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Abstract. Join is one of the most studied and employed retrieval operators made available by the modern relational

database management systems (RDBMSs). This binary operator is algebraically defined as a Cartesian product followed
by the selection operator that specifies the join condition. In modern RDBMS, the join condition employs comparison

operators based both on equality and on the Total Ordering Relationship. The resulting selection and join operators
based on them are commutative, so they can be executed in any order, regardless of the expression ordering in the

query command, allowing the RDBMS to look for optimized query evaluation strategies. However, more complex data

do not follow equality nor TOR properties. In fact, they are better compared by similarity. Join operators based on
similarity comparison operators are called “similarity joins”. There exist similarity joins that can be executed directly

as a similarity selection following a Cartesian product, but others demand extra and/or intermediate operations before

they can compute the final result. In this paper, we analyze the existing types of similarity join in an algebraic way and
we claim that in fact some of them generate operators that are not a join, but other binary operators. We identify a

novel binary operator that embraces them and provide three variations of the new proposed operator. As an important

follow up, the new operator allows relationally expressing and answering queries that previously could be processed only
in sequential ways. The experiments performed on real data sets support our claim that our new operator is fast and

flexible enough to be represented in the relational algebra and included into the RDBMSs, and it meets the demands

for similarity queries from modern applications.

Categories and Subject Descriptors: I.1 [Symbolic and Algebraic Manipulation]: Miscellaneous

Keywords: database operators, join processing, relational algebra, similarity search

1. INTRODUCTION

In the modern relational database management systems (RDBMSs), the information retrieval is per-
formed by query operators, such as project, union, selection and join [Date 2011]. When the query
requires comparing attribute values, it employs the selection and/or join operators. Traditionally,
RDBMS are well-equipped to handle scalar data, such as number, dates and small character strings.
Therefore, until recently, the most frequent comparison operators were those based either on equality
or on Total Order Relationship (TOR). Now, complex data are increasingly being included among
the data types handled by RDBMS, which are better compared by similarity-based comparison op-
erators. Employing similarity-based comparison operators in selection or join conditions generates
similarity-based instances of those operators.

Join is one of the most useful operators in query processing and has been extensively investigated.
The literature often assumes that there exist three distinct similarity join operators [Böhm and Krebs
2004]: the range join, the k-nearest neighbor join and the k-closest neighbor join. The range join
relies on a given threshold ξ in order to retrieve all element pairs within the distance ξ. This is
the join operator occurring most frequently in the literature, and in fact several studies call it just
“similarity join” [Jacox and Samet 2008; Silva et al. 2013] – we call it “(similarity) range join” to avoid
misinterpretation, as by “similarity join” we refer to any join operator involving similarity. Direct
application fields of the range join operator include, for example, string matching [Qin et al. 2013;
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Wang et al. 2014], near duplicate object detection [Xiao et al. 2009] and data cleaning [Chaudhuri
et al. 2006]. The other two similarity join operators are based on retrieving a given amount k of pairs.
The k-nearest neighbor join retrieves, for each element from the first relation, the k elements from the
second closest one. The k-closest neighbor join retrieves the k most similar element pairs among the
two relations in general. Those operators can be applied aiming at data mining and data integration
[Böhm and Krebs 2004], map-reduce [Zhang et al. 2012] and high dimensional data querying [Yu et al.
2007; Liu and Hao 2007]. In order to choose the overall k most similar pairs, the k-closest neighbor
join internally executes sorting and other intermediate operations, which does not comply with the
join operation definition, that should be just a Cartesian product followed by a selection operation.
Therefore, we claim that the k-closest neighbor operator is not a join. We analyze its requirements,
and identify that other interesting operators exist in its same class.

In this article, we algebraically analyze the similarity-based variations of the selection and join
operators to support the claim that operators such as the k-closest neighbor join in fact belong to
a new class of operators. The new class comprises binary operators that retrieve related pairs but
require more operations, such as sorting, besides those required by ‘real’ joins. As the new binary class
embraces a basic join and more operations, we refer to them as “Wide-Joins”, or w-joins. We also
investigate employing the similarity range and k-nearest neighbor comparison operators to compose
the wide-join predicates, which generates other instances of our novel operator class.

The wide-join variations enable the execution of queries previously answered only through algorith-
mic processing, i.e., their expression in a relational language required complicated expressions. For
instance, consider the following scenarios:

(1) A company need to pick strategical cities next to Capitals to build new branches. The CEOs are
interested in the following query: Q1 - Which are the 8 closest pairs of Capitals and cities such
that the distances between them are at most 10 kilometers?

(2) In a climate sensor network, some sensors must be turned off to save energy, but only sensors
for which there is at least another with similar measures within their covering area that can be
powered off. The sensor monitoring team could be interested in knowing: Q2 - Which are the
50 pairs of sensors whose measurements are the most similar in a global context, such that, each
sensor is paired with the 5 similar ones and restricted by a dissimilarity of 0.5?

Notice that none of the current similarity selection or join operators deal neither with query Q1 nor
Q2. However, as we will show, distinct variations of our proposed operator are able to answer them.
We performed experiments evaluating speed and scalability of the wide-join operators, using both real
and synthetic data sets and showed that they are able to perform similarity retrieval as demanded by
the modern information systems.

The main contributions of this article are summarized as follows:

—We analyze the k-closest neighbor join and show that it is not a classic join but a ‘wider’ operation
that includes the join concept;

—We present the definition of a whole new class of binary similarity operators that enlarges the
applicability of join for similarity retrieval, helping executing queries targeting data analysis support;

—We identify three derived operators of the new class and express them in relational algebra in a way
that enables their seamless integration into RDBMS;

—We present a general algorithm to execute the new proposed class of operators.

