.03) 0.08 (0.06) 0.08 (0.05) 0.07 (0.05) 0.07 (0.04)
400 0.03 (0.03) 0.05 (0.02) 0.10 (0.04) 0.04 (0.03) 0.05 (0.03) 0.06 (0.03)
40 0.27 (0.06) 0.38 (0.37) 0.20 (0.13) 0.32 (0.20) 0.39 (0.16) 0.43 (0.13)

9 0.33 100 0.15 (0.08) 0.23 (0.08) 0.20 (0.26) 0.19 (0.09) 0.24 (0.10) 0.26 (0.07)
200 0.12 (0.04) 0.10 (0.09) 0.15 (0.11) 0.14 (0.09) 0.16 (0.07) 0.19 (0.05)
400 0.10 (0.02) 0.25 (0.04) 0.08 (0.09) 0.11 (0.05) 0.11 (0.05) 0.12 (0.05)
40 0.19 (0.05) 0.31 (0.51) 0.20 (0.06) 0.32 (0.21) 0.31 (0.15) 0.38 (0.17)

10 0.24 100 0.16 (0.06) 0.23 (0.04) 0.21 (0.05) 0.20 (0.08) 0.23 (0.09) 0.22 (0.07)
200 0.09 (0.05) 0.19 (0.08) 0.19 (0.03) 0.11 (0.07) 0.14 (0.08) 0.16 (0.08)
400 0.06 (0.03) 0.23 (0.05) 0.18 (0.01) 0.08 (0.04) 0.10 (0.05) 0.11 (0.04)

Table II. (Best) Count of datasets in which each method achieved the smallest error. ( > 50%) Count of datasets in

which each method achieved Î−Ireal
Ireal

> 50%.

n VMI MLMI EDGEW 3-NN 5-NN 7-NN

Best 40 3 5 3 0 0 0
100 8 1 1 2 2 1
200 7 2 2 1 1 1
400 8 2 5 1 1 1

> 50% 40 6 5 5 6 6 6
100 3 6 5 4 4 4
200 1 4 4 2 4 4
400 1 5 3 2 2 2

Now we proceed to the second batch of experiments, this time conducting feature selection in
classi�cation tasks. We considered 10 binary classi�cation datasets4, and a 10-fold cross-validation
procedure to generate 10 pairs of training and test sets. Each feature in the training set was normalized
to have zero mean and unit variance. The scale factors obtained for the training set were also applied
for normalizing the test set. Normalized values greater than 3 or less than -3 were set to 3 and -3
(resp.) in both training and test sets.

4See footnote 3.
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Table III. Mean and standard deviation of the balanced error of an SVM classi�er after the selection of the best 5 or
10 features according to several methods. Also shown are the size of the dataset (n), the number of features (d), the
proportion of minority-class examples (% Min.), and the SVM balanced error using all features (All Feat.).

Dataset n % Min. d All Feat. k VMI MLMI EDGEW k-NN
Arcene 200 44 10000 0.14 (0.04) 5 0.25 (0.08) 0.25 (0.09) 0.41 (0.06) 0.26 (0.09)

10 0.19 (0.09) 0.23 (0.09) 0.40 (0.05) 0.23 (0.09)
Lung-Uterus 250 50 10936 0.07 (0.05) 5 0.09 (0.03) 0.11 (0.05) 0.13 (0.06) 0.07 (0.05)

10 0.07 (0.03) 0.07 (0.03) 0.10 (0.03) 0.06 (0.05)
Ovary-Kidney 458 43 10936 0.03 (0.03) 5 0.04 (0.02) 0.06 (0.04) 0.18 (0.11) 0.03 (0.03)

10 0.03 (0.02) 0.05 (0.03) 0.08 (0.03) 0.03 (0.03)
Biodeg 1055 34 41 0.13 (0.03) 5 0.19 (0.03) 0.32 (0.03) 0.42 (0.03) 0.19 (0.03)

10 0.18 (0.03) 0.27 (0.04) 0.28 (0.04) 0.15 (0.03)
Climate 540 9 18 0.11 (0.07) 5 0.10 (0.08) 0.09 (0.06) 0.11 (0.08) 0.10 (0.07)

10 0.12 (0.09) 0.09 (0.06) 0.16 (0.12) 0.09 (0.08)
Ionosphere 351 36 34 0.06 (0.03) 5 0.08 (0.05) 0.16 (0.07) 0.10 (0.05) 0.14 (0.05)

