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Abstract. Slim2-tree is a multimodal metric tree which enables video indexing and retrieval by using information
from multiple modalities. Experimental results have demonstrated its e�ciency when compared to other multimodal
solutions. This article explores di�erent strategies related to the use of a post-processing algorithm for the Slim2-tree �
named multimodal Slim-down, which tries to minimize the overlap between tree nodes. Experiments have also shown
the performance improvement obtained by the policy, in which any element that presents the larger distance value to
the pivot for any modality is selected as candidate to be moved. Moreover the results are better when that policy is
repeatedly used during insertion.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems�Multimedia databases; H.3.1 [Infor-
mation Storage and Retrieval]: Content Analysis and Indexing�Indexing methods; H.3.3 [Information Storage

and Retrieval]: Information Search and Retrieval�Retrieval models and Search process
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1. INTRODUCTION

Video is an e�ective medium for storing information about events of the real world, and a vast amount
of video materials exists, covering a wide range of applications. However, widespread use of video in
computer applications is often prohibited by the lack of e�ective tools to store, index and recover this
type of media. To avoid misunderstanding, in this article a digital video encompasses information
from di�erent data sources, such as visual and acoustic data. The trivial way to implement video
query systems is through the use of previously registered annotations for each video in the database.

This approach may be inadequate for large databases of videos, since it involves great human e�ort
in generating annotations [Shao et al. 2008]. Furthermore, ambiguous or incomplete descriptions can
negatively impact search results. Therefore, the use of the video content for indexing and retrieval may
provide an alternative approach, which gives rise to content-based video retrieval systems (Content-
Based Video Retrieval � CBVR). In this scenario, similarity search is the fundamental tool for those
systems, and there were several studies in the last two decades about this topic [Almeida et al. 2010].
However, similarity search for digital videos has been generally focused solely on the use of visual
data, completely neglecting another important source of video information � the acoustic track.

This article is an enhanced version of a previous work [Sperandio et al. 2013] that proposes a new
multimodal metric tree � Slim2-tree � which enables video indexing and retrieval by using information
from multiple modalities. Experimental results have shown its e�ciency when compared to other
multimodal solutions. It is worth mentioning that tests results have also shown that Slim2-tree
supports queries using only one modality with a computational cost similar to a unimodal solution.
This is an important property of Slim2-tree, since it can be used instead of several others.
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This article has the following improvements on top of the previous work: (i) the text have been
reviewed and only the major issues related to the creation and use of Slim2-tree remain; (ii) the
dataset is better described and some frame samples are presented; (iii) a detailed description of a
multimodal post-processing algorithm � named multimodal Slim-down � is given; and (iv) di�erent
strategies related to the use of multimodal Slim-down (i.e., policies for choosing elements to be moved
and the context for its application) are fully described and evaluated. Experiments have also shown
that multimodal Slim-down can improve the test results, specially when the candidate to be moved
de�nes at least one of the radii of the hyperregion associated with the tree node.

The remainder of this article is organized as follows. Section 2 covers the main concepts and related
works. The new multimodal metric index structure � Slim2-tree � is brie�y reviewed in Section 3.
Section 4 gives a detail description of the multimodal Slim-down along with di�erent strategies for
its use. In Section 5, experimental results are shown and analyzed. Finally, Section 6 draws some
conclusions and proposes future directions for research.

2. RELATED WORK

The support to multimodal queries � the ones that involve data from di�erent nature, such as visual
and acoustic � is extremely valuable for CBVR. For example, queries such as ��nd news videos in
which president Dilma Rousse� talks about 2014 FIFA World Cup� require more than one modality to
be answered adequately. According to [Atrey et al. 2010; Yan and Hauptmann 2007], the combination
of multiple modalities may consistently improve, in terms of precision, the obtained results when
compared to the use of each modality separately. However, the use of multiple modalities involves
the adoption of a fusion strategy. In [Atrey et al. 2010], di�erent fusion techniques are described
and analyzed, specially early fusion techniques, in which several features extracted from the data
are combined before their e�ective use; and late fusion techniques, in which features are processed
separately and their results are combined later.

