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Abstract

With the growth of access to faster computers and more powerful cameras, the 3D reconstruction of objects
has become one of the public’s main topics of research and demand. This task is vigorously applied in creating
virtual environments, creating object models, and other activities. One of the techniques for obtaining 3D features is
photogrammetry, mapping objects and scenarios using only images. However, this process is very costly and can be
time-consuming for large datasets. This paper proposes a robust, efficient reconstruction pipeline with a low runtime
in batch processing and permissive code. It is even possible to commercialize it without the need to keep the code
open. We mix an improved structure from motion algorithm and a recurrent multi-view stereo reconstruction. We
also use the Point Cloud Library for normal estimation, surface reconstruction, and texture mapping. We compare
our results with state-of-the-art techniques using benchmarks and our datasets. The results showed a decrease of
69.4% in the average execution time, with high quality but a greater need for more images to achieve complete

reconstruction.
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1 Introduction

The creation of 3D assests is one of the main challenges in
Virtual Reality (VR) and Augmented Reality (AR). These
can be done by photogrammetry, mapping objetcs and sce-
narios using only images or video frames. This research field
was already a trending topic in Seitz et al. (2006), where the
authors evaluate multi-view stereo (MVS) reconstruction al-
gorithms. The MVS is responsible for receiving the camera
parameters and the image data, and match view poitns and
keypoints, obtaining dense 3D correspondences. One exam-
ple of MVS use is Schops et al. (2017).

For the task of 3D reconstruction through images, they
are usually made from several available technologies. This
combination consists of Structure for Motion (SfM) (Ullman,
1979), the aforementioned MVS, and a mesh and texturing
stage. SfM allows the mapping of previously unknown envi-
ronments and selects the pose information from the camera.
Is in the final mesh step where the algorithm makes point
cloud triangulation and gives texture to the reconstruction.

One of the main problems in 3D reconstruction is the ef-
ficiency, i.e., how to obtain consistent results while keep-
ing a low processing time. Also, the increasingly easy ac-
cess to powerful devices and high resolution images, a best
cost-benefit is essential to make this technology accessible to
general use. Another photogrammetry problem is that many
disponible solution do not have permissive licenses, with
make impossible the commercial use and distribution. As al-

ready said, 3D reconstruction demands lots of different algo-
rithms that may have different license. To be able to use it
commercially and without the need to make the code open-
source, which may be not desirable, it is possible to use only
techniques whose source code has permissive license.

In this paper, we present the results of a photogramme-
try pipeline with batch processing. We focused on getting
state-of-the-art comparable results using only open-source
techniques with permissive license. Our pipeline is based on
using a modified COLMAP SfM for geometric features de-
tection and applying the R-MVSNet approach allied to Point
Cloud Library (PCL) to reconstruct the scene, those will be
described properly in the section 3, being able to keep low
execution time, making this technology more accessible for
daily use. The contributions of this work are the following:

* A 3D reconstruction solution that uses only permis-
sively licensed techniques, being suitable to commer-
cial use;

* A pipeline using the R-MVSNet method, which
achieved a good cost-benefit in terms of quality of re-
sults and runtime compared to other state-of-the-art so-
lutions;

* Qualitative and quantitative evaluations regarding 3D
reconstruction accuracy and execution time of the de-
veloped method with respect to state-of-the-art 3D re-
construction techniques;

+ Experiments using real-world daily use scenarios, re-
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inforcing our proposal viability, and comparison using
banchmark datasets.

This paper is organized as follows: Section 2 presents the
related works; Section 3 describes the method employed in
this study; Section 4 presents our methodology; Section 5
discusses the results; and Section 6 concludes the paper.

2 Related Works

One of the fundamental steps (and research field) in com-
puter vision and graphics is acquiring 3D information. With
their changing parameters and colors, dynamic environments
make the creation of efficient and robust models a compli-
cated task (Schonberger et al., 2016). This task is even more
complex using only permissive solutions. In this work, we
combine pipelines from different applications to create a vi-
able solution with high quality and the lowest computational
cost.

Multi-View  Reconstruction  Environment (MVE)
(Fuhrmann et al., 2014) is an end-to-end free software
for multi-view geometry reconstruction. This system has
inputs with several photos and uses the well-known three
main reconstruction steps: SfM (Seitz et al., 2006) to
reconstruct the camera parameters (intrinsic and extrinsic),
MYVS to obtain 3D correspondences and mesh generation,
combining the dense point cloud with color information,
rendering a final colored object. The SfM step uses both
SIFT (Lowe, 2004) and SURF (Bay et al., 2008) for feature
detection, and these features are matched between a pair of
images. Every image in the dataset is matched to all other
photos.

Memory consumption is one of the main limitations of
MVE, even using low-resolution features to discard un-
matched image pairs before performing the full-resolution
match. For surface reconstruction, all the points are kept in
memory, which is prohibitive for large-scale scenes or a large
datasets, creating a bottleneck in execution time performance.
For example, it takes 116 minutes to perform reconstruction
using the 79-images Der Hass dataset (Fuhrmann et al., 2014)
!. To reach a reasonable time performance in these large
datasets, the MVS method proposed by Goesele et al. (2007)
is a solution. As a depth map-based approach, there is a lot of
redundancy, but it also means that only a small set of neigh-
boring views are required for reconstruction. The Floating
Scale Surface Reconstruction (FSSR) approach (Fuhrmann
and Goesele, 2014) is used to perform point-based mesh re-
construction.

