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Abstract
With the growth of access to faster computers and more powerful cameras, the 3D reconstruction of objects

has become one of the public’s main topics of research and demand. This task is vigorously applied in creating
virtual environments, creating object models, and other activities. One of the techniques for obtaining 3D features is
photogrammetry, mapping objects and scenarios using only images. However, this process is very costly and can be
timeconsuming for large datasets. This paper proposes a robust, efficient reconstruction pipeline with a low runtime
in batch processing and permissive code. It is even possible to commercialize it without the need to keep the code
open. We mix an improved structure from motion algorithm and a recurrent multiview stereo reconstruction. We
also use the Point Cloud Library for normal estimation, surface reconstruction, and texture mapping. We compare
our results with stateoftheart techniques using benchmarks and our datasets. The results showed a decrease of
69.4% in the average execution time, with high quality but a greater need for more images to achieve complete
reconstruction.
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1 Introduction
The creation of 3D assests is one of the main challenges in
Virtual Reality (VR) and Augmented Reality (AR). These
can be done by photogrammetry, mapping objetcs and sce
narios using only images or video frames. This research field
was already a trending topic in Seitz et al. (2006), where the
authors evaluate multiview stereo (MVS) reconstruction al
gorithms. The MVS is responsible for receiving the camera
parameters and the image data, and match view poitns and
keypoints, obtaining dense 3D correspondences. One exam
ple of MVS use is Schops et al. (2017).
For the task of 3D reconstruction through images, they

are usually made from several available technologies. This
combination consists of Structure forMotion (SfM) (Ullman,
1979), the aforementioned MVS, and a mesh and texturing
stage. SfM allows the mapping of previously unknown envi
ronments and selects the pose information from the camera.
Is in the final mesh step where the algorithm makes point
cloud triangulation and gives texture to the reconstruction.
One of the main problems in 3D reconstruction is the ef

ficiency, i.e., how to obtain consistent results while keep
ing a low processing time. Also, the increasingly easy ac
cess to powerful devices and high resolution images, a best
costbenefit is essential to make this technology accessible to
general use. Another photogrammetry problem is that many
disponible solution do not have permissive licenses, with
make impossible the commercial use and distribution. As al

ready said, 3D reconstruction demands lots of different algo
rithms that may have different license. To be able to use it
commercially and without the need to make the code open
source, which may be not desirable, it is possible to use only
techniques whose source code has permissive license.
In this paper, we present the results of a photogramme

try pipeline with batch processing. We focused on getting
stateoftheart comparable results using only opensource
techniques with permissive license. Our pipeline is based on
using a modified COLMAP SfM for geometric features de
tection and applying the RMVSNet approach allied to Point
Cloud Library (PCL) to reconstruct the scene, those will be
described properly in the section 3, being able to keep low
execution time, making this technology more accessible for
daily use. The contributions of this work are the following:

• A 3D reconstruction solution that uses only permis
sively licensed techniques, being suitable to commer
cial use;

• A pipeline using the RMVSNet method, which
achieved a good costbenefit in terms of quality of re
sults and runtime compared to other stateoftheart so
lutions;

• Qualitative and quantitative evaluations regarding 3D
reconstruction accuracy and execution time of the de
veloped method with respect to stateoftheart 3D re
construction techniques;

• Experiments using realworld daily use scenarios, re
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inforcing our proposal viability, and comparison using
banchmark datasets.

This paper is organized as follows: Section 2 presents the
related works; Section 3 describes the method employed in
this study; Section 4 presents our methodology; Section 5
discusses the results; and Section 6 concludes the paper.

2 Related Works
One of the fundamental steps (and research field) in com
puter vision and graphics is acquiring 3D information. With
their changing parameters and colors, dynamic environments
make the creation of efficient and robust models a compli
cated task (Schönberger et al., 2016). This task is even more
complex using only permissive solutions. In this work, we
combine pipelines from different applications to create a vi
able solution with high quality and the lowest computational
cost.
MultiView Reconstruction Environment (MVE)