The need of indexing and retrieval of more complex types of data, such as images, sounds, videos,
and others, initiated a series of studies, since these types of data are not totally ordered. Techniques,
such as R-tree and KD-tree, among others, are based on vector space [Gaede and Günther 1998] and
represent data as points in the space in order to group and organize the information that they represent.
However, for CBVR the huge number of dimensions generates a performance problem known as �the
curse of dimensionality� [Chávez et al. 2001]. For this scenario, metric access methods were developed
to support similarity queries based on a distance function used to measure the (dis)similarity between
data. These methods are based on the following approach: partitioning the set of objects using a
distance function and choosing one of them as the representative (pivot) of the entire set. During the
search, the representatives are used to reduce the search space using the triangular inequality � which
allows the computation of lower and upper bounds for the distances between the query object and
every element of a set based on the distance between the query object and the set pivot.

The �rst metric access methods proposed in the literature, such as VP-tree and FQ-tree, were static,
and they did not support neither insertions nor removals after their creation. The �rst dynamic metric
access method was M-tree [Ciaccia et al. 1997]. It is a balanced tree, in which data are stored in the
leaves and internal nodes have pointers to direct the search to the correct leaf. This paradigm has
become very popular, and many access methods extending the original M-tree have been proposed.
In relation to this work, two extensions should be mentioned: Slim-tree and M2-tree.

The �rst one � Slim-tree � tries to minimize the overlapping between regions [Traina et al. 2000].
Similar to M-tree, the space is divided in regions (represented by subtrees) that are not disjoint. Each
one of those regions is de�ned by one representative object (Or) � used as reference to the others in
that subtree, and by a covering radius which should be large enough to cover all elements stored in
that subtree. This allows the search algorithms to ignore entire tree branches using the triangular
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inequality. Beyond that, Slim-tree tries to minimize the overlapping between regions by applying a
heuristic called Slim-down which moves objects between leaf nodes in order to reduce the covering
radius of those nodes. During insertion, Slim-tree has also proposed a heuristic based on minimal
occupancy (MinOccup) � which is responsible for balancing the objects distribution among subtrees,
and the use of Minimum Spanning Tree (MST) for node splitting and pivot selection.

Another important extension of M-tree is M2-tree which was proposed to support complex queries
between objects represented by multiple feature descriptors [Ciaccia and Patella 2000]. This approach
combines in a single structure all descriptors related to di�erent metric spaces, allowing the use of
distinct distance functions for each feature. Besides, M2-tree adopts a monotonic increasing score
function to combine the distances of each distinct feature in a single value (early fusion) which is
used during insertion and search. Unfortunately, the authors only provide a very brief description of
it, i.e., they claim that M2-tree works in a very similar way to M-tree � using the same policies and
heuristics � except for the adoption of a score function to implement the early fusion.

Other structures for multiple features have also been proposed in the literature. In the MOSAIC-
tree [Goh and Tan 2000], each feature is stored in a distinct layer using R-trees. The leaf nodes from
a superior layer are connected to the root of the associated tree in the layer below. But the use of
multidimensional trees only allows its application with low dimensional feature descriptors due to �the
curse of dimensionality�. The MFI-tree [He and Yu 2010] adopts a single distance value calculated by
a linear combination of the several distances which is used to index the object. The major issue is how
to determine the weights for that linear combination in a scalable and data-independent approach, but
the authors left that problem for a future work. More recently, the TEMPOM2-tree [Döller et al. 2012]
proposes the use of two data structures in parallel, one is a M2-tree for content-based video indexing
and another for representing the video temporal structure. Finally, the M3-tree [Bustos et al. 2012]
allows searches through a dynamic combination of distinct metrics (de�ned by the user when a query
is executed), instead of using a �xed combination such as MFI-tree.

3. SLIM2-TREE

An e�cient access method for multimodal and unimodal video retrieval, named Slim2-tree, was pro-
posed in [Sperandio et al. 2013]. Here we brie�y review the major issues related to its creation and
use for performing similarity queries.

Slim2-tree supports the use of features from distinct domains (or modalities) in a single index
structure and it adopts a monotonic increasing score function for dealing with fusion (early fusion)
� similar to M2-tree, but one should notice that M2-tree only supports multimodal queries. Since
Slim2-tree borrows (and adapts to the �multimodal world �) some of the node management policies
used during insertion from the Slim-tree, it is named after it (although it is good to remember that a
single Slim-tree can not easily handle multimodal queries by itself).