Using an uncontrolled environment, as random internet
images or user made datasets, is an even more challenging
task. In these cases, other variables influence the final result,
such as variability in resolution, changes in lighting, occlu-
sions, and increased noise. In general, these datasets gener-
ate sparse clouds, unable to be used to create the 3D model.
To improve these point clouds, Schonberger et al. (2016) pro-
posed COLMAP, a general-purpose SfM (Schonberger and
Frahm, 2016) and MVS pipeline, offering a range of features
for reconstruction. Starting from the optimization framework
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proposed by Zheng et al. (2014), COLMAP improves the
PatchMatch sampling scheme, applying a pixel-wise normal
estimation, introducing a multi-view geometric consistency
term and a “temporal” view selection smoothness term. The
inclusion of normal estimation and geometric prior allied to
the optimization framework and a novel likelihood function
makes the solution less memory expensive, as opposed to the
Markov Random Field approach in Strecha et al. (2004). This
approach was compared to state-of-the-art algorithms in low
and high-resolution datasets, obtaining competitive results,
and sometimes outperforming the previous results.

In terms of completeness, a few state-of-the-art implemen-
tations are performing well, since problems such as low-
textured or reflexive regions make incomplete reconstruc-
tions using the dense correspondences. However, with the
advent of deep learning, the use of this model for applica-
tion in stereo reconstruction has grown. In Yao et al. (2018),
MSVNet is proposed, decreasing memory consumption by
building information from camera frustum and decoupling
the MVS construction into smaller problems. This method
outperformed the previous state-of-the-art, being faster in ex-
ecution time. Then, in Yao et al. (2019), a scalable MVS
framework called R-MVSNet is proposed based on recurrent
neural networks. It improves the MVSNet implementation
introducing recurrent regularization using a convolutional
gated recurrent unit (GRU) (Cho et al., 2014). R-MVSNet
is used to estimate the reference depth map in our approach.

After the R-MVSNet, several algorithms were proposed to
enhance the results and made better 3D models. One of these
projects is Point-MVSNet (Chen et al., 2019), a deep frame-
work that generates a coarse depth map and converts it into
a point cloud, predicting the deep in a coarse-to-fine man-
ner. This approach guarantees a more efficient representa-
tion of the target scene, refining the point cloud interactively
without converting to volumetric grids. The Point-MVSNet
was able to produce a high-quality and relatively fast recon-
struction, even without decreasing image resolution. After,
Chen et al. (2020) proposed the Visibility-Aware (VAPoint-
MVSNet) extends the Point-MVSNet with visibility-aware
multi-view feature aggregations, which aggregates informa-
tion to a better result with occlusions.

Another solution is the PA-MVSNet (Zhang et al., 2021),
which uses a pyramidal attention module, obtaining more in-
formation from the original image and generating a signifi-
cant improvement in the representation of features. This so-
lution has improved image quality and less noise, while it has
an increase the execution time for the generation of multi
pyramidal views. Overall, this system was relatively better
when compared to other methods. Focusing on decreasing
memory requirements to process high-resolution images, the
HighRes-MVSNet (Weilharter and Fraundorfer, 2021) uses
a pyramid encoder-decoder structure align to a coarse-to-fine
hierarchy, achieving to find depth correspondences. This ap-
proach significantly reduced the CPU and runtime require-
ments on challenging benchmarks, but had a intermediate re-

! Avaliable in https://www.gcc.tu-darmstadt.de/home/proj/mve/index.en.jsp sult in terms of accuracy and completeness.
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Figure 1. The modified (including permissive AKAZE and OpenCV) COLMAP SfM pipeline used. Adapted from Fuhrmann et al. (2014).

3 Methods

As mentioned in Section 2, uncontrolled environments are
a challenging task in reconstruction. Most of the state-of-
the-art algorithms fail to perform complete large-scale scene
reconstructions from Internet images. To maximize the ro-
bustness, completeness, and accuracy of our solution and to
keep the time consumption low, we use a modified version of
the SfM method proposed in Schonberger and Frahm (2016),
the depth estimation of Yao et al. (2019) and PCL Rusu and
Cousins (2011) for meshing and texturing.

3.1 COLMAP Structure from Motion

Although COLMAP has a permissive license, some depen-
dencies such as QT, FreeImage, and SIFT Lowe (2004) can-
not be used commercially. To guarantee the use of COLMAP
SfM in our pipeline, we had to remove the QT Library, re-
place FreeImage by OpenCV Bradski (2000) and SIFT by
A-KAZE Alcantarilla and Solutions (2011). The SfM algo-
rithm works as follows: considering the I; input image in
Z ={I;|i=1---Nr}, we want to detect sets of local
features F; = {(z;,f;)|j=1---Ng,} atlocation z; € R
represented by f; descriptor. To be recognized in multiple
images, these features have to be geometric invariant, so A-
KAZE is a good descriptor in terms of robustness. Using
these F; features, SfM can identify the images that catch sight
of the same scene. This matching has to be scalable and effi-
cient, as the brute force approach is prohibitive for extensive
image collections. The output is the overlapping image pairs
C={{lo,Ip}|1s,Iy € Z,a < b}.