The remainder of this article is organized as follows: Section 2 reviews the theoretical concepts
required. Section 3 describes the proposed class of operators. Experiments and results are presented
in Section 4. Section 5 outlines the work related to ours. Finally, Section 6 presents a general discussion
and concludes the article.
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2. BACKGROUND

In this section we combine traditional concepts from the relational algebra and query processing
with similarity-based ones, which are being developed by several research groups around the world.
However, the way we present and integrate them is novel, in the sense that we provide a unified basis
to treat both the traditional concepts and the similarity-base developments.

The relational algebra provides six fundamental operators: Projection (π), Selection (σ), Rename
(ρ), Cartesian product (×), Union (∪) and Difference (−). All the others, called derived operators,
such as intersection (∩) and join (1), can be expressed by combining the six primitive operators [Date
2011]. The development of derived operators allows easier but consistent formulation of queries, as well
as the implementation of algorithms faster than those obtained by the composition of the primitive
ones. For instance, the join operator is defined as:

Definition 1 – Join operator. The join of two relations T1 and T2 is a binary relational op-
erator 1 algebraically defined as a composition of two fundamental operators: a Cartesian product

followed by the selection that perform the join predicate c: T1
(c)
1 T2 ⇔ σ(c) (T1 × T2)

Besides the fundamental and derived operators, others usually referred to as extended operators are
useful and required when implementing DBMS based on the relational model. Those operators are
not algebraic ones, but (as the Rename operator) they are required in practical tools embodying the
relational model. Two extended operators, presented in [Garcia-Molina et al. 2000], are interesting to
our studies:

(1) The extension operator ψ{exp\A}T: it adds a new attribute A to the relation T, and sets the
values t[A] as the result of the expression exp executed over the attributes of each tuple t[T];

(2) The sorting operator ω{exp\F}T: it adds a new attribute F to the relation T, and sets the values
t[F ] as the result of processing exp executed over the relation T. Usually, exp is a function over
a list L of attributes L = 〈A1, . . .〉 | {A1, . . .} ⊆ T that sorts the tuples of T following the values
of the attributes indicated in L and assigns t[F ] as a function of the resulting order.

Selection and join operators retrieve tuples that meet a predicate, defined as follows:

Definition 2 – Retrieval predicate. A retrieval predicate is a Boolean expression on terms
c of the form c = (A θ v), where A is an attribute of the involved relation, v is the value to which
attribute A is compared and θ is a comparison operator defined for the domain A of A.

For complex data, the comparison operator θ is usually based on similarity. To distinguish among
the attributes stored in a relation that should be compared by similarity, we identify them using the
symbol S and call them complex attributes, reserving the symbol E for for the scalar attributes. Thus,
a relation T is a set of tuples whose schema is denoted by T = (E1, ...,Eq,S1, ...,Sp), where E1, . . .Eq
are scalar attributes and S1, . . .Sp are complex attributes. The scalar attributes E can be compared
either by identity or by TOR, and the complex attributes S can be compared either by identity or by
similarity-based operators. Table I summarizes the symbols employed in this article.

When comparing complex attributes, the condition c is expressed as c = (S θs sq), in which S is
a complex attribute defined over a complex domain S, θs is a similarity-based comparison operator
defined on S and the value sq ∈ S is the query center. Similarity-based operators are mostly employed
over metric spaces, defined as a pair 〈S, d〉 in which d : S× S 7→ R+ is a metric [Searcóid 2007]. There
are two similarity-based operators broadly studied, which are expressed in Definition 3.

Definition 3 – Similarity-based comparison operator. A similarity term c = (S θs sq) com-
pares the attribute S with a query center sq ∈ S. The two similarity comparison operators θs are:

—Similarity range comparison - θs = Rng(d, ξ): returns true for every tuple t such that
d(t[S], sq) ≤ ξ.
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Table I. Symbols employed in the article
Symbol Meaning Symbol Meaning

A an attribute (either scalar or complex) sq a complex query center

A the domain of the attribute A T a relation with scalar and complex attributes

c a retrieval predicate (or condition) TR a result relation

d a metric (distance function) t a tuple

E a scalar attribute t[A] the value of the attribute A in the tuple t

k constant value t[T] a tuple of the relation T

k-NN k-nearest neighbor comparison operator ξ a threshold value

k-CN k-closest neighbor comparison operator θ a comparison operator

Rng similarity range comparison operator σ traditional select operator

S a complex attribute σ̈ select operator employing k-NN or k-CN

S a complex domain 1 join operator

si a complex element in S n̈o wide-join operator

—k-nearest neighbor comparison - θs = k-NN(d, k): returns true for every tuple t such that t[S]
is one of the k nearest neighbors of sq.

The similarity range comparison operator is a tuple-oriented operator, that is, given two elements
t[S], sq ∈ S and a predicate (S Rng(d, ξ) sq) it can evaluate the answer without further knowledge
of the remaining elements in the dataset. Moreover, the answer (si Rng(d, ξ) sq) for a given si ∈ S
is always the same for any S ⊂ S. The k-nearest neighbor comparison operators is a search-space-
oriented operator, because given two elements t[S], sq ∈ S and a predicate (S k-NN(d, k) sq) the
answer (si k-NN(d, k) sq) for a given si ∈ S varies depending on the space S ⊂ S where the search is
performed.

Among the operators of the relational algebra that perform attribute value comparison in the
tuples, selection and join are the most general and should evaluate any predicate, either expressing
traditional or similarity constructions. With respect to selection, the similarity-based operators lead
to two instances of the similarity selection. As the similarity range comparison operator is an tuple-
oriented operator, it can be used in the fundamental selection operator σ according to Definition 4.