Unimodal data structures, such asM-tree and Slim-tree, are capable of indexing objects from a single
metric spaceM = (D, d) � in which D represents the data domain and d is a (metric) distance function
used to assess the (dis)similarity between objects. Slim2-tree allows indexing of objects represented
by a collection of metric spaces Mn = {(Di, di),∀i = 1, . . . , n}, in a way that each pair (Di, di) is
associated with a di�erent modality. Since Slim2-tree nodes represent hyperregions of that collection
of metric spaces, it is possible to use triangular inequality for search and insertion operations. Thus,

Table I. Structure of an entry belonging to a leaf node.

Symbol De�nition

Oj .Fi Feature value for object Oj in domain (or modality) Di.
oid(Oj) Object identi�er Oj .

di(Oj , P (Oj)) Distance, in domain Di, from object Oj to its pivot.
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Table II. Structure of an entry belonging to an internal node.

Symbol De�nition

Or.Fi Feature value for representative Or in domain (or modality) Di.
ne Number of entries stored in subtree T (Or).

ptr(T (Or)) Pointer to the root of subtree T (Or).
ri(Or) Covering radius associated to object Or in domain Di.

di(Or, P (Or)) Distance, in domain Di, from object Or to its pivot.

there are n distinct domains Di, one for each modality, adopting a particular (and, perhaps, distinct)
distance function di de�ning a hyperregion that is associated to each Slim2-tree node. Therefore, the
hyperregion associated with a tree node is de�ned by all those n distance functions, and it is not
just a simple hypersphere (as in Slim-tree) but it represents the data space in a more complex way.
Thus, when n features F1, . . . , Fn are considered along with their distance functions d1, . . . , dn and a
representative object Or = (Or.F1, . . . , Or.Fn) ∈ D1 × . . .×Dn, the hyperregion associated to Or in
the collection of metric spaces Mn can be seen as the non negative orthant of the n domain space.

In a leaf node, an entry for each object Oj is used to store the object identi�er oid(Oj), the values
for its n features Fi ∀i = 1, . . . , n, along with n distance values di(Oj , P (Oj)) between Oj and its
parent (or pivot) P (Oj), i.e., the routing object Or which is stored in the node Np (from a level
immediately above the leaf node) and which is used to make a reference to node N (where object Oj

is stored). Table I presents the structure of an entry belonging to a leaf node. Thus, a leaf node entry
should be de�ned as follows:

entry(Oj) = 〈oid(Oj), array_of〈Oj .Fi, di(Oj , P (Oj)) ∀i = 1, . . . , n〉〉.

On the other hand, in an internal node, each entry for a routing object (or pivot) Or is used to
store: a pointer ptr(T (Or)) to the root of subtree T (Or) covered by (related to) the routing object
Or; the number of objects stored in the subtree T (Or); the n values for the features Fi assigned to the
routing object Or during promotion, along with n values for covering radii ri(Or) > 0 and n distance
values di(Or, P (Or)) between Or and its parent P (Or) which is stored in a higher level of the tree
(except for the tree root). Table II presents the structure of an entry belonging to an internal node.
Therefore, an internal node entry should be de�ned as follows:

entry(Or) = 〈ne, ptr(T (Or)), array_of〈Or.Fi, di(Or, P (Or)), ri(Or) ∀i = 1 . . . n〉〉.

The creation and use of Slim2-tree for performing similarity queries are delineated in the following.
In [Sperandio et al. 2014], all algorithms for creating and searching are fully described.

3.1 Construction of a Slim2-tree

The building algorithms for Slim2-tree specify how objects are inserted in the tree structure as well
as how node over�ows are treated. First, Slim2-tree building parameters should be set: the number
of modalities � n; the domain of each modality with its distance function, i.e., Mi = (Di, di),∀i =
1, . . . , n; the score function Sf to be used in early fusion strategy; and the maximum number of objects
per node � m. As shown in [Ciaccia and Patella 2000], any monotonic increasing function combining
the distances of all modalities could be used as score function, such as max{di,∀i = 1, . . . , n}, or∑

i=1,...,n θidi, with θi ≥ 0,∀i = 1, . . . , n and
∑

i=1,...,n θi = 1.