With this C set, it is necessary to verify the geometric re-
lation, as the matching in the previous step is only based on
appearance. This process starts with the estimation of the fun-
damental matrix (for uncalibrated images) and essential ma-
trix (for calibrated images), finding the number of inliers, and
then the homography inliers. If it is found that N;,iiers > th,
being th a threshold, the image is geometrically verified. By
triangulating points from essential matrix decomposition, it
is possible to find the triangulation angle «,,,, which is used
to distinguish pure rotation and planar scenes. This process,
allied to a similarity transformation check to remove com-
mon Internet photos problems (watermarks, timestamps, and
frames), enables an optimal initialization for a robust recon-
struction.

For the reconstruction step, the inputs are scene graphs,
the outputs are estimated poses P = {P. € SE(3) | ¢ =
1,---, N}, and the scene is reconstructed as a set of points
X = {X; € R*|k = 1,---,Nx}. The model is
initialized from dense image graph location, as the over-
lapped cameras can result in more accurate reconstruction.
The intrinsic parameters and the P, pose are estimated by
solving the Perspective-n-Point (PnP) problem, based on al-
ready found 2D-3D correspondences. As these correspon-
dences are typically contaminated by outliers, Schonberger
and Frahm (2016) proposed a better image selection, en-
hancing the uncertainty-driven solution of Haner and Hey-
den (2012) and giving a score considering how visible and
uniform the points distribution is. After the triangulation, a
step that is crucial and high computational, the reconstructed
scene can be added to X'. The recursive RANSAC multi-view
triangulation handles the outlier contamination, reducing the
cost of this step. Figure 1 shows the SfM pipeline used.

3.2 R-MVSNet

MVSNet (Yao et al., 2018) (Figure 2) showed state-of-the-
art results on the DTU datasetJensen et al. (2014)2, but it is
prohibitive for large-scale scenes. To solve this problem, Yao
et al. (2019) proposed a recurrent MVSNet implementation.
This approach starts with a recurrent regularization scheme
with sequential processing of a C' cost volume, based on
GRU. C is viewed as D cost maps {C(i)}2 | concatenated
in depth direction. That means the C,.(t) step is dependent
on cost maps of C(¢) as well as all previous {C(i) }:Z] steps.
This temporal context information is modeled as a GRU con-
volutional variant, formulated as

Cot) = (1=U) 0 Cp(t — 1) + U(t) © Cult), (1)
being © the element-wise multiplication, U (¢) the update
gate map to decide, and C.(¢t — 1) the regularized cost map
of late step. C\,(t) could be viewed as the updated cost map
in current step, defined as

Cu(t) =o.(Wex[C(t),R(t) ©Cr(t —1)] +be), (2)
where * is the convolution operation, R(t) is the reset gate
map deciding how much the previous C,.(t — 1) affects the

Zhttp://roboimagedata.compute.dtu.dk/?page_id=36
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current update, o (-) is the sigmoid nonlinear mapping and ||
is the concatenation. The last output and current input feeds
both update and reset gates. Being W and b the learning rates
and o, the hyberbolic tangent function, the gates formula are

R(t) = og(W, + [C(t),Co(t = )] +b,), (3
Ut) =og(Wux[C(1), Ce(t = D] +bu). (4
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Figure 2. MVS reconstruction steps: (a) The reference image. (b) Final
depth map. (c) Probability estimation for the obtained depth map. Adapted
from Yao et al. (2019).

This model uses a singular layer GRU model that can
be stacked to create deeper networks (Figure 3). The base
pipeline starts with a 2D convolutional layer to map the C
cost map, which is an input to the GRU layer. Next, a soft-
max layer generates the probability volume P from the reg-
ularized maps to calculate the training loss. The R-MVSNet
model applies the inverse depth, treating the problem as a
multi-class classification, with cross-entropy loss:

D

Loss =Y (Y —P(i,p) -1og Q(i, p)), (5)

P =1

where p is the spatial image coordinate, and P(i, p) is a voxel
in the probability volume P. @ is the ground truth binary
occupancy volume generated by the one-hot encoding of the
ground truth depth map. Q(, p) is the voxel corresponding
to P(i,p).
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Figure 3. The R-MVSNet architecture. Features are extracted from input
images and the cost maps are obtained at different depths, being then regu-
larized by the convolutional GRU. Adapted from Yao et al. (2019).

3.3 PCL Library

PCL is a standalone, open-source library for point cloud pro-
cessing tasks and geometric processing written in C++. It
contains algorithms for filtering, feature extraction, segmen-
tation, surface estimation, object recognition, visualization,
among others. We selected some of these techniques to com-
plement the proposed reconstruction. For more details on the
algorithms check Rusu (2011).