(Fuhrmann et al., 2014) is an endtoend free software
for multiview geometry reconstruction. This system has
inputs with several photos and uses the wellknown three
main reconstruction steps: SfM (Seitz et al., 2006) to
reconstruct the camera parameters (intrinsic and extrinsic),
MVS to obtain 3D correspondences and mesh generation,
combining the dense point cloud with color information,
rendering a final colored object. The SfM step uses both
SIFT (Lowe, 2004) and SURF (Bay et al., 2008) for feature
detection, and these features are matched between a pair of
images. Every image in the dataset is matched to all other
photos.
Memory consumption is one of the main limitations of

MVE, even using lowresolution features to discard un
matched image pairs before performing the fullresolution
match. For surface reconstruction, all the points are kept in
memory, which is prohibitive for largescale scenes or a large
datasets, creating a bottleneck in execution time performance.
For example, it takes 116 minutes to perform reconstruction
using the 79images Der Hass dataset (Fuhrmann et al., 2014)
1. To reach a reasonable time performance in these large
datasets, the MVS method proposed by Goesele et al. (2007)
is a solution. As a depth mapbased approach, there is a lot of
redundancy, but it also means that only a small set of neigh
boring views are required for reconstruction. The Floating
Scale Surface Reconstruction (FSSR) approach (Fuhrmann
and Goesele, 2014) is used to perform pointbased mesh re
construction.
Using an uncontrolled environment, as random internet

images or user made datasets, is an even more challenging
task. In these cases, other variables influence the final result,
such as variability in resolution, changes in lighting, occlu
sions, and increased noise. In general, these datasets gener
ate sparse clouds, unable to be used to create the 3D model.
To improve these point clouds, Schönberger et al. (2016) pro
posed COLMAP, a generalpurpose SfM (Schönberger and
Frahm, 2016) and MVS pipeline, offering a range of features
for reconstruction. Starting from the optimization framework

1Avaliable in https://www.gcc.tudarmstadt.de/home/proj/mve/index.en.jsp

proposed by Zheng et al. (2014), COLMAP improves the
PatchMatch sampling scheme, applying a pixelwise normal
estimation, introducing a multiview geometric consistency
term and a “temporal” view selection smoothness term. The
inclusion of normal estimation and geometric prior allied to
the optimization framework and a novel likelihood function
makes the solution less memory expensive, as opposed to the
MarkovRandomField approach in Strecha et al. (2004). This
approach was compared to stateoftheart algorithms in low
and highresolution datasets, obtaining competitive results,
and sometimes outperforming the previous results.

In terms of completeness, a few stateoftheart implemen
tations are performing well, since problems such as low
textured or reflexive regions make incomplete reconstruc
tions using the dense correspondences. However, with the
advent of deep learning, the use of this model for applica
tion in stereo reconstruction has grown. In Yao et al. (2018),
MSVNet is proposed, decreasing memory consumption by
building information from camera frustum and decoupling
the MVS construction into smaller problems. This method
outperformed the previous stateoftheart, being faster in ex
ecution time. Then, in Yao et al. (2019), a scalable MVS
framework called RMVSNet is proposed based on recurrent
neural networks. It improves the MVSNet implementation
introducing recurrent regularization using a convolutional
gated recurrent unit (GRU) (Cho et al., 2014). RMVSNet
is used to estimate the reference depth map in our approach.

After the RMVSNet, several algorithms were proposed to
enhance the results and made better 3D models. One of these
projects is PointMVSNet (Chen et al., 2019), a deep frame
work that generates a coarse depth map and converts it into
a point cloud, predicting the deep in a coarsetofine man
ner. This approach guarantees a more efficient representa
tion of the target scene, refining the point cloud interactively
without converting to volumetric grids. The PointMVSNet
was able to produce a highquality and relatively fast recon
struction, even without decreasing image resolution. After,
Chen et al. (2020) proposed the VisibilityAware (VAPoint
MVSNet) extends the PointMVSNet with visibilityaware
multiview feature aggregations, which aggregates informa
tion to a better result with occlusions.

Another solution is the PAMVSNet (Zhang et al., 2021),
which uses a pyramidal attention module, obtaining more in
formation from the original image and generating a signifi
cant improvement in the representation of features. This so
lution has improved image quality and less noise, while it has
an increase the execution time for the generation of multi
pyramidal views. Overall, this system was relatively better
when compared to other methods. Focusing on decreasing
memory requirements to process highresolution images, the
HighResMVSNet (Weilharter and Fraundorfer, 2021) uses
a pyramid encoderdecoder structure align to a coarsetofine
hierarchy, achieving to find depth correspondences. This ap
proach significantly reduced the CPU and runtime require
ments on challenging benchmarks, but had a intermediate re
sult in terms of accuracy and completeness.
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Figure 1. The modified (including permissive AKAZE and OpenCV) COLMAP SfM pipeline used. Adapted from Fuhrmann et al. (2014).