During the insertion of a new object, the procedure recursively descends the Slim2-tree trying to
locate the most suitable leaf node for accommodating the new object On. This could possibly trigger
a node split if the selected leaf is full. The principle used to select the most suitable leaf node to insert
the new object is to locate a subtree T (Or) which does not need an enlargement of its covering radii,
i.e., di(Or, On) ≤ ri(Or),∀i ∈ 1, . . . , n. If multiple subtrees are quali�ed, the choice is made using one

Journal of Information and Data Management, Vol. 5, No. 2, June 2014.



Exploring Strategies for Minimizing Overlap Between Nodes in a Multimodal Metric Tree · 5

of the following heuristics (which are similar to the ones of Slim-tree): (i) Random: choose a subtree
randomly; (ii) MinDist: choose the subtree whose pivot is closer to the new object; and (iii) MinOccup:
choose the subtree which contains the smallest number of objects. In this article, the choice of the
subtree where the new object is inserted is made by MinOccup since the authors in [Traina et al. 2000]
have demonstrated its e�ciency for Slim-tree.

The search for routing objects which do not need an enlargement in their covering radii is opti-
mized though the use of triangular inequality, reducing the computational cost since many distance
calculations are avoided. If there is no routing object satisfying di(Or, On) ≤ ri(Or),∀i ∈ 1, . . . , n,
the choice will be made heuristically minimizing the increasing of the score function Sf , i.e., choosing

a routing object Õr such as

Õr = argmin
Or

{Sf (di(Or, On)− ri(Or)),∀i ∈ 1, . . . , n},

and this is possible since Sf is monotonic increasing. Here, the main idea is to minimize the average
covering volume for each domain associated with the routing object.

Similar to what happens with other dynamic trees, Slim2-tree is built in a bottom-up approach.
When an over�ow occurs in a node N , a new sibling node N ′ is created (in the same level) and all
entries are divided between the two nodes. Moreover, the copies of two objects Or1 and Or2 are
selected and promoted to the father node and they will be used as pivots (routing objects) for the
new regions represented by the nodes N and N ′. When the tree root is divided, a new root is created
and the tree increases one level. An �ideal� policy for promotion should select two routing objects and
divide the other elements into two subsets in a way to reduce the regions volume and, consequently,
the overlapping between them. The division policy adopted in Slim2-tree follows an approach based
on MST � �rst used by Slim-tree � see [Sperandio et al. 2013; 2014] for a detailed description.

3.2 Processing Similarity Queries in Slim2-tree

Slim2-tree supports a multimodal range query (with a �xed value for search radius) and a multimodal
search for the k-nearest neighbors. More important, it also allows both multimodal and unimodal (in
which only one modality is used) search using the same structure for that.

Range queries in Slim2-tree could be unimodal � in which only one modality is considered � or
multimodal, when the score function is used to analyze all modalities simultaneously. Given a
collection of indexed objects C, a query object Oq and a query radius r(Oq), a unimodal range
query rangei(Oq, r(Oq), C) for a given modality i consists in returning all objects Oj ∈ C for which
di(Oj , Oq) ≤ r(Oq), for a given modality i. On the other hand, a multimodal range query using a mono-
tonic increasing score function Sf � rangeSf

(Oq, r(Oq), C) � consists in locating all objects Oj ∈ C for

which Sf (di(Oj , Oq),∀i = 1, . . . , n) ≤ r(Oq). It is worth mentioning that the score function Sf should
be the same used during insertions. Another range query that is possible to be made is a multimodal
search which allows distinct values for each modality radius ranger(Oq, r1(Oq), . . . , rn(Oq), C). In
this case, the search will return all objects Oj ∈ C for which di(Oj , Oq) ≤ ri(Oq),∀i = 1, . . . , n.

Search algorithms are omitted due to space limitations � see [Sperandio et al. 2013; 2014] for a
detailed description. In all of them, triangular inequality is used to optimize the search by reducing
the number of both distance calculations and disk accesses.

The kNN_Search algorithm searches for the k-nearest neighbors given a query object Oq � supposing
that Slim2-tree has at least k objects. The steps of the kNN_Search are similar to the ones of a range
search; however, the criteria used to obtain performance improvements are dynamic, since query radii
are de�ned based on the distances between Oq and Ok � which represents the k-th closest neighbor
in any moment during the search. The implementation of kNN_Search could also be unimodal or
multimodal � using only one feature and distance function for the unimodal case; or adopting the
score function Sf for the multimodal version � see [Sperandio et al. 2014].
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4. MULTIMODAL SLIM-DOWN ALGORITHM

Similarly to [Traina et al. 2000], a multimodal post-processing algorithm is proposed for Slim2-tree
� multimodal Slim-down. The main idea is to move an element from a leaf node to a sibling node
without increasing the radius (or radii) of the hyperregion associated with the receiving node. If the
selected object is the farthest from the pivot of the supplying node, this may allow a reduction of the
radius (radii) of the hyperregion associated with it. Therefore, the use of multimodal Slim-down may
help improving search performance of Slim2-tree, since it could minimize the overlap between nodes.