Lyra et al. 2021

3.3.1 Filtering

During the point cloud estimation, measurement errors can
lead to sparse outliers, causing corruption errors and erro-
neous reconstruction. Statistical analysis can be performed
to solve some of these irregularities, as the distribution of
point to input neighbors distance. That can be done assum-
ing a Gaussian distribution of the mean of all point distances
to neighbors, and applying the mean and standard deviation
to remove all data of this interval. Also, we downsampled
the point cloud using the Voxel Grid filter algorithm, which
can be seen as a grid of small 3D boxes in space, where all
points inside these boxes are approximated to their centroid,
taking a spatial average of the points in each voxel. Figure
4 shows an example of a dense point cloud passing through
these filters.

Figure 4. Outlier removal and point density reduction in the Pikachu dataset
using PCL. (a) Dense point cloud; (b) Point cloud after filtering.

3.3.2 Resampling

Resampling algorithms can be used in case of occlusion
or noisy data, when is impossible to do an additional scan
to recreate missing parts of the surface. The Moving Least
Squares (MLS) method was used to reconstruct the surface
from the estimated set of points and also to remove some
small artifacts, i.e., double walls. MLS provides an interpo-
lated surface for this set, fitting higher order polynomials to
each point. This method was selected because it has the ad-
vantage that the resultant fitted surface passes through the
original data points. Figure 5 shows an example of a point
cloud before and after resampling.

Figure 5. Smoothing of the Pikachu dataset point cloud using the MLS al-
gorithm of PCL. (a) Point cloud with noise; (b) Smoothed point cloud after
resampling.

3.3.3 Normal estimation

One critical step for high-quality visual effects is normal es-
timation. With this, we can access essential properties of ge-
ometric surfaces, being possible to know object orientation,
for example, used to define light, shade, and other visual ef-
fects. With the point cloud model, normal estimation is usu-
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ally formulated as the problem of estimating the normal of
a plane tangent to the surface, turning the problem into a fit-
ting estimation of the least-square plane. Therefore, normal
estimation is reduced to an analysis of the eigenvectors and
eigenvalues (or Principal Component Analysis - PCA) of a
covariance matrix created from the nearest neighbors of the
query point. This information is the base to create a mesh for
further texture mapping and to improve lighting effects when
visualizing the 3D model. Figure 6 shows a representation of
the normals in a point cloud.

Figure 6. Results of normal estimation applied to the DTU set6 point cloud.
(a) Set of points without normals; (b) Set of points with normals, where the
blue lines represent the normal of each point.

3.3.4 Surface reconstruction

PCL provides some different functions to transform a set of
3D points with oriented normal into a mesh. Between them
are the greedy projection triangulation, Poisson and Grid pro-
jection surface reconstruction, which are based on Marton
et al. (2009), Kazhdan et al. (2006) and Li et al. (2010), re-
spectively.

The first performs a local triangulation by projecting the
local neighborhood of a point along with the point’s normal
and connecting unconnected points. It can deal with unorga-
nized points coming from one or multiple scans and having
multiple connected parts. But it works best if the surface is lo-
cally smooth and there are smooth transitions between areas
with different point densities, which is not always the case.

On the other hand, the goal of the second is to reconstruct
a watertight, triangulated approximation of the surface. It de-
rives a relationship between the gradient of the indicator func-
tion and an integral of the surface normals field. Then, it re-
constructs the indicator function from this gradient field as
a Poisson problem. The output of the scalar function, rep-
resented in an adaptive octree, is then iso-contoured using
adaptive marching cubes to obtain the reconstructed surface.

Finally the third uses a pair of scalar and unoriented vector
functions along with a spatial grid over the domain, to make
the surface reconstruction. First, it will identify the grid edges
where the derivative of the scalar and unoriented vector is
zero. Then the algorithm can make a polyline crossing all
the grid edges, creating the curves through that vector grid.

Figure 7 shows these three surface reconstruction algo-
rithms on the same input point cloud. We chose to use the
Poisson algorithm for its smoother surfaces and ability to fill
holes.

Lyra et al. 2021

(a) (b) (c)
Figure 7. Surface reconstructions algorithms on the same input cloud. (a)
Greedy projection triangulation; (b) Poisson surface reconstruction; (c) Grid
Projection surface reconstruction

3.3.5 Texture mapping

The final step in our pipeline is to perform texture mapping
on the reconstructed surface. It consists of transforming im-
age data projected in a 3D surface, and matching with the
point cloud structure of the mapped scene or object, in our
case the Poisson surface. For that, every vertex in a polygon
found in the dense point cloud is assigned to a texture co-
ordinate. The final result is a realistic reconstruction of the
desired object. Figure 8 shows an example of a texture being
applied to the object surface.

Figure 8. Final result. Texture application on the obtained Pikachu surface.

4 Solution

To maintain the application only with permissive dependen-
cies, low execution time, and robustness, we connected the
methods described in Section 3, creating the 3D reconstruc-
tion pipeline illustrated in Figure 9.

As a first step, a succession of overlapping photos was
taken, to be used as the Z dataset. Then, these images were
used in our modified COLMAP SfM to find the local fea-
tures, which gives: the sparse reconstruction of the scene, and
intrinsic and extrinsic camera parameters. That sparse recon-
struction helps to find the N most similar images for each
image in the dataset.