3 Methods
As mentioned in Section 2, uncontrolled environments are
a challenging task in reconstruction. Most of the stateof
theart algorithms fail to perform complete largescale scene
reconstructions from Internet images. To maximize the ro
bustness, completeness, and accuracy of our solution and to
keep the time consumption low, we use a modified version of
the SfMmethod proposed in Schönberger and Frahm (2016),
the depth estimation of Yao et al. (2019) and PCL Rusu and
Cousins (2011) for meshing and texturing.

3.1 COLMAP Structure from Motion
Although COLMAP has a permissive license, some depen
dencies such as QT, FreeImage, and SIFT Lowe (2004) can
not be used commercially. To guarantee the use of COLMAP
SfM in our pipeline, we had to remove the QT Library, re
place FreeImage by OpenCV Bradski (2000) and SIFT by
AKAZE Alcantarilla and Solutions (2011). The SfM algo
rithm works as follows: considering the Ii input image in
I = {Ii | i = 1 · · · NI} , we want to detect sets of local
features Fi = {(xj , fj) | j = 1 · · · NFi} at location xj ∈ R
represented by fj descriptor. To be recognized in multiple
images, these features have to be geometric invariant, so A
KAZE is a good descriptor in terms of robustness. Using
theseFi features, SfM can identify the images that catch sight
of the same scene. This matching has to be scalable and effi
cient, as the brute force approach is prohibitive for extensive
image collections. The output is the overlapping image pairs
C = {{Ia, Ib} | Ia, Ib ∈ I, a < b}.
With this C set, it is necessary to verify the geometric re

lation, as the matching in the previous step is only based on
appearance. This process starts with the estimation of the fun
damental matrix (for uncalibrated images) and essential ma
trix (for calibrated images), finding the number of inliers, and
then the homography inliers. If it is found thatNinliers > th,
being th a threshold, the image is geometrically verified. By
triangulating points from essential matrix decomposition, it
is possible to find the triangulation angle αm, which is used
to distinguish pure rotation and planar scenes. This process,
allied to a similarity transformation check to remove com
mon Internet photos problems (watermarks, timestamps, and
frames), enables an optimal initialization for a robust recon
struction.

For the reconstruction step, the inputs are scene graphs,
the outputs are estimated poses P = {Pc ∈ SE(3) | c =
1, · · · , Np}, and the scene is reconstructed as a set of points
X = {Xk ∈ R3 | k = 1, · · · , NX}. The model is
initialized from dense image graph location, as the over
lapped cameras can result in more accurate reconstruction.
The intrinsic parameters and the Pc pose are estimated by
solving the PerspectivenPoint (PnP) problem, based on al
ready found 2D3D correspondences. As these correspon
dences are typically contaminated by outliers, Schönberger
and Frahm (2016) proposed a better image selection, en
hancing the uncertaintydriven solution of Haner and Hey
den (2012) and giving a score considering how visible and
uniform the points distribution is. After the triangulation, a
step that is crucial and high computational, the reconstructed
scene can be added toX . The recursive RANSACmultiview
triangulation handles the outlier contamination, reducing the
cost of this step. Figure 1 shows the SfM pipeline used.

3.2 RMVSNet
MVSNet (Yao et al., 2018) (Figure 2) showed stateofthe
art results on the DTU datasetJensen et al. (2014)2, but it is
prohibitive for largescale scenes. To solve this problem, Yao
et al. (2019) proposed a recurrent MVSNet implementation.
This approach starts with a recurrent regularization scheme
with sequential processing of a C cost volume, based on
GRU. C is viewed as D cost maps {C(i)}D

i=1 concatenated
in depth direction. That means the Cr(t) step is dependent
on cost maps of C(t) as well as all previous {C(i)}t−1

i=1 steps.
This temporal context information is modeled as a GRU con
volutional variant, formulated as