Multimodal Slim-down algorithm (see Algorithm 1 and Algorithm 2) is similar to the one adopted
by Slim-tree, i.e., the farthest object Of belonging to a node N (which is responsible for de�ning the
radii of the associated hyperregion) is selected and it is moved to a sibling node N ′ which already
covers the object, so there is no need of modifying the radii of N ′. This heuristic procedure is applied
until no more exchanges between nodes are possible or until the maximum number of iterations is
reached (to prevent an in�nite loop) � see lines 24�27 in Algorithm 2. However, since a Slim2-tree
node is associated with a hyperregion de�ned by multiple domains, di�erent policies could be used to
select the farthest object Of within a tree node N . Two of those policies are considered in this article
(see lines 15�20 in Algorithm 2): (i) POL1: choose the node element that presents all distance values
to the pivot (for each modality) larger than the others; and (ii) POL2: choose any node element that
presents the larger distance value to the pivot (for any modality) when compared to the others.

The �rst policy POL1 selects an element that is responsible for de�ning all the radii of the associated
hyperregion (this policy is the one implemented in line 16 of Algorithm 2), while the second policy
POL2 chooses any element associated with at least one of the radii of the hyperregion associated with
the node. POL2 is obtained by changing line 16 to one that looks for just one larger distance value,
i.e., ∃i ∈ 1, . . . , n | di(Oj , Op)) > Df [i] (line 18 should also be adjusted accordingly). Although
policy POL1 is more similar to the original unimodal version of Slim-down, in which generally only one
element is responsible for de�ning the radius of the hypersphere in Slim-tree, it may not provide the
best results since it might be harder to �nd an element that is solely responsible for de�ning all the
radii of the associated hyperregion, and, therefore, no object would be moved between nodes. On the
other hand, policy POL2 always �nds at least one candidate object which is related to the maximum
distance from the pivot for each modality and, consequently, it may produce better results.

Traina et al. [2000] only present results for one scenario of Slim-down application (i.e., when it
is executed after the tree creation), since they did not obtain di�erent results for distinct scenarios.
However, here two di�erent contexts are considered for the use of multimodal Slim-down: (i) SDW1:
when it is executed only once after the Slim2-tree is fully constructed; and (ii) SDW2: when it is
executed repeatedly after num_sdw insertions. There is a possible interference between the context
of application (SDW1 or SDW2) and the selected policy (POL1 or POL2). Actually, POL1 should only
be a�ected by SDW2 for very small values of num_sdw, since it would be easier to �nd an element
that were solely responsible for all radii of a tree node. For larger values of num_sdw, POL1 may

Algorithm 1 Multimodal Slim-down algorithm applied to Slim2-tree.
1: procedure SlimDown(RootNode)
2: num_repeat← 0

3: abort← false

4: repeat

5: moved← false

6: abort← SlimDownalyze(RootNode) . Starts recursive procedure.
7: if abort = true then

8: break

9: end if

10: until moved = true . Repeat again every time an object is moved.
11: end procedure
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Algorithm 2 Recursive procedure responsible for analyzing tree nodes and executing Slim-down.
1: procedure SlimDownalyze(N)
2: Input: N � Subtree root node (initially Slim

2
-tree root node).