In the inference phase, these found groups, set of images,
and camera parameters was used as input to the pre-trained
R-MVSNet network. This network outputs a depth map and
a probability map for each image. With these maps, it is pos-
sible to use the latter to filter the former by excluding pixels
depth values in which the probability does not pass a certain
threshold.

After that, each filtered depth map was transformed into a
point cloud to have their normals estimated using PCL. After,
we fused them into one point cloud by using the extrinsic
parameters of each camera to transform the points, which are
in camera coordinates, to world coordinates.
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Figure 9. Our proposed pipeline. Input goes into the COLMAP SfM algo-
rithm and follows the flow until the texturing step, where it outputs a textur-
ized mesh of the scene.

Next, using PCL, we filtered this point cloud by remov-
ing outliers, lowering the density of points, and resampling
the cloud to make it smoother. After that, a Poisson surface
reconstruction algorithm is applied in the filtered cloud to
obtain a mesh of the scene. Finally, this mesh goes in a tex-
turization process, also using PCL, giving a texturized mesh
that represents the complete object.

5 Results and Discussion

The proposed 3D reconstruction pipeline was evaluated
through both qualitative and quantitative comparison of the
reconstructed scenes with COLMAP (regarding the modifi-
cations mentioned in Section 3) and MVE pipeline (using A-
KAZE as feature extractor instead SIFT/SURF algorithms,
using a fully permissive application). We also made an exe-
cution time analysis for all methods. The details of these tests
are presented in the next subsections®.

We used OpenCV in our pipeline for image handling,
mainly running in C++. However, the R-MVSNet is an ex-
ception, running in Python and using TensorFlow to handle
the deep neural network. We managed to run the inference in
C ++using ONNX, but it was not a stable solution, and some
adjustments are still needed for its conclusion. COLMAP and
our pipeline use GPU acceleration in the feature matching
and depth estimation steps while MVE can only run entirely
in CPU. The machine used to run the test has these specifica-
tions: Intel Core 17-7700HQ 2.80GHz, 16 GB RAM, and an
NVIDIA GeForce GTX 1060 6GB graphics card.

3A video demonstrating the quantitative results can be found at
https://youtu.be/i5rIWxVzp60
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5.1 Experiments

We tested our pipeline using several image sets from the DTU
MYVS dataset (Jensen et al., 2014). Each set has a total of
49 photos, with a 1600 x 1200 resolution. Figure 10 shows
some examples images of the scan 6. With all scans, a ground
truth point cloud is also available (Fig. 11), so we made a
quantitative evaluation of the methods following the process
described in Knapitsch et al. (2017).

Figure 10. Example images from DTU MVS set6 used in the first experi-
ment.

Figure 11. Ground truth point cloud of the set6 from the DTU MVS dataset.

To make this evaluation, first the point clouds were auto-
matically aligned using the reconstructed camera poses, and
then this alignment was refined using a RANSAC algorithm.
The point clouds were resampled using a voxel grid filter
of size 7/2, being 7 the distance threshold of a point being
valid, to avoid bias in the evaluation by maintaining a uni-
form sampling on the reconstructed surface. Then, having G
as the ground truth and R as the reconstructed cloud, we can
calculate the distance of the reconstructed points r € R to
the ground truth and use them to define the precision of the
reconstruction R for any threshold 7 as:

er—g =?g€igllr—g|\, (6)
100
P(T):wZ[erag<ﬂ~ (7
reR

Similarly, we can calculate the distance of the ground truth
points g € G to the reconstruction and use them to define the
recall of the reconstruction R for any threshold 7 as:

egr = min [lg =], (8)
100
R() =151 > legar <7 ©9)
geg
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Table 1. Execution times of several DTU sets in first experiment
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SFM Depth  Fusion Mesh  Texture TOTAL
Set 1 6m42s 49mS5s 8m46s 1m50s - 1h06m23s
Set 4 6m24s  55m35s  7mdls 1m55s - 1h11m35s
Set 6 5Sm3ls 48m48s  7m53s 2mS5s - 1h4m17s
Set 12 7m59s  44m33s  Sm27s 1m45s - 59m44s
Set 13 16m22s 46m48s  6m20s 2m42s - 1h12m12s
Set 29 10m21s 53m56s  7m57s 3m53s - 1h16m07s
Set 33 21ml18s S57mlls 3ml9s 1m8s - 1h22m56s
Set 114 12m57s  44m23s  7m22s 2m54s - 1h07m36s
Set 118 6mls 43m22s  9m29s 3m37s - 1h02m29s
Average 10m24s 49ml18s 07m08s 02m25s - 1h09m15s

MVE

SFM Depth Fusion Mesh Texture TOTAL
Set 1 18ml5s  57m24s 28s 16m14s 17s 1h32m38s
Set 4 33m29s  52m57s 17s 16m48s 14s 1h43m45s
Set 6 21m19s  45m45 21s 20mO01s 15s 1:27:41s
Set 12 10m40s  34m9s 15s 10m2s 6s 55mlé6s
Set 13 14m13s 26m27s 16s 13m45s 10s 54m51s
Set 29 14m55s  29mS58s 14s 14mé41s 8s 59m56s
Set 33 52m7s  34m40s 13s 10m23s 12s 1h37m35s
Set 114 10m6s  39m42s 17s 9m28s 7s 59m40s
Set 118 3m39s  27m20s 13s 9m27s 9s 40m48s
Average 19m51s 38m42s 17s 13m25s 11s 1h12m28s