Cr(t) = (1 − U(t)) ⊙ Cr(t − 1) + U(t) ⊙ Cu(t), (1)

being ⊙ the elementwise multiplication, U(t) the update
gate map to decide, and Cr(t − 1) the regularized cost map
of late step. Cu(t) could be viewed as the updated cost map
in current step, defined as

Cu(t) = σc(Wc ∗ [C(t), R(t) ⊙ Cr(t − 1)] + bc), (2)

where ∗ is the convolution operation, R(t) is the reset gate
map deciding how much the previous Cr(t − 1) affects the

2http://roboimagedata.compute.dtu.dk/?page_id=36
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current update, σ(·) is the sigmoid nonlinear mapping and []
is the concatenation. The last output and current input feeds
both update and reset gates. BeingW and b the learning rates
and σg the hyberbolic tangent function, the gates formula are

R(t) = σg(Wr ∗ [C(t), Cr(t − 1)] + br), (3)

U(t) = σg(Wu ∗ [C(t), Cr(t − 1)] + bu). (4)

Figure 2. MVS reconstruction steps: (a) The reference image. (b) Final
depth map. (c) Probability estimation for the obtained depth map. Adapted
from Yao et al. (2019).

This model uses a singular layer GRU model that can
be stacked to create deeper networks (Figure 3). The base
pipeline starts with a 2D convolutional layer to map the C
cost map, which is an input to the GRU layer. Next, a soft
max layer generates the probability volume P from the reg
ularized maps to calculate the training loss. The RMVSNet
model applies the inverse depth, treating the problem as a
multiclass classification, with crossentropy loss:

Loss =
∑

P

(
D∑

i=1
−P (i, p) · log Q(i, p)), (5)

where p is the spatial image coordinate, andP (i, p) is a voxel
in the probability volume P . Q is the ground truth binary
occupancy volume generated by the onehot encoding of the
ground truth depth map. Q(i, p) is the voxel corresponding
to P (i, p).

Figure 3. The RMVSNet architecture. Features are extracted from input
images and the cost maps are obtained at different depths, being then regu
larized by the convolutional GRU. Adapted from Yao et al. (2019).

3.3 PCL Library
PCL is a standalone, opensource library for point cloud pro
cessing tasks and geometric processing written in C++. It
contains algorithms for filtering, feature extraction, segmen
tation, surface estimation, object recognition, visualization,
among others. We selected some of these techniques to com
plement the proposed reconstruction. For more details on the
algorithms check Rusu (2011).

3.3.1 Filtering

During the point cloud estimation, measurement errors can
lead to sparse outliers, causing corruption errors and erro
neous reconstruction. Statistical analysis can be performed
to solve some of these irregularities, as the distribution of
point to input neighbors distance. That can be done assum
ing a Gaussian distribution of the mean of all point distances
to neighbors, and applying the mean and standard deviation
to remove all data of this interval. Also, we downsampled
the point cloud using the Voxel Grid filter algorithm, which
can be seen as a grid of small 3D boxes in space, where all
points inside these boxes are approximated to their centroid,
taking a spatial average of the points in each voxel. Figure
4 shows an example of a dense point cloud passing through
these filters.

Figure 4.Outlier removal and point density reduction in the Pikachu dataset
using PCL. (a) Dense point cloud; (b) Point cloud after filtering.

3.3.2 Resampling

Resampling algorithms can be used in case of occlusion
or noisy data, when is impossible to do an additional scan
to recreate missing parts of the surface. The Moving Least
Squares (MLS) method was used to reconstruct the surface
from the estimated set of points and also to remove some
small artifacts, i.e., double walls. MLS provides an interpo
lated surface for this set, fitting higher order polynomials to
each point. This method was selected because it has the ad
vantage that the resultant fitted surface passes through the
original data points. Figure 5 shows an example of a point
cloud before and after resampling.

Figure 5. Smoothing of the Pikachu dataset point cloud using the MLS al
gorithm of PCL. (a) Point cloud with noise; (b) Smoothed point cloud after
resampling.

3.3.3 Normal estimation

One critical step for highquality visual effects is normal es
timation. With this, we can access essential properties of ge
ometric surfaces, being possible to know object orientation,
for example, used to define light, shade, and other visual ef
fects. With the point cloud model, normal estimation is usu
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ally formulated as the problem of estimating the normal of
a plane tangent to the surface, turning the problem into a fit
ting estimation of the leastsquare plane. Therefore, normal
estimation is reduced to an analysis of the eigenvectors and
eigenvalues (or Principal Component Analysis  PCA) of a
covariance matrix created from the nearest neighbors of the
query point. This information is the base to create a mesh for
further texture mapping and to improve lighting effects when
visualizing the 3D model. Figure 6 shows a representation of
the normals in a point cloud.