3: if N ¬isLEAF then

4: for all Or ∈ N do . Recursively call to SlimDownalyze for each node entry.
5: abort← SlimDowalyze(ptr(Or))
6: if abort = true then

7: return abort;
8: end if

9: end for

10: else if N isLEAF and N ¬isROOT then . Try to reduce the overlap involving a leaf node.
11: Op ← Pivot(N) . Representative of N .
12: Of ← Op . Initialize the farthest element of N .
13: Df [i]← di(Of , Op)∀i ∈ 1, . . . , n . Initialize distances between Of and Op.
14: moved← false

15: for all Oj ∈ N do . Look for the farthest element of N .
16: if di(Oj , Op) > Df [i]∀i ∈ 1, . . . , n then

17: Of ← Oj . A new farthest element is found.
18: Df [i]← di(Oj , Op)∀i ∈ 1, . . . , n
19: end if

20: end for

21: Np ← Parent(N) . Parent node of N.
22: Ns ← N ∈ {Np \ {N}} . Set of siblings of N.
23: num_repeat← num_repeat + 1
24: if num_repeat > 3×NEntries(Np) then
25: abort← true . Maximum number of iteration is reached.
26: return abort
27: end if

28: for all N ′ ∈ Ns do . Search for suitable node among the siblings of N .
29: Op

′ ← Pivot(N ′)
30: if (di(Of , Op

′) ≤ ri(Op
′)∀i ∈ 1, . . . , n) and N ′ ¬isFULL then

31: moved← true . A suitable node is found.
32: break

33: end if

34: end for

35: if moved = true then

36: Move(Of , N,N ′) . Move Of from N to N ′.
37: end if

38: end if

39: end procedure

not promote any performance improvement, since it might be harder to �nd any suitable candidates.
This is similar to what it is expected when POL1 is applied at end of Slim-tree construction (SDW1).
However, POL2 may promote a greater improvement of Slim2-tree performance, since it might �nd
many candidates, especially when SDW2 is adopted (as shown in the analysis of test results).

5. EXPERIMENTAL RESULTS

In this section, we present some experiments in order to assess the performance of Slim2-tree. Our
video corpora consists of TV broadcast, recorded directly and continuously from cable TV channels,
and Internet retrieved videos. The dataset is composed by 48 videos of di�erent categories/genres,
like documentary, movie, news, TV series, and others (almost 21 hours). Each video was divided
in �xed length videoclips of 01 second and, then, each one of these clips has its visual and acoustic
features extracted and stored in the Slim2-tree � a total of 74,744 videoclips. Those short-length
videoclips were used to avoid degradation with time, especially in relation to the acoustic data which
may change a lot in a short period of time. Table III shows some information about our video dataset
and Fig. 1 presents some samples of frames belonging to videos from each distinct class of the dataset.
As one can see in Fig. 1, since videos were recorded continuously, the dataset presents a great variety
of content even inside of the same class. And this poses a great challenge during the search of some
videoclips among the others of the same class (as it will be shown forward), since for some classes
there is not a strong correlation (neither visual nor acoustic) among the contents of their videoclips.
The experiments were performed on a Xeon 2.40GHz with 48 GB of main memory. All structures
were implemented from scratch in Java under Debian Linux 3.9.8-1/OpenJDK RT (IcedTea 2.3.9).

Journal of Information and Data Management, Vol. 5, No. 2, June 2014.



8 · Ricardo C. Sperandio et al.

Table III. Information about video dataset and queries.

Category Class # Videos # Clips Length # Queries Percentage
Musical Adele 04 5,878 01:37:59 284 4.83%

RogerWaters 04 18,102 05:01:43 876 4.84%
Documentary Africa 03 2,701 00:45:01 89 3.30%

Ocean 01 2,699 00:44:59 129 4.78%
Sports F1 05 4,844 01:20:47 234 4.83%

Soccer 16 9,954 02:46:01 481 4.83%
News TV news 03 6,671 01:51:12 322 4.83%
Cartoon Simpsons 03 3,865 01:04:27 129 3.33%
Variety Nigella 03 5,169 01:26:10 235 4.55%

TopGear 03 11,027 03:03:48 538 4.88%
TV series BigBang 03 3,834 01:03:55 183 4.77%

Total 48 74,744 20:45:44 3,500 �

For each videoclip, only one visual keyframe is extracted (in the middle of the clip), while acoustic
frames of 01 second are sampled at 22.05 Hz (16 bits) monaural. In our experiments, visual data
are described using GIST [Oliva and Torralba 2001] and acoustic information is represented by Mel-
Frequency Cepstral Coe�cient � MFCC [Ganchev et al. 2005]. Most of the works using the GIST
descriptor resize the image in a preliminary stage, producing a small square image. Following [Douze
et al. 2009], we adopt a size of 32×32 pixels � and visual frames are rescaled to that size irrespective of
their aspect ratio. After resizing, color GIST descriptor is calculated for each visual frame producing
a 960-dimensional feature vector. In the acoustic domain, MFCC is used to describe the one-second
audio frames adopting a 40 ms window with 25% overlap which generates a 13-dimensional feature
vector for each window � those vectors are concatenated in a single 377-dimensional feature vector for
each acoustic frame. A simple min-max normalization is applied for both domains. Finally, a total
number of 149,488 (visual and acoustic) descriptors are stored in a Slim2-tree.