Definition 4 – Similarity range selection. The similarity range selection σ(S Rng(d,ξ) sq)T
(Figure 1(a)) restricts the tuples of T to those where the complex attribute S is similar to sq consid-
ering a similarity threshold of ξ. It retrieves a subset TR ⊂ T such that TR = {si ∈ T | d(si, sq) ≤ ξ}.

As the k-nearest neighbor comparison operators is not an tuple-oriented operator, it cannot be used
in the fundamental selection operator σ, because it is not guaranteed that the algebraic properties of
σ hold. Thus, we defined a variation of σ specifically for the k-nearest neighbor comparison, which
we call k-selection and denote it as σ̈, according to Definition 5. Notice that the properties of σ̈ are
distinct from those of σ. For instance, σ is a commutative operator, whereas σ̈ is not.

Definition 5 – k-nearest neighbor k-selection. The k-nearest neighbor k-selection
σ̈(S k-NN(d,k) sq)T (Figure 1(b)) restricts the tuples of T to those that are the k nearest to sq.
It retrieves a subset TR ⊂ T such that TR = {si ∈ T | ∀sj ∈ (T\TR)⇒ |TR| = k∧d(si, sq) ≤ d(sj , sq)}.

A more formal definition for k-nearest neighbor queries can be found in [Ferreira et al. 2009].
The join operator combines tuples from two relations T1 and T2 such that attributes S1 ∈ T1 and
S2 ∈ T2 satisfy the join predicate. Both similarity-based comparison operators can be employed in
join predicates to generate similarity-based join operators. Following, we present the definition of the
instances of similarity joins studied in the literature [Böhm and Krebs 2004; Silva et al. 2013].

Definition 6 – Similarity range join. The similarity range join T1
(S1 Rng(d,ξ) S2)

1 T2 (Figure 1(d))
combines the tuples of T1 and T2 whose distance between the pair 〈S1,S2〉 of complex attributes is less
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ξ
sq

(a) Range Selection

sq

(b) k-NN Selection (k = 4)

ξ

ξ

(c) Join Around

ξ

ξ

(d) Range Join (e) k-NN Join (k = 4) (f) k-CN Join (k = 4)

ξ

ξ

(g) Range Wide-Join (kf = 2) (h) k-Wide-Join (kf = 4, k = 2)

ξ

ξ

(i) k-and-Range Wide-Join (kf =
3, k = 2)

Fig. 1. Similarity selection and similarity join: for joins, stars represent the elements of the first relation, circles represent
the elements of the second and diamonds are the elements of the second relation paired with the elements of the first.

For selection, a star is the query center and diamonds are the selected elements.

than or equal to the given threshold ξ. It retrieves a set of pairs TR such that TR = {〈t[T1], t[T2]〉 ∈
(T1 × T2) | d(si, sj) ≤ ξ, si ∈ S1 ⊂ T1, sj ∈ S2 ⊂ T2}.

Definition 7 – k-nearest neighbor k-join. The k-nearest neighbor k-join T1
(S1 k-NN(d,k) S2)

1̈ T2
(Figure 1(e)) combines the tuples of T1 and T2 such that, for each tuple t1 ∈ T1, it retrieves the
tuples from T2 whose S2 is one of the k nearest to t1[S1]. It retrieves a set of pairs TR such that
TR = {〈t[T1], t[T2]〉 ∈ (T1 × T2) | ∀〈si, s′j〉 ∈ ((T1 × T2) \ TR)⇒ |TR| = |T1| ∗ k ∧ d(si, sj) ≤ d

(
si, s

′
j

)
}.

Definition 8 – k-closest neighbor k-join. The k-closest neighbor k-join T1
(S1 k-CN(d,k) S2)

1̈ T2 (Fig-
ure 1(f)) combines the tuples of T1 and T2 such that it retrieves the k pairs where S1 are the nearest to
S2. It retrieves a set of pairs TR such that TR = {〈t[T1], t[T2]〉 ∈ (T1×T2) | ∀〈s′i, s′j〉 ∈ ((T1×T2)\TR)⇒
|TR| = k ∧ d(si, sj) ≤ d

(
s′i, s

′
j

)
}.

Definition 9 – Similarity join-around. The similarity join-around T1
(S1 A(d,ξ) S2)

1 T2 (Fig-
ure 1(c)) combines the tuples from T1 closest to T2 regarding the complex attribute pair 〈S1,S2〉,
providing they are at most the given threshold ξ apart. This operator combines the similarity range
with a 1-nearest neighbor comparison operator in a conjunctive join condition and returns a set of pairs
TR such that TR = {〈t[T1], t[T2]〉 ∈ (T1 × T2) | d(si, sj) ≤ ξ} ∩ {〈t[T1], t[T2]〉 ∈ (T1 × T2) | ∀〈si, s′j〉 ∈
((T1 × T2) \ TR)⇒ |TR| ≤ |T1| ∧ d(si, sj) ≤ d

(
si, s

′
j

)
}.
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3. THE SIMILARITY WIDE-JOIN OPERATOR

Evaluating the four similarity join operators presented in Section 2, notice that the similarity range join

T1
(Rng)
1 T2 and the k-nearest neighbor join T1

(k-NN)

1̈ T2 are respectively the direct equivalent of the similarity
range selection σ(Rng)T and of the k-nearest neighbor selection σ̈(k-NN)T, employing the corresponding
similarity range and k-nearest neighbor comparison operators. In its turn, the similarity join around

T1
(A)
1 T2 combines the similarity range and k-nearest neighbor comparison operators in a conjunctive

predicate. However, notice that the k-closest neighbor join T1
(k-CN)

1̈ T2 does not have a corresponding
“k-closest neighbor comparison operator” nor it corresponds to a combination of existing comparison
operators. This section explores in an algebraic way the properties of the k-closest neighbor join
operator and, based on this analysis, stands that the k-CN join and its generated extensions belong
to a new class of operators that extends the join concept. Following the presented definitions, we also
identify two new variations of the “k-CN based join”. Those derived extensions enable the answering
of queries previously processed only in an algorithmic way.