Figure 6. Results of normal estimation applied to the DTU set6 point cloud.
(a) Set of points without normals; (b) Set of points with normals, where the
blue lines represent the normal of each point.

3.3.4 Surface reconstruction

PCL provides some different functions to transform a set of
3D points with oriented normal into a mesh. Between them
are the greedy projection triangulation, Poisson and Grid pro
jection surface reconstruction, which are based on Marton
et al. (2009), Kazhdan et al. (2006) and Li et al. (2010), re
spectively.
The first performs a local triangulation by projecting the

local neighborhood of a point along with the point’s normal
and connecting unconnected points. It can deal with unorga
nized points coming from one or multiple scans and having
multiple connected parts. But it works best if the surface is lo
cally smooth and there are smooth transitions between areas
with different point densities, which is not always the case.
On the other hand, the goal of the second is to reconstruct

a watertight, triangulated approximation of the surface. It de
rives a relationship between the gradient of the indicator func
tion and an integral of the surface normals field. Then, it re
constructs the indicator function from this gradient field as
a Poisson problem. The output of the scalar function, rep
resented in an adaptive octree, is then isocontoured using
adaptive marching cubes to obtain the reconstructed surface.
Finally the third uses a pair of scalar and unoriented vector

functions along with a spatial grid over the domain, to make
the surface reconstruction. First, it will identify the grid edges
where the derivative of the scalar and unoriented vector is
zero. Then the algorithm can make a polyline crossing all
the grid edges, creating the curves through that vector grid.
Figure 7 shows these three surface reconstruction algo

rithms on the same input point cloud. We chose to use the
Poisson algorithm for its smoother surfaces and ability to fill
holes.

Figure 7. Surface reconstructions algorithms on the same input cloud. (a)
Greedy projection triangulation; (b) Poisson surface reconstruction; (c) Grid
Projection surface reconstruction

3.3.5 Texture mapping

The final step in our pipeline is to perform texture mapping
on the reconstructed surface. It consists of transforming im
age data projected in a 3D surface, and matching with the
point cloud structure of the mapped scene or object, in our
case the Poisson surface. For that, every vertex in a polygon
found in the dense point cloud is assigned to a texture co
ordinate. The final result is a realistic reconstruction of the
desired object. Figure 8 shows an example of a texture being
applied to the object surface.

Figure 8. Final result. Texture application on the obtained Pikachu surface.

4 Solution
To maintain the application only with permissive dependen
cies, low execution time, and robustness, we connected the
methods described in Section 3, creating the 3D reconstruc
tion pipeline illustrated in Figure 9.
As a first step, a succession of overlapping photos was

taken, to be used as the I dataset. Then, these images were
used in our modified COLMAP SfM to find the local fea
tures, which gives: the sparse reconstruction of the scene, and
intrinsic and extrinsic camera parameters. That sparse recon
struction helps to find the N most similar images for each
image in the dataset.
In the inference phase, these found groups, set of images,

and camera parameters was used as input to the pretrained
RMVSNet network. This network outputs a depth map and
a probability map for each image. With these maps, it is pos
sible to use the latter to filter the former by excluding pixels
depth values in which the probability does not pass a certain
threshold.
After that, each filtered depth map was transformed into a

point cloud to have their normals estimated using PCL. After,
we fused them into one point cloud by using the extrinsic
parameters of each camera to transform the points, which are
in camera coordinates, to world coordinates.
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Figure 9. Our proposed pipeline. Input goes into the COLMAP SfM algo
rithm and follows the flow until the texturing step, where it outputs a textur
ized mesh of the scene.

Next, using PCL, we filtered this point cloud by remov
ing outliers, lowering the density of points, and resampling
the cloud to make it smoother. After that, a Poisson surface
reconstruction algorithm is applied in the filtered cloud to
obtain a mesh of the scene. Finally, this mesh goes in a tex
turization process, also using PCL, giving a texturized mesh
that represents the complete object.