Since we are not able to �nd any data structure developed speci�cally for multimodal content-based
video retrieval, we compare the results of Slim2-tree with those obtained by an implementation of M2-
tree and by a late fusion strategy based on the combination of the results generated by two distinct
Slim-trees � one for each modality. We have also developed an implementation of M2-tree based on
the standard policies of M-tree, as described by its authors in [Ciaccia and Patella 2000]. The score
function Sf = max{di,∀i = 1, . . . , n} was used with Slim2-tree and M2-tree � the same function
adopted in [Ciaccia and Patella 2000]; and the maximum number of objects per node m is set to 30.

Tests were made using a set of 3,500 queries selected randomly from the dataset (≈ 5% of the video

(a) Adele (b) RogerWaters

(c) Africa (d) Ocean

(e) F1 (f) Soccer

(g) TV News (h) Simpsons

(i) Nigella (j) TopGear

(k) BigBang

Fig. 1. Some samples of frames belonging to videos from each distinct class of the dataset.
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Fig. 2. Average precision and time for multimodal k-NN search (Global).

dataset). Table III also presents information about the query clips. In order to evaluate query results,
we consider as correct (relevant) answers any clip that belongs to the same class of the query. This
was done due to the lack of a standard benchmark for evaluating multimodal CBVR using visual
and acoustic data. Moreover, the use of this criteria to establish a ground-truth emulates better the
subjective evaluation found in a human assessment.

5.1 Results for Similarity Queries

Fig. 2(a) presents average precision values obtained by Slim2-tree, M2-tree, and late fusion strategy
for all 3,500 queries. It can be easily seen that Slim2-tree and M2-tree present similar results and both
are superior to those of late fusion strategy. Moreover, the mean average precision � MAP values
obtained by Slim2-tree, M2-tree and late fusion strategy are 21.62%, 21.62% and 21.45%, respectively
(which are statistically equivalent with a con�dence level of 95%), but they present distinct values
for computational time. Fig. 2(b) shows the average time per query associated with Slim2-tree, M2-
tree and late fusion strategy, while Fig. 3 presents the average number of disk accesses and distance
calculations for multimodal k-NN search. Slim2-tree exhibits an expressive reduction of the disk
accesses when compared to the other approaches (≈ 40%). Considering the distance calculations,
Slim2-tree and M2-tree have presented very similar results (less than 1.3% of di�erence). In Fig. 4,
the average precision values for some video classes are shown (one class for each category). It is worth
mentioning that results obtained by both Slim2-tree and M2-tree are superior to the ones achieved
by late fusion strategy. In particular, the improvement is larger for categories and classes in which
there is a greater correlation between visual and acoustic content, as well as in the situations when
they exhibit little variability through the entire duration of the video content, because this may help
in the recognition of a clip of the same class � see the results obtained for classes Adele and F1.

Slim2-tree also performs unimodal search (based on only one modality). In order to assess this
capacity, the results obtained for unimodal search by Slim2-tree are compared to those obtained by a
Slim-tree using only one modality and by an adaptation of M2-tree developed for this purpose (notice
that the original version of M2-tree does not exhibit that capacity). Since those methods are exact,
precision results obtained by these three approaches are identical (which was already expected), but
the computational cost associated with the unimodal search made by Slim2-tree is very close to the
one presented by the unimodal search made by a Slim-tree using only one modality. Fig. 5(a) presents
the average values of disk accesses and distance calculations for the k-NN search using only visual
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Fig. 3. Avg. number of disk accesses and distance calculations for multimodal k-NN search (Global). The number of
disk accesses for sequential access is omitted since it is much larger than the others.
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Fig. 4. Average precision per class for multimodal k-NN search.

modality, while Fig. 5(b) shows the same metrics when only acoustic modality is used. Considering
the distance calculations, both Slim2-tree and M2-tree adaptation have achieved results that are close
to the ones presented by a Slim-tree for only one modality. But, in relation to the disk accesses,
Slim2-tree exhibits a performance quite superior to M2-tree adaptation, and again its results are close
to the ones presented by a Slim-tree for only one modality. This is a great advantage of Slim2-tree
when compared to the other analyzed multimodal approaches, because it is possible with a single data
structure (the Slim2-tree) to perform both multimodal and unimodal searches. Moreover, Slim2-tree
is capable of answering unimodal queries with a computational cost very similar to the one associated
to a �specialized� data structure built using only one modality.