SFM Depth Fusion Mesh Texture TOTAL
Set 1 6m42s 6md4s 54s 3m28s 0m37s 18m25s
Set 4 6m24s 6m25s 51s 3m36s Om4ls 17m57s
Set 6 5m18s 6m38s 52s 3m18s Om31s 16m37s
Set 12 Tm59s 5m43s 39s 1m27s 0m25s 16m13s
Set 13 16m22s  5ml3s 34s 1m32s Om55s 24m36s
Set 29 10m21s 6m4s 44s 7m28s 2m23s 27m00s
Set 33 2Ilml18s  Sm3ls 34s 0m50s Om16s 28m29s
Set 114 12m57s  Smdls 42s 2mS5s 0m28s 21m53s
Set 118 6mls 5m36s 39s 3m2s 0m46s 16m04s
Average 10m22s  5mS57s 43s 2m58s 47s 20m48s

Finally, the precision and recall can be combined using a
harmonic mean, giving us the F-score:

2P(T)R(T)

" B T Ry

(10)

The precision quantifies the accuracy of the reconstruc-
tion, and the recall quantifies the reconstruction complete-
ness. So a high F-score can only be achieved by a reconstruc-
tion that is both accurate and complete.

Besides the benchmark datasets, we also experimented
with real-world scenarios. For this test, we captured a video
surrounding a highly textured mug using a Samsung Galaxy
Note 10 mobile device and utilized 78 equally spaced frames
with a resolution of 1080 x 1920. Some of these images can
be seen in Fig. 12.

Finally, in the last experiment, we made a video surround-
ing a stuffed toy, using the Samsung Galaxy Note 10 device.
We followed the same experiment, extracting different num-
bers of equally spaced frames from it to analyze the impact
that the number of input images causes in quality and compu-
tational time. We constructed three different sets that had 46,
86, and 125 images with the same 1920 x 1080 resolution.
Some of these images can be seen in Fig. 13.

It is important to reaffirm that both datasets created by

Figure 12. Example images from the Mug dataset, created by the authors,
for the second experiment.

\ £\
Figure 13. Example images from the Pikachu dataset, built by the authors,
for the third experiment.

the authors (mug and Pikachu) followed the same protocol
for analysis. The frames used were obtained automatically
through the filming of the camera, being limited by the soft-
ware. This methodology was proposed to compare the reac-
tion of the solutions with reduced numbers of images and in
uncontrolled environments, compared in terms of robustness,
completeness, and execution time.
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COLMAP MVE OURS

Figure 14. First experiment results: (a) Point cloud; (b) Mesh; (c¢) Colored mesh. The amount of noise from MVE leaves the reconstruction with more errors,
which are more noticeable in the chimney. In the proposed solution, there is a loss of detail when compared to COLMAP, which is visible in the yellow wall
texture.

<

(a)

COLMAP MVE OURS

Figure 15. Comparing qualitative results using created Pikachu Dataset with (a) 46, (b) 86 and (c) 124 images.
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5.2 Results

We conducted a qualitative comparison of the resulting point
cloud, mesh, and colored mesh in all chosen datasets with
COLMAP, MVE, and our proposed solution. Figure 14
shows the result of the experiment in DTU’s scan 6. We also
calculated the execution time for each step of the experiment
(StM, MVS, Depth Fusion, and Mesher) and total time for all
scans. Table 1 show some examples of DTU dataset times in
several experiments. The Mesher execution time includes the
meshing and texturing steps.

Table 2. Precision, recall and F-score of the first experiment (7 =
2mm,).

Precision Recall F-score
COLMAP 31.62 47.14 37.85
MVE 53.58 91.96 67.71
Ours 33.57 50.40 43.30
COLMAP 72.32 58.98 60.52
MVE 56.95 64.55 64.98
Ours 76.08 62.91 68.87
COLMAP 70.87 78.31 74.40
MVE 55.70 80.67 65.90
Ours 76.38 78.47 77.41
COLMAP 49.82 21.57 30.10
MVE 49.75 31.00 38.19
Ours 45.61 20.33 28.13
COLMAP 76.56 36.02 48.99
MVE 55.10 33.92 41.99
Ours 86.00 36.21 50.96
COLMAP 67.27 54.49 60.21
MVE 59.23 67.29 63.01
Ours 67.44 56.65 61.58
COLMAP 53.44 31.75 39.84
MVE 51.23 42.65 46.55
Ours 47.97 26.79 34.38
COLMAP 39.31 76.51 51.94
MVE 38.75 64.31 48.36
Ours 90.02 83.40 86.58
COLMAP 57.65 50.59 50.48
MVE 52.53 59.58 54.58
Ours 65.38 51.89 56.40

We also conducted a quantitative comparison of the recon-
structed point cloud in the first experiment and the ground
truth point cloud provided by the DTU dataset. We evalu-
ated all pipelines in terms of precision, recall, and F-score,
as defined in Section 5.1, following the traditional methodol-
ogy present in the literature. Table 2 shows the results of this
comparison with a distance threshold of 2mm. We show the
results of eight different scans, in which four were the best
result of our pipeline and the other four were the worst. The
values in bold indicate the best results in each of the evalu-
ated sets.