5 Results and Discussion
The proposed 3D reconstruction pipeline was evaluated
through both qualitative and quantitative comparison of the
reconstructed scenes with COLMAP (regarding the modifi
cations mentioned in Section 3) and MVE pipeline (using A
KAZE as feature extractor instead SIFT/SURF algorithms,
using a fully permissive application). We also made an exe
cution time analysis for all methods. The details of these tests
are presented in the next subsections3.
We used OpenCV in our pipeline for image handling,

mainly running in C++. However, the RMVSNet is an ex
ception, running in Python and using TensorFlow to handle
the deep neural network. We managed to run the inference in
C ++ using ONNX, but it was not a stable solution, and some
adjustments are still needed for its conclusion. COLMAP and
our pipeline use GPU acceleration in the feature matching
and depth estimation steps while MVE can only run entirely
in CPU. The machine used to run the test has these specifica
tions: Intel Core i77700HQ 2.80GHz, 16 GB RAM, and an
NVIDIA GeForce GTX 1060 6GB graphics card.

3A video demonstrating the quantitative results can be found at
https://youtu.be/i5rlWxVzp60

5.1 Experiments

We tested our pipeline using several image sets from theDTU
MVS dataset (Jensen et al., 2014). Each set has a total of
49 photos, with a 1600 × 1200 resolution. Figure 10 shows
some examples images of the scan 6.With all scans, a ground
truth point cloud is also available (Fig. 11), so we made a
quantitative evaluation of the methods following the process
described in Knapitsch et al. (2017).

Figure 10. Example images from DTU MVS set6 used in the first experi
ment.

Figure 11.Ground truth point cloud of the set6 from the DTUMVS dataset.

To make this evaluation, first the point clouds were auto
matically aligned using the reconstructed camera poses, and
then this alignment was refined using a RANSAC algorithm.
The point clouds were resampled using a voxel grid filter
of size τ/2, being τ the distance threshold of a point being
valid, to avoid bias in the evaluation by maintaining a uni
form sampling on the reconstructed surface. Then, having G
as the ground truth and R as the reconstructed cloud, we can
calculate the distance of the reconstructed points r ∈ R to
the ground truth and use them to define the precision of the
reconstruction R for any threshold τ as:

er→G = min
g∈G

∥r − g∥ , (6)

P (τ) = 100
|R|

∑
r∈R

[er→G < τ ] . (7)

Similarly, we can calculate the distance of the ground truth
points g ∈ G to the reconstruction and use them to define the
recall of the reconstruction R for any threshold τ as:

eg→R = min
r∈R

∥g − r∥ , (8)

R(τ) = 100
|G|

∑
g∈G

[eg→R < τ ] . (9)
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Table 1. Execution times of several DTU sets in first experiment
COLMAP

SFM Depth Fusion Mesh Texture TOTAL
Set 1 6m42s 49m5s 8m46s 1m50s  1h06m23s
Set 4 6m24s 55m35s 7m41s 1m55s  1h11m35s
Set 6 5m31s 48m48s 7m53s 2m5s  1h4m17s
Set 12 7m59s 44m33s 5m27s 1m45s  59m44s
Set 13 16m22s 46m48s 6m20s 2m42s  1h12m12s
Set 29 10m21s 53m56s 7m57s 3m53s  1h16m07s
Set 33 21m18s 57m11s 3m19s 1m8s  1h22m56s
Set 114 12m57s 44m23s 7m22s 2m54s  1h07m36s
Set 118 6m1s 43m22s 9m29s 3m37s  1h02m29s
Average 10m24s 49m18s 07m08s 02m25s  1h09m15s

MVE
SFM Depth Fusion Mesh Texture TOTAL

Set 1 18m15s 57m24s 28s 16m14s 17s 1h32m38s
Set 4 33m29s 52m57s 17s 16m48s 14s 1h43m45s
Set 6 21m19s 45m45 21s 20m01s 15s 1:27:41s
Set 12 10m40s 34m9s 15s 10m2s 6s 55m16s
Set 13 14m13s 26m27s 16s 13m45s 10s 54m51s
Set 29 14m55s 29m58s 14s 14m41s 8s 59m56s
Set 33 52m7s 34m40s 13s 10m23s 12s 1h37m35s
Set 114 10m6s 39m42s 17s 9m28s 7s 59m40s
Set 118 3m39s 27m20s 13s 9m27s 9s 40m48s
Average 19m51s 38m42s 17s 13m25s 11s 1h12m28s