10 0.07 (0.04) 0.08 (0.04) 0.08 (0.05) 0.11 (0.03)
Parkinson's 195 25 22 0.07 (0.07) 5 0.13 (0.10) 0.15 (0.10) 0.13 (0.08) 0.10 (0.06)

10 0.11 (0.08) 0.08 (0.08) 0.09 (0.09) 0.13 (0.09)
WPBC 194 24 33 0.34 (0.09) 5 0.41 (0.08) 0.37 (0.09) 0.33 (0.12) 0.37 (0.11)

10 0.34 (0.12) 0.29 (0.12) 0.33 (0.09) 0.32 (0.11)
WDBC 569 37 30 0.02 (0.02) 5 0.06 (0.03) 0.05 (0.02) 0.10 (0.05) 0.05 (0.02)

10 0.04 (0.02) 0.05 (0.02) 0.05 (0.03) 0.03 (0.02)
Sonar 208 47 60 0.14 (0.07) 5 0.27 (0.09) 0.22 (0.08) 0.27 (0.08) 0.22 (0.09)

10 0.16 (0.08) 0.18 (0.09) 0.22 (0.11) 0.18 (0.09)

The mutual information between each pair of features and the target class was estimated using a
�xed mutual information estimation method and the normalized training examples for the dataset.
Then, 5 (or 10) features were selected by the JMI procedure described in Section 4, and an SVM
classi�er5 was obtained from the normalized training set restricted to those selected features. The
balanced error rate6 of the resulting classi�er was veri�ed on the normalized test set restricted to the
same 5 (or 10) features. To add perspective, we also report the balanced error rate for the classi�er
obtained on all features.

Here, the application of the k-NN estimator is distinct from that of the previous set of experiments.
We can treat k as just another parameter to be selected in the parameter selection procedure for SVM.
This way, we optimized the parameter k not for mutual information estimation per se, but directly
for feature selection. We could have applied the same procedure to estimate the parameters of MLMI
and VMI, yet we chose not to do so in order to evaluate whether better mutual information estimation
leads to better feature selection.

The full set of results is presented in Table III. By ordering the mutual information estimators
from the lowest (best) balanced error to the highest (worst) one in each row of the table, we arrive at
the following average ranking for the methods: 2.0 for k-NN, 2.2 for VMI, 2.4 for MLMI, and 3.4 for
EDGEW. This ranking puts the feature selection scheme using the k-NN estimator as the best one.
This result alone should come with no surprise, since the parameter k is being optimized directly for
feature selection. Also, notice that the best performing method for a �xed dataset often varies.

Now we focus on just those cases that rely only on mutual information estimation, that is, VMI,
MLMI, and EDGEW. It is clear that the Edgeworth estimator leads to the worst classi�cation results.
According to the average ranking, VMI has a slight advantage over MLMI. However, the average
ranking discards the magnitude of the di�erences in classi�cation error. This way, let us compare the
results of VMI and MLMI where the largest discrepancies occurred: in favor of VMI, Ionosphere and
Biodeg; and in favor of MLMI, Sonar and WPBC. Notice that the discrepancy in performance when
VMI loses is not as large as the opposite. Thus, VMI led to safer feature selection than MLMI.

5For SVM, we use an RBF kernel. The parameters C and σ were selected using grid-search [Braga et al. 2013].
6The balanced error gives the same weight to the errors within each class.
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6. CONCLUSION

In this work we investigated VMI, a new mutual information estimation method that was observed
experimentally to be more accurate than previous estimators like MLMI, Edgeworth, and k-NN. Along
with this observation, experiments that employed MI estimation for feature selection evidenced that
better feature selection can be achieved by using VMI instead of MLMI or Edgeworth.

These results allows us to conclude that better mutual information estimation is a way of achieving
better feature selection. However, as the experiments with the k-NN estimator indicate, it is not the
only way: by optimizing the parameter k directly for feature selection, the k-NN estimator obtained
the best results among the four investigated methods. As the k-NN estimator was not the best mutual
information estimator in our experiments, these results point to a class of feature selection methods
that rely on the identi�cation of feature sets that have a large value of mutual information towards
the target class. This identi�cation task comprises another research line on feature selection, as it is
di�erent from (and may be simpler than) the estimation of the value of MI.

For now, we are left with the question: by considering better mutual information estimation, can we
hope to construct state-of-the-art methods of feature selection? By using a more principled density-
ratio estimation method, it is possible to achieve better mutual information estimation using the
approach taken in this work. Taking into account that the particular estimator used in our exper-
iments is the simplest instance of the constructive density-ratio estimation method, exploring more
sophisticated instances is a good opportunity to check this question.
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