To start our analysis, let us suppose by contradiction that the so called k-closest neighbor join is
a join. As its predicate cannot be expressed combining existing comparison operators, a new “closest
neighbor” comparison that would enable a k-closest neighbor selection should be defined as follows:

Conjecture 1 – The k-Closest Neighbor Selection Operator. Let T be a relation, S a
complex attribute in T, S a complex attribute domain such that Dom(S) = S, d a metric over S and
sq ∈ S be a query center. The k-closest neighbor selection operator σ̈(S k-CN(d,k) sq)T retrieves from T
those tuples in which the value of S is one of the k closest elements to the query center sq, i.e., the
tuples ti[T] whose d(ti[S], sq) is one of the k-smallest distances.

According to Conjecture 1, similarity selection query operators could employ three main similarity-
based comparison operators in its predicate, which would generate corresponding three distinct im-
plementations of the similarity selection operator: similarity range selection, k-nearest neighbor k-
selection and k-closest neighbor k-selection. As the similarity range selection is a tuple-oriented com-
parison operator, it preserves the commutative, associative and distributive properties. Therefore, it
can be combined with traditional or other similarity-based operators in any order in the queries, and
the RDBMS should be able to choose the evaluation order that better retrieves the query answers.
However, the k-nearest neighbor and the k-closest neighbor are search-space-oriented comparison op-
erators, so they cannot be assumed to be commutative, associative nor distributive to other traditional
or similarity-based operators. Thus, a RDBMS must evaluate them in the same order they appear in
a query, restricting the possibilities of query optimizations.

The k-nearest neighbor selection retrieves the k tuples “nearest” to the query center, and the k-
closest neighbor selection operator retrieves those k “closest”. The former returns the tuples whose
distance to the query center is one of the k smallest (nearest). According to the Conjecture 1, the
latter one also returns the tuples whose distance is one of the k smallest (closest). Thus, with respect
to a selection operation, both “nearest” and “closest” criteria have the same meaning, which allows
stating the Postulate 1.

Postulate 1. The k-nearest neighbor selection and the k-closest neighbor selection employ, as
their predicates, similarity-based comparison operators that always produce the same result. Accord-
ingly, they are equivalent operators: σ̈(S k-NN(d,k) sq)T⇔ σ̈(S k-CN(d,k) sq)T.

Regarding selection, Postulate 1 explains the reason for the absence of a “k-closest neighbor selec-
tion” and why Conjecture 1 does not hold: since σ̈(k-NN) and σ̈(k-CN) are equivalent, there is no need
to keep both kinds of comparison in selection operators. However, Postulate 1 does not hold for joins.
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Based on these concepts, there are two operators to execute similarity selections and three to execute
similarity joins. Now, we recall that the join operator is not one of the six fundamental relational
operators discussed in the Section 2, but a derived one that is expressed according to Definition 1.
Following that definition, the similarity range join and the k-nearest neighbor join operators can be
expressed according to the Equations 1 and 2, respectively:

T1
(S1Rng(d,ξ)S2)

1 T2 ⇔ σ(S1Rng(d,ξ)S2) (T1 × T2) (1) T1
(S1k-NN(d,k)S2)

1̈ T2 ⇔ σ̈(S1k-NN(d,k)S2) (T1 × T2) (2)

Following Definition 1, the k-closest neighbor join, might be expressed as

T1
(S1 k-CN(d,k) S2)

1̈ T2 ⇔ σ̈(S1 k-CN(d,k) S2) (T1 × T2)

but, undoubtedly, that proposition does not hold, even because, according to Postulate 1, a k-closest
neighbor selection operator

(
σ̈(k-CN)

)
does not exist. In fact, although a supposed “σ̈(k-CN)” and the

σ̈(k-NN) are equivalent operators such that σ̈(S k-CN(d,k) sq)T ⊆ σ̈(S k-NN(d,k) sq)T, it is not possible to
employ the σ̈(k-NN) operator in order to represent the k-closest neighbor join because

T1
(S1 k-CN(d,k) S2)

1̈ T2 < σ̈(S1 k-NN(d,k) S2) (T1 × T2) ,

and σ̈(S1 k-NN(d,k) S2) (T1 × T2) defines a k-nearest neighbor join and not a k-closest neighbor join. The
immediate conclusion is that the range join and the k-nearest neighbor join are in fact join operators,
but the k-closest neighbor join is not, once it cannot be expressed according to the conceptual definition
of the join operation.

Consequently, we refuse the conjecture that the k-join operator accepts either “k-nearest” or “k-
closest” comparison operators in its predicate. Thus, whereas the “k-nearest” comparison really gen-
erates the k-nearest neighbor join, the “k-closest” comparison only generates a k-closest neighbor join
only “extending” the join operation concept.

It is important to highlight that the “k-closest join” is a useful operator, with practical significance
and applicability, such as those aforementioned in Section 1. It is not a stricto sensu join operator,
although we will continue to refer to it as a “join”, since this it the term that is broadly used in the
literature. Therefore, from an algebraic point of view, the k-closest neighbor join operator is not a
join operator: besides a Cartesian product followed by a selection, it needs further processing and
another additional selection.