Ours
SFM Depth Fusion Mesh Texture TOTAL

Set 1 6m42s 6m44s 54s 3m28s 0m37s 18m25s
Set 4 6m24s 6m25s 51s 3m36s 0m41s 17m57s
Set 6 5m18s 6m38s 52s 3m18s 0m31s 16m37s
Set 12 7m59s 5m43s 39s 1m27s 0m25s 16m13s
Set 13 16m22s 5m13s 34s 1m32s 0m55s 24m36s
Set 29 10m21s 6m4s 44s 7m28s 2m23s 27m00s
Set 33 21m18s 5m31s 34s 0m50s 0m16s 28m29s
Set 114 12m57s 5m41s 42s 2m5s 0m28s 21m53s
Set 118 6m1s 5m36s 39s 3m2s 0m46s 16m04s
Average 10m22s 5m57s 43s 2m58s 47s 20m48s

Finally, the precision and recall can be combined using a
harmonic mean, giving us the Fscore:

F (τ) = 2P (τ)R(τ)
P (τ) + R(τ)

. (10)

The precision quantifies the accuracy of the reconstruc
tion, and the recall quantifies the reconstruction complete
ness. So a high Fscore can only be achieved by a reconstruc
tion that is both accurate and complete.
Besides the benchmark datasets, we also experimented

with realworld scenarios. For this test, we captured a video
surrounding a highly textured mug using a Samsung Galaxy
Note 10 mobile device and utilized 78 equally spaced frames
with a resolution of 1080 × 1920. Some of these images can
be seen in Fig. 12.
Finally, in the last experiment, we made a video surround

ing a stuffed toy, using the Samsung Galaxy Note 10 device.
We followed the same experiment, extracting different num
bers of equally spaced frames from it to analyze the impact
that the number of input images causes in quality and compu
tational time. We constructed three different sets that had 46,
86, and 125 images with the same 1920 × 1080 resolution.
Some of these images can be seen in Fig. 13.
It is important to reaffirm that both datasets created by

Figure 12. Example images from the Mug dataset, created by the authors,
for the second experiment.

Figure 13. Example images from the Pikachu dataset, built by the authors,
for the third experiment.

the authors (mug and Pikachu) followed the same protocol
for analysis. The frames used were obtained automatically
through the filming of the camera, being limited by the soft
ware. This methodology was proposed to compare the reac
tion of the solutions with reduced numbers of images and in
uncontrolled environments, compared in terms of robustness,
completeness, and execution time.
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Figure 14. First experiment results: (a) Point cloud; (b) Mesh; (c) Colored mesh. The amount of noise from MVE leaves the reconstruction with more errors,
which are more noticeable in the chimney. In the proposed solution, there is a loss of detail when compared to COLMAP, which is visible in the yellow wall
texture.

Figure 15. Comparing qualitative results using created Pikachu Dataset with (a) 46, (b) 86 and (c) 124 images.
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5.2 Results

We conducted a qualitative comparison of the resulting point
cloud, mesh, and colored mesh in all chosen datasets with
COLMAP, MVE, and our proposed solution. Figure 14
shows the result of the experiment in DTU’s scan 6. We also
calculated the execution time for each step of the experiment
(SfM,MVS, Depth Fusion, andMesher) and total time for all
scans. Table 1 show some examples of DTU dataset times in
several experiments. TheMesher execution time includes the
meshing and texturing steps.

Table 2. Precision, recall and Fscore of the first experiment (τ =
2mm).

Precision Recall Fscore
Scan 1
COLMAP 31.62 47.14 37.85
MVE 53.58 91.96 67.71
Ours 33.57 50.40 43.30