Lyraetal 2021

In the stuffed toy experiment (Pikachu Dataset), we used
three sets with different amounts of photos to analyze the
effects of the input size on the 3D reconstruction pipelines.
That was a relatively more complex task, as it involved
a reasonably textured image, a chaotic background, and a
small number of images to create the correspondences. Fig-
ure 15 show the comparison of the colored mesh for all three
pipelines with the different amounts of images used for the
reconstruction and Table 4 show the entire execution time for
each set for all compared pipelines.

For the mug dataset experiment, we show the reaction
of our pipeline in less controlled environments compared to
other implementations. The Figure 16 shows the qualitative
comparison of the point cloud and mesh results. It is possi-
ble to notice that there is an influence on the background
of the image. This influence happened even using a well-
textured mug. Execution times have also been compared and
are shown in the Table 3.

e,
@ ! 4 .
T
(C) &
COLMAP MVE OURS

Figure 16. Qualitative results from Mug Dataset. (a) Point cloud, (b) Mesh,
(c) Colored mesh.

5.3 Discussion

The qualitative assessment shows a good response from our
solution compared to the other pipelines. COLMAP is com-
plete, including using fewer images, which is more notice-
able mainly at the edges of the image, when checking the
mesh without coloring, in Figure 14. This problem is per-
ceived primarily in the texturing stage using the PCL. Tex-
tures like some windows or points with an inevitable overlap
can cause a certain inconsistency in the results. The recon-
structions generated from the DTU dataset using our pipeline
can be seen in Figure 17, and these problems are shown in
Figure 18.

However, we perceive a better result of our approach for
the point cloud, which influences the colored mesh, being
possible to perceive a better texture in Figure 14(c). These
results were noticeable in several other objects in the DTU
dataset. This characteristic, combined with the much shorter
reconstruction time, proves a positive result of our approach.
Both COLMAP and our solution are better in terms of robust-
ness, completeness, and runtime than MVE.

Although the times for COLMAP’s SfM stage and our so-
lution are practically the same, the average time for the other
steps is a clear advantage of the proposed solution. In the
average of the DTU results, the standard of our pipeline is
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Table 3. Execution times of the second experiment.

StM MVS Fusion Mesher TOTAL

COLMAP 12min37s 34min42s 2min42s 31s 50min32s
MVE 8min8s 38min22s 14s 16min45s  63min29s
Ours 12min23 s  6minls 39s 33s 19min36s

(j) Scan 24

o

.&Hw

(m) Scan 33 (n) Scan 34

(q) Scan 75 (r) Scan 114

(h) Scan 15

(p) Scan 62

(s) Scan 118

Figure 17. Qualitative results from our pipeline with the DTU dataset.

approximately 21 minutes, while others’ solution best result

is 69 minutes, which represents a gain of 69.56% of the time.

This result is even more expressive compared to MVE, which
runs on the CPU, while our solution uses the GPU (as well

as COLMAP).

The analysis of the F-score was surprising. Although
COLMAP has better qualitative results when compared to
MVE, in none of our tests was it’s F-score better. In the
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Table 4. Total execution time for each set in the third experiment.

46 images 86 images 124 images
COLMAP 5Imin29s 120min46s 174min 4s
MVE 48min49s  110min 21s  176min 59s
Ours 13min 4s 32min 51s 62min 7s

(@

Figure 18. (a) The back of the reconstructed object from the third experi-
ment with 124 pictures. (b) Windows of the reconstructed object from the
first experiment.

cases we selected, our solution had a marginally better result
on average (56.40%, against 54.58% for MVE and 50.48%
for COLMAP), showing that the pipelines are quantitatively
equivalent. One of the possible causes of this result is the
low number of images used (49), which generated the need
for the third experiment, which will be better discussed be-
low. Noteworthy, however, is the significantly higher result
in scan 118, which was the best result in the entire dataset.

Table 5. Execution time decrease (in %) of our pipeline with respect
to COLMAP and MVE in different datasets

COLMAP MVE

DTU MVS Average 74.15% 81.05%
Mug 61.21% 69.13%
Pikachu 46 74.62% 73.23%
Pikachu86 72.80% 70.23%
Pikachu 124 64.31% 64.90%
Average 69.42% 71.71%

The mug dataset was the one that presented the worst re-
sults for all solutions. We consider this to be due to some
characteristics of the dataset itself, causing inconsistencies in
the point cloud, mainly in the handle and the hole. These in-
consistencies generate an incomplete, blurry, and very noisy
point cloud, and none of the solutions could reproduce the
object satisfactorily. The point cloud of our solution is bet-
ter, but the mesh generated a problem in the hole, causing
a malformed object. In terms of time, our solution remained
61.52% faster than COLMAP and 69.41% faster than MVE.