3.1 An algebraic definition for the “k-closest join”

The
(k-CN)

1̈ operator requires a k-nearest neighbor selection over the Cartesian product of two relations
and then, it requires that this partial result be followed by an additional filtering step: it is necessary to
sort the intermediate result tuples by the distances of the complex elements in each pair and, finally,
to apply an ‘additional selection’ to filter the ‘k’ most similar of them.

Notice that the additional selection is applied over an attribute that is not present in the original
input relations: the ordinal value of the tuple in the sorted list. Although the studies in the literature
consider that the “closest” operator is a join operation, indeed it is obtained as the Cartesian product
of two relations followed by the execution of a sorting operation over the similarity value and by the
selection of the most similar tuples. Executing a k-closest join based on the processing of a k-nearest
join is just an algorithmic optimization, once it allows performing the sorting over a reduced amount
of tuples. In both cases, the attribute containing the ordinal position of each tuple is computed after
the internal join or the Cartesian product. Thus, distinctly from the internal join predicate processing,
which can be processed in parallel or after the Cartesian product, the predicate of the second selection
only can be executed after the internal join has been finished.
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The k-closest join operator can be described in the Relational algebra as follows:

T1
(S1 k-CN(d,k) S2)

1̈ T2 ⇔ π{T12}

(
σ(ord≤k)

(
ω{Rank(dist)\ord}

(
ψ{d(S1,S2)\dist}

(
T1
(S1 kNN(d,k) S2)

1̈ T2

))))
(3)

where d(S1,S2) is a metric applied to the attributes S1 ∈ T1 and S2 ∈ T2, such that Dom(S1) =
Dom(S2) = S, Rank() is an external function that assigns a sequential ordinal number to each tuple
in the relation sorted by the attribute ord and T12 is the set of all attributes from relations T1 and T2.

Equation 3 shows that the k-closest neighbor join does not require a third similarity selection
operator (the k-closest neighbor selection), but emphasizes the need for another binary query operator,
beyond the join. The new operator is also based on the existing similarity comparison operators and
employs the concept of sorting. As the relational model does not support ordering, the definition in
Equation 3 handles ordering as an extra attribute whose value is computed by an external function
that defines the tuple sequence numbering them, allowing the proper tuples to be selected. The
traditional selection operator σ is applied over a new attribute (ord) of the answer relation, containing
just numeric values (ordinals). The last projection over the attributes of T1 and T2 gets rid of that
attribute, so the sorting process exists only during the processing of the operator ω (Equation 3) and
does not remain when it finishes. Thus, the k-closest neighbor join does not infringe the postulates of
the Relational theory and, therefore, it does not change its representativeness.

3.2 Defining the similarity wide-join operator

Equation 3 also provides the conceptual basis for a new class of similarity-based operators, which
includes ordering the result of an internal similarity join. The operators derived from this new class
perform joins “in a wider sense”, because beside the selection over the Cartesian product result, they
execute an ordering (ω) of the distances, which were included in the working relation by a extension
(ψ) operation. Notice that the ordering operation also require comparison operators. As the operators
of the new class are composed of more operations than the traditional join, we refer to them as wide-
join, or w-join. The wide-join is defined as follows:

Definition 10 – Similarity Wide-Join Operator. Let T1 and T2 be two relations containing
complex attributes S1 ∈ T1 and S2 ∈ T2, both sampling from the same complex attribute domain S. Let
also d be a metric defined on S, kf be an upper bound parameter and θs be a predicate that includes

a similarity comparison operator as one of its term. Then, the wide-join T1

(S1 θs S2),kf

n̈o T2 is a binary
operator that receives relations T1 and T2, combines the tuples from both relations satisfying condition
(S1 θs S2), sorts the result by the similarity among attributes S1 and S2 and returns the kf tuples
having S1 and S2 most similar. The w-join operator expression in relational algebra is:

T1

(S1 θs S2),kf

n̈o T2 ⇔ π{T12}

(
σ(ord≤kf )

(
ω{Rank(dist)\ord}

(
ψ{d(S1,S2)\dist}

(
T1
(S1 θs S2)

1̈ T2

))))
(4)

The w-join operators differ from the others aforementioned because they allow flexible ways to
express both the predicate to be evaluated by the internal similarity join and the cardinality (“how
wide”) of the answer relation (at most kf tuples). In addition, they employ internally the sorting
concept in a way compatible to the Relational model.

In the same way that the k-nearest neighbor and the similarity range comparison operators are
employed in the join predicate to express, respectively, the k-nearest neighbor join and range join,
those comparison operators can also be employed in the w-join in order to generate three instances
of our new operator class: the k-nearest neighbor wide-join (or k-wide-join in short), the similarity
range wide-join and the k-and-range wide-join.
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Following Equation 4, when θs is the k-nearest neighbor comparison operator, the resulting w-join

operator is the k-nearest neighbor wide-join T1

(S1 k-NN(d,k) S2),kf

n̈o T2. It executes a k-nearest neighbor
join internally and returns the kf most similar tuples in the result. Thus, the k-nearest neighbor
w-join corresponds to the k-closest neighbor join when kf = k. The k-nearest neighbor wide-join
is useful to answer queries where one intends to return the kf closest pairs of elements from the T2
which are among the k closest to each element from T1, effectively reducing the cardinality k ∗ |T1|
of a k-nearest neighbor join to the cardinality kf of the k-nearest neighbor w-join. This fact can be
observed in Figure 1(h) when compared with the Figure 1(e). Moreover, although the k-wide-join
maintain the same cardinality of the k-closest neighbor join, our operator ensures a minimum number
of similar elements from the second relation to each element of the first. For instance, in Figure 1(h),
at least 2 elements of the second relation are paired to each element of the first whereas the kCN -join
(Figure 1(f)) rejects some parts of the search space.