5.2 Results for Multimodal Slim-down

In order to assess the multimodal Slim-down algorithm, the same set of 3,500 queries was used again.
Since Slim2-tree represents an exact solution for similarity queries no di�erence in the quality of the
results (values of average precision) should be expected, but performance numbers should improve if
multimodal Slim-down really helps minimizing the overlap between nodes. Tests were made with the
two policies � POL1 and POL2, considering both context � SDW1 and SDW2 (with num_sdw = 60 which
is the double of the Slim2-tree node capacity). Independently of the context (SDW1 or SDW2), tests
with policy POL1 did not present any improvement of Slim2-tree performance and their results will be
omitted. This can be explained by the fact that policy POL1 has only selected a very few candidates
to be moved, and, therefore, a great minimization of the overlap between nodes was not possible.

20 40

0.6

0.8

1

·104

k

A
v
g
.
#

D
is
k
A
c
c
e
s
s

20 40
6.5

7

7.5
·104

k

A
v
g
.
#

D
is
t
.
C
a
lc
.

M2-tree

Slim2-tree

Slim-tree

Sequencial

(a) Using only visual data

20 40

0.6

0.8

1

·104

k

A
v
g
.
#

D
is
k
A
c
c
e
s
s

20 40
6.8

7

7.2

7.4

·104

k

A
v
g
.
#

D
is
t
.
C
a
lc
.

M2-tree

Slim2-tree

Slim-tree

Sequencial

(b) Using only acoustic data

Fig. 5. Average number of disk accesses and distance calculations for unimodal k-NN search (Global). The number of
disk accesses for sequential access is omitted since it is much larger than the others.
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Table IV. Total number of disk accesses, distance calculations and time spent by Slim-down using POL2.

Context SDW1 SDW2

# Disk accesses 2,190 225,374
# Dist. calculations 1,090 15,599
Time (ms) 1,947 79,568
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Fig. 6. Average number of disk accesses and distance calculations for multimodal k-NN search before and after using
Slim-down (Global).

Table IV shows the total number of disk accesses, distance calculations and time spent with mul-
timodal Slim-down with policy POL2. It is worth mentioning that context SDW2 took 40 times more
time them SDW1. However, tests with POL2 considering context SDW2 have achieved a reduction of
1.5% in the average number of disk accesses without compromising the average number of distance
calculations, while context SDW1 did not show any improvement, see Fig. 6(a). Slim-down was also
applied to the unimodal Slim-trees used for the late fusion approach. But in this case, no improvement
has been observed independently of the context used (SDW1 or SDW2) � see Fig. 6(b). Fig. 7 presents
the average time for some video classes. As one can see the impact of multimodal Slim-down over the
average time of multimodal k-NN search is greater for lower values of k (≤ 20).

6. CONCLUSION

Slim2-tree is a new multimodal metric tree which enables video indexing and retrieval by using informa-
tion from multiple modalities. Experimental results have demonstrated its e�ciency when compared
to other multimodal solutions. Moreover, it also supports queries using only one modality with a
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Fig. 7. Average time per class for multimodal k-NN search before and after using Slim-down.
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computational cost similar to an unimodal solution. This article explores di�erent strategies related
to the use of a post-processing algorithm for the Slim2-tree � named multimodal Slim-down. Exper-
iments have also shown the performance improvement obtained by the policy, in which any element
that presents the larger distance value to the pivot for any modality is selected as candidate to be
moved, i.e., any element which de�nes at least one of the radii of the hyperregion associated with the
node. Moreover the results are better when that policy is repeatedly used during insertion. Future
works should address the impact of di�erent score functions in the Slim2-tree results. Moreover, it is
also important to assess the Slim2-tree performance when facing an increasing number of modalities
and when multiple features of a same modality are used.
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