Finally, in our third experiment, we verified the influence
of the number of images on the final result of the approaches.
Qualitative analysis shows a poor result from our system with
only 46 photos, but the result improves with 86 and 124 im-
ages. This result highlights one of the flaws in our solution,
which suffers a more significant impact from the number
of images. However, the result with 124 photos proves to
be denser and with higher quality compared to the best re-
sults of the other techniques. Even the addition of more im-
ages causes noise in the COLMAP and MVE reconstructions,
with the background color bleeding from the object, as in the
stuffed toy gloves (Figure 18).

Regarding the execution time, our solution kept the aver-

Lyraetal 2021

200
® COLMAP ® MVE ® Ours

150

100

Execution Time

46 66 85 105 124

Number of Images

Figure 19. Relation between the number of inputs and execution time.

Colored Mesh

Point Cloud

Figure 20. Qualitative results for Tanks and Temples dataset.
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age speed of the other experiments. The speed was partic-
ularly higher precisely in the dataset with only 46 images
but with a much worse result. With 86 pictures, and con-
sequently with higher quality results, our solution was still
approximately 20 minutes faster than COLMAP with 46 im-
ages, proving to be a valid alternative both in processing time
and in image quality to the two pipelines compared. Table 5
shows the speed gain of our solution in each of the different
datasets used.

Figure 17 shows the qualitative results of our dataset in
several scans of the DTU dataset. Even in some cases where
the F-score result was poor, the model generated was satisfac-
tory, as seen in Figures 17(a) and 17(h). However, in some
cases, our technique had problems doing the reconstruction,
as in Figures 17(f) and 17(0). For these cases, a more signifi-
cant number of images could be sufficient for a better recon-
struction, following the other results presented here.

Because the number of input images in a photogramme-
try application depends on the scene’s size, for large envi-
ronments like a museum or a residential area, the number of
images can easily exceed the thousands. Figure 19 shows the
relation between time and the number of input images for all
three pipelines. In this plot, we see that our implementation
has a less steep curve than COLMAP or MVE, which means
that our pipeline may run much faster in a scenario that re-
quires more images as inputs.

Figure 20 shows the qualitative results of the Tanks and
Temples dataset (Knapitsch et al., 2017) for a large scale
test. Each image has a resolution of 1920x1056 and we used
150, sometimes 300 images as input depending on the scene.
We achieved comparable results with state-of-the-art meth-
ods, the point cloud generated preserves most of the scene,
and since the scenes of this dataset are large, it makes diffi-
cult for the mesh to fully reconstruct the surface making a
few artifacts in some spots, but our solution trades it with a
faster execution time compared to other solutions. This re-
sults shows that our method is reliable for different datasets,
without further training by the R-MVSNET model.

As for the surface reconstruction algorithms, it is impor-
tant to discuss why the Poisson method was our choice, when
in our experiments the greedy projection triangulation was
more stable, as can be seen in Figure 21. As shown in Table
6 the execution time of the Poisson compared to the greedy
and grid algorithms was significantly lower. So even with
better overall results, the greedy method has a high cost in
runtime, making the Poisson method more efficient for our
solution.

Table 6. RunTime comparison of surface reconstruction

Pikachu Mug

Greedy Projection

. R 120 sec 9 sec
Triangulation
Grid Projection 180 sec 120 sec
Poisson 18 sec 3.6 sec

6 Conclusion

This paper presented a 3D reconstruction method with batch
processing, with only permissive dependencies, making it

Lyra et al. 2021

Figure 21. Surface reconstruction using the mug and pikachu dataset with
different algorithms. (a) Greedy projection triangulation; (b) Poisson surface
reconstruction

possible for commercial use. To achieve this goal, we com-
bined COLMAP SfM, R-MVSNet as a depth estimation step,
and PCL for mesh reconstruction, obtaining good quality
results with an expressive gain of time, making it possible
to create a fully merchantable technology. Even when com-
pared to state-of-the-art methods like COLMAP and MVE,
this solution was approximately 3 to 4 times quicker in run-
time. The technique also showed good scalability with the
increase in the number of images used for reconstruction,
which allows its users to reconstruct large objects or com-
plete scenes in less time since these approaches require a sig-
nificantly large amount of information to create your point
clouds.

For the 3D reconstruction task, this kind of application has
the potential to make 3D scans of some artifacts, building a
virtual collection for exhibition, 3D models to real objects re-
pairing (also using virtual reality) rebuilding, in case, for ex-
ample, of loss of historical material in some disaster. Another
possible application is in architecture, where the professional
can work with a 3D model instead of the actual scene, reduc-
ing costs. And the speed of our model is also a significant
improvement. The user can do a quick scan, apply modifica-
tions to the object, becoming a solution for everyday appli-
cations with 3D models.

In future work, we intend to improve some flaws found in
our solution, such as recognizing some of the dataset scans.
This problem can be solved by changing the deep estima-
tion stage, generating more accurate point clouds. Another
improvement is to better understand the reaction of our solu-
tion to holes in images, as in the case of the mug, to gener-
ate more consistent results. We have already done some tests
with textures, but the results have not been satisfactory, re-
quiring further investigation.
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