When θs is the similarity range comparison operator, it produces the second w-join variation: the

similarity range wide-join T1

(S1 Rng(d,ξ) S2),kf

n̈o T2. The range w-join is a novel operator that restricts the
tuples of the internal join to those which d(S1,S2) ≤ ξ, i.e., it performs an internal similarity range
join and returns at most the kf tuples in which the complex attributes are the most similar.

The range w-join is suitable for applications where the similarity between the original tuples must
be restricted to a threshold and a maximum cardinality must be enforced, such as query Q1 presented
in Section 1. In order to process Q1, suppose a relation containing traditional data about cities and,
in addition to them, the geographic coordinate (latitude and longitude) as complex attribute. Notice
that the relation containing cities and Capitals presents a complex attribute sampling from the same
complex domain (the geo-coordinate), which enables the execution of similarity queries. Q1 is an
example of query application that cannot be handled by the similarity join operators presented in
the Section 2. The range join does not process Q1 once it does not limit the answer to 8 pairs of
cities; whereas the k-neighborhood variations ignore the limit of 10 km. The join variation called
join-around does not address that query too; it does not ensure that the answer will be limited to 8
pairs. Those operators can process only part of the query, requiring external algorithmic constructions
in order to process the conditions that they do not support. The range w-join is able to deal with all
predicates demanded in query Q1. Therefore, the range w-join has practical appeal and significance.
The Figure 1(g) depicts the range w-join. When compared to the similarity range join (Figure 1(d)),
one could note a more pronounced restriction of elements composing the answer set, ensuring only
the most similar ones.

The third variation of the w-join operator consists of combining both the similarity range and the
k-nearest neighbor comparison operators in the internal join of Equation 4, producing the k-and-range

wide-join T1

(S1 kRng(d,k,ξ) S2),kf

n̈o T2. It combines the tuples of T1 and T2 such that, for each tuple t1 ∈ T1, it
retrieves the tuples not farther than ξ from T2 whose attribute S2 is one of the k nearest to t1[S1], and
from the bulk result selects the kf having the value t[S1] nearest to t[S2]. This operator is suitable for
queries demanding more restrictive conditions than those employed in the k-nearest neighbor w-join,
as only the tuples within a given threshold will be considered. The k-and-range w-join operator is
able to process query Q2 presented in Section 1. In order to better understand the query solution
based on Equation 4, Q2 is rewritten as: for the 5 nearest sensors that are at most 0.5 dissimilar to
each other, retrieve the 50 pairs of sensors closest among them (supposing that for each pair returned,
one sensor would be powered off). Query Q2 cannot be answered by the joins discussed in Section 2.
The similarity range join ignores the 5 nearest sensors and the overall 50 pairs, whereas the k-nearest
neighbor w-join ignores the 0.5 threshold condition. Also, the join-around always retrieves the 1-
nearest neighbor but the query demands for a 5-NN. The k-and-range w-join is expressed according to
Equation 5. In Equation 5, when kf = |T1| and k = 1, the result is the same of a join-around result.
Thus, the k-and-range wide-join also generalizes the functionality of the join-around operator.
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Algorithm 1: Nested-loop algorithm to process the wide-join operator

Input : The relations T1 and T2; the upper bound k; the query condition θs;
Output: The relation TR containing the most similar joined tuples and the similarity value.

1 TR ← ∅;
2 for each tuple t1 ∈ T1 do
3 for each tuple t2 ∈ T2 do
4 if (t1[S1] θs t2[S2] is true) then
5 dist← d(S1,S2);
6 TR ← TR ∪ ({attribs(t1), attribs(t2)}, dist);

7 Sort TR by dist in ord;
8 Select the k tuples from TR with the smallest ord, project into {T1,T2} and return the result;

T1

(S1 kRng(d,k,ξ) S2),kf

n̈o T2 ⇔ π{T12}

(
σ(ord≤kf )

(
ω{Rank(dist)\ord}

(
ψ{d(S1,S2)\dist}

(
(
T1
(S1 k-NN(d,k) S2)

1̈ T2

)⋂(
T1
(S1 Rng(d,ξ) S2)

1 T2

)))))
(5)

Figure 1(i) shows that the k-and-range wide-join embraces the join-around (Figure 1(c)) and allows
to retrieve a result with higher cardinality with respect to the similarity between the joined pairs.

A nested-loop implementation of the similarity wide-join operator is presented as Algorithm 1. The
nested-loop in the lines 2−6 executes the internal similarity join. Due to spacing limitations, we do
not explore the intricacies of the similarity comparison operator θs here. In the line 6, the two tuples
meeting the join condition are concatenated and included in the partial result, in addition to the
similarity value. Therefore, this line corresponds to the extension operator in Equation 4. Sorting
and selection of the nearest tuples already joined are performed in lines 7 and 8, respectively. By
presenting this generic algorithm we aim at showing that the wide-join class can be implemented in
a RDBMS with an algorithm that executes in feasible time, as shown in the next Section. We note,
however, that the basic nested-loop join shown in Algorithm 1 provides plenty of opportunities for
algorithmic optimizations, which we will explore in further works.

4. EXPERIMENTS

The main goal of this experimental section is to show the implementation and applicability of the wide-
join operator formalized in Section 3. For this purpose, we evaluate the three proposed variations for
the wide-join with respect to performance, scalability and query semantics. We employed three real
data sets (BRCities, NSF and Sensors) and two synthetic ones (Gaussian and Uniform).

The BRCities1 data set contains 5,507 Brazilian cities defined by their latitude and longitude values.
For this data set, the L2 metric was applied over the geographic coordinates. The NSF2 data set is
composed of 129,000 abstracts and metadata (year, institution etc.) describing the research awards
granted by the U.S. National Science Foundation between 1990 and 2003. We employed the Jaccard
distance over a complex attribute composed of a bag of words extracted from the abstract to compare
NSF elements. The Sensors3 data set contains 36 attributes of monthly weather values (precipitation,
maximum and minimum temperature, etc.) from 284 Brazilian climate stations for year 2010, as well

1BRCities: ftp://geoftp.ibge.gov.br/organizacao territorial/localidades/Geomedia MDB/ Access: Jun 25, 2014
2NSF Research Award Abstracts 1990-2003: http://archive.ics.uci.edu/ml/datasets.html Access: Jun 25, 2014
3Sensors: Obtained from EMBRAPA, not publicly available.
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(a) k-w-join - Gaussian
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(b) range w-join - Gaussian
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(c) k-and-range w-join - Gaussian
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(d) k-w-join - Uniform
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(e) range w-join - Uniform
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(f) k-and-range w-join - Uniform

Fig. 2. Scalability measurements: |T2| = 1, 000, 000

as the geographic sensor coordinates. A Weighted L2 metric was employed in this data set, where
a weight of 0.25 was assigned to the geo-coordinates and 0.75 to the climate measures. Finally, the
Gaussian and Uniform synthetic data sets consist of 1,000,000 points built following the Gaussian and
Uniform distributions, respectively. We generate 3 distinct versions for each distribution considering
4, 8 and 16 dimensions for the data. For both distributions, the L2 metric was used.

The experiments were performed using a computer built with an Intel R© Core
TM

i7-2600 processor,
running at 3.4 GHz, with 8 GB of RAM, on the operating system GNU Lixux - Fedora 20. Following,
we present the performance evaluation and semantic results of the wide-join operator.

4.1 Scalability

The scalability experiments evaluated the proposed variations of the wide-join operator regarding
execution time and growth of relation T1 cardinality over the synthetic data sets. For a fixed cardinality
of T2 = 1, 000, 000 tuples and kf = 10, we set |T1| cardinality to {10, 175, 340, 505, 680, 835, 1000}
tuples. The results are shown in Figure 2.

Figures 2(a) and 2(d) present the results for k-wide-join (k = 4). The graph show that the behavior
of every join operator is essentially linear over both cardinality and dimensionality. Also, the results
are quite acceptable. For instance, to process |T2| = 1, 000, 000 tuples and |T1| = 175 tuples took
about 52.22 seconds in the 4D Gaussian data set and 150.15 seconds in the 16D data set; and it took
52.10 seconds in the 4D Uniform data set and 150.12 seconds in 16D.

To evaluate the run time of the range wide-join (Figures 2(b) and 2(e)) and k-and-range wide-join
(Figures 2(c) and 2(f)), we obtained a radius large enough to retrieve about 1% of T2 (this threshold
distance varies depending on the dimensionality). The additional parameter k in the k-and-range
wide-join was also set to 4. As it can be noted in the graphs, they show the same linear behavior of
the k-wide-join results, but the k-and-range wide is a little more expensive due to the combination
of comparison operators in the inner similarity join. For instance, the range wide-join spent 51.86
seconds to process Uniform and 56.66 seconds to process Gaussian, considering |T1| = 175 4D points.
For the k-and-range wide-join, the values of runtime were 54.26 seconds versus 67.72 seconds for the
4D-Uniform and 4D-Gaussian, respectively.
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All graphs of Figure 2 show that the run time always increase linearly, keeping about the same rate
at each dimensionality or distribution: a linear growth of the cardinality linearly increases the spent
time, even for increasing dimensionality. Therefore, we can say that nor high dimensionality nor data
distribution affect the linear behavior of the wide-join operator.

4.2 Semantic evaluation

For the semantic analysis of the wide-join operator, we posed query Q1 presented in Section 1 over
the BRCities data set. As aforementioned, none of the join operators presented in the Section 2 can
deal with it. However, it can be answered by using the range wide-join as

Capital
(GC Rng(L2,10) GC),8

n̈o City⇔ π{T12}

(
σ(ord≤8)

(
ω{Rank(dist)\ord}

(
ψ{d(GC,GC)\dist}

(
Capital

(GC Rng(L2,10) GC)
1 City

))))
where GC represents the geographic coordinate. The execution time for query Q1 was 0.015 seconds
and the result obtained is shown in Table II. Notice that the w-join operators do not restrict retrieving
only 1 pair per tuple in T1 (as shown by the first and eighth pairs) whereas not returning an excessive
amount of tuples.

Query Q2 cannot be answered by the joins discussed in Section 2 too. However, the k-and-range
wide-join is able to answer it over the Sensors data set, for example stating:

Sensor
(CD kRng(L2,5,0.5) CD),50

n̈o Sensor⇔ π{T12}

(
σ(ord≤50)

(
ω{Rank(dist)\ord}

(
ψ{d(CD,CD)\dist}

((
Sensor

(CD k-NN(L2,5) CD)

1̈ Sensor

)⋂(
Sensor

(CD Rng(L2,0.5) CD)
1 Sensor

)))))
where CD represents all the climate attributes in addition to the geo-coordinate values. The result of
Q2 was obtained in 0.76 seconds and Table III presents the first eight tuples.

Finally, to complete the semantic analysis with a purely metric data set, we employed the k-wide-
join operator to answer the following query over the NSF data set: Q3 - Which are the 5 pairs of NSF
projects in general closest to projects from the Computer Science Area approved in 1990 considering
for each general project the 3 most similar to a Computer Science one? This query consumed 9.0
minutes to return the answer presented in Table IV. Although the processing spent several minutes,
notice that the employed metric is well-known to be computationally very expensive.

5. RELATED WORK

The database literature is rich in studies regarding to the development or improvement of similarity
operators, but only a few of them present formal definitions or tackles the integration to a real DBMS.
Considering join operations over traditional data, the study of Mishra and Eich [1992] surveys the
kinds of join and discuss their main algorithms and applications. Similarly, in Graefe [2012], the main

Table II. Result for query Q1
Capital City

Aracaju-SE Barra dos Coqueiros-SE

Teresina-PI Timon-MA

Recife-PE Olinda-PE

Vitória-ES Vila Velha-ES

Cuiabá-MT Várzea Grande-MT

Maceió-AL Coqueiro Seco-AL

João Pessoa-PB Bayeux-PB

Aracaju-SE Nossa Senhora do Socorro-SE

Table III. Result sample for query Q2
ID Sensor’s Location ID Sensor’s Location

282 Dourados-MS 159 Dourados-MS

254 Brasilândia do Sul-PR 238 Formosa do Oeste-PR

186 União da Vitória-PR 54 União da Vitória-PR

217 Ituiutaba-MG 38 Ituiutaba-MG

165 Palotina-PR 51 Guáıra-PR

254 Brasilândia do Sul-PR 165 Palotina-PR

250 Itumirim-MG 104 Macaia-MG

28 Três Marias-MG 11 Três Marias-MG
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Table IV. Result of the query Q3
NSFID CS Project title Year NSFID Project title Year

a9016123 Mathematics Research on Itera-
tion Theories

1990 a9121247 Economics Research on Covering The-
orems, Bayesian Cooperative Choice of

Strategies and Theory of the Firm

1991

a9001336 Research on Theory of Digital-

Analog Nonlinear Computing
Structures

1990 a9121247 Economics Research on Covering The-

orems, Bayesian Cooperative Choice of
Strategies and Theory of the Firm

1991

a9016123 Mathematics Research on Itera-
tion Theories

1990 a9106570 Mathematics Research on Multidimen-
sional Inverse Scattering

1991

a9016123 Mathematics Research on Itera-

tion Theories

1990 a9423154 Research on Flow Karotyping and

Sorting of Translocations in Maize

1994

a9016123 Mathematics Research on Itera-

tion Theories

1990 a9401667 Physics Research on Giant Dipole Res-

onances in Very Heavy Excited Nuclei

1994

focus is on improving the existing techniques employing ordering, specially those based on the sort-
merge algorithm. Both researches relate to ours, presenting the formalization of the join operation
and providing the base algorithm for our similarity implementation.

The authors of Silva et al. [2013] investigated the similarity select, similarity grouping and sim-
ilarity join operators, and introduced the fourth similarity join type: the join-around. That work
was completed with optimization evaluation and algebraic equivalence rules holding among similarity
operators. Our study is different from Silva et al. [2013] once we explore the similarity selection and
join operators in order to extend the k-closest neighbor join definition in a new, broader class, that
includes the k-closest neighbor join and the join-around and largely extends their usability.

The authors of Jacox and Samet [2008] improved similarity join algorithms for high dimensional data
sets using a tree branch pruning technique using trigonometric properties to reduce the search space.
Besides being restricted to dimensional data sets, that work only considers the similarity range join,
whereas we focus on the k-closest neighbor join and its derivations. Other studies like Bouros et al.
[2012] build indexes such as the R-tree to process spatial joins. Spatial structures was also employed
in studies of the k-nearest neighbor join [Hjaltason and Samet 1998; Shin et al. 2000]. Those studies
are concerned about the similarity variants of the join operation and they do not deal with complex
data in metric spaces, whereas we specifically target those data.

Still worth to mention are the so called top-k joins or ranked-joins [Schnaitter and Polyzotis 2008;
Zhang et al. 2014]. In this kind of query, there are a score attribute meeting TOR present in the
relation and such attribute allows a previously sorting of the tuples. In such way, the selection and
join algorithms can benefit from the previously sorting during the processing [Ilyas et al. 2008]. When
dealing with similarity-based queries, the data domain does not need to meet TOR and the score
attribute is created only after a query center arises, what makes possible to compute the similarity
value. In other words, top-k operators rely on an ordering intrinsic to the data, whereas the concept
of order in similarity-based operators depends on each query. In our proposal, the tuples are scored
only after the join execution, once the sorting relies on the similarity value computed during the join
operation, so our solution is able to process queries over data that is either sorted accordingly to the
query needs or not.

6. CONCLUSION

Similarity joins are employed in a wide domain of applications, such as data mining, near duplicate
detection, data integration, etc. Although the similarity range is the most investigated and the one
that executes faster, those based on neighborhood have an ample practical appeal.

In this article, we investigated the properties of the similarity selection and similarity join operators
and, gathering evidences that the k-closest neighbor join demands processing beyond that provided
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by the theoretical join operation definition. Thus, we proposed a new class of binary operators that
embody join and other operations such as sorting, which cannot be supplied by the standard relational
operators. To support our new class, we defined the similarity-based wide-join operator and identified
three derived variations. The first one, the k-nearest neighbor wide-join, relates to the k-nearest
neighbor join but providing finer control over the result cardinality, whereas the similarity range
wide-join and k-and-range wide-join are novel operators with interesting support for real applications.

We presented an algorithm aiming to showing its usability in real applications. We performed
experiments by using real and synthetic data sets and evaluated the scalability of our operators,
highlighting they can be seamlessly integrated into RDBMS. Moreover, once they comply with the
relational model theory, we provided their formal representation in relational algebra.

As future research, we are working on optimization issues regarding implementing the wide-join
operator. Another point is studying the equivalence rules and properties on how it relates with the
other operators of the Relational Algebra and with those provided by the current RDBMS.
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