Scan 4
COLMAP 72.32 58.98 60.52
MVE 56.95 64.55 64.98
Ours 76.08 62.91 68.87

Scan 6
COLMAP 70.87 78.31 74.40
MVE 55.70 80.67 65.90
Ours 76.38 78.47 77.41

Scan 12
COLMAP 49.82 21.57 30.10
MVE 49.75 31.00 38.19
Ours 45.61 20.33 28.13

Scan 13
COLMAP 76.56 36.02 48.99
MVE 55.10 33.92 41.99
Ours 86.00 36.21 50.96

Scan 15
COLMAP 67.27 54.49 60.21
MVE 59.23 67.29 63.01
Ours 67.44 56.65 61.58

Scan 29
COLMAP 53.44 31.75 39.84
MVE 51.23 42.65 46.55
Ours 47.97 26.79 34.38

Scan 118
COLMAP 39.31 76.51 51.94
MVE 38.75 64.31 48.36
Ours 90.02 83.40 86.58

Average
COLMAP 57.65 50.59 50.48
MVE 52.53 59.58 54.58
Ours 65.38 51.89 56.40

We also conducted a quantitative comparison of the recon
structed point cloud in the first experiment and the ground
truth point cloud provided by the DTU dataset. We evalu
ated all pipelines in terms of precision, recall, and Fscore,
as defined in Section 5.1, following the traditional methodol
ogy present in the literature. Table 2 shows the results of this
comparison with a distance threshold of 2mm. We show the
results of eight different scans, in which four were the best
result of our pipeline and the other four were the worst. The
values in bold indicate the best results in each of the evalu
ated sets.

In the stuffed toy experiment (Pikachu Dataset), we used
three sets with different amounts of photos to analyze the
effects of the input size on the 3D reconstruction pipelines.
That was a relatively more complex task, as it involved
a reasonably textured image, a chaotic background, and a
small number of images to create the correspondences. Fig
ure 15 show the comparison of the colored mesh for all three
pipelines with the different amounts of images used for the
reconstruction and Table 4 show the entire execution time for
each set for all compared pipelines.
For the mug dataset experiment, we show the reaction

of our pipeline in less controlled environments compared to
other implementations. The Figure 16 shows the qualitative
comparison of the point cloud and mesh results. It is possi
ble to notice that there is an influence on the background
of the image. This influence happened even using a well
textured mug. Execution times have also been compared and
are shown in the Table 3.

Figure 16. Qualitative results from Mug Dataset. (a) Point cloud, (b) Mesh,
(c) Colored mesh.

5.3 Discussion
The qualitative assessment shows a good response from our
solution compared to the other pipelines. COLMAP is com
plete, including using fewer images, which is more notice
able mainly at the edges of the image, when checking the
mesh without coloring, in Figure 14. This problem is per
ceived primarily in the texturing stage using the PCL. Tex
tures like some windows or points with an inevitable overlap
can cause a certain inconsistency in the results. The recon
structions generated from the DTU dataset using our pipeline
can be seen in Figure 17, and these problems are shown in
Figure 18.
However, we perceive a better result of our approach for

the point cloud, which influences the colored mesh, being
possible to perceive a better texture in Figure 14(c). These
results were noticeable in several other objects in the DTU
dataset. This characteristic, combined with the much shorter
reconstruction time, proves a positive result of our approach.
Both COLMAP and our solution are better in terms of robust
ness, completeness, and runtime than MVE.
Although the times for COLMAP’s SfM stage and our so

lution are practically the same, the average time for the other
steps is a clear advantage of the proposed solution. In the
average of the DTU results, the standard of our pipeline is
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Table 3. Execution times of the second experiment.
SfM MVS Fusion Mesher TOTAL

COLMAP 12min37s 34min42s 2min42s 31s 50min32s
MVE 8min8s 38min22s 14s 16min45s 63min29s
Ours 12min23 s 6min1s 39s 33s 19min36s

Figure 17. Qualitative results from our pipeline with the DTU dataset.

approximately 21 minutes, while others’ solution best result
is 69 minutes, which represents a gain of 69.56% of the time.
This result is evenmore expressive compared toMVE,which
runs on the CPU, while our solution uses the GPU (as well

as COLMAP).
The analysis of the Fscore was surprising. Although

COLMAP has better qualitative results when compared to
MVE, in none of our tests was it’s Fscore better. In the



Fast and Robust 3D Reconstruction Solution from Permissive OpenSource Code Lyra et al. 2021

Table 4. Total execution time for each set in the third experiment.
46 images 86 images 124 images

COLMAP 51min 29s 120min 46s 174min 4s
MVE 48min 49s 110min 21s 176min 59s
Ours 13min 4s 32min 51s 62min 7s

Figure 18. (a) The back of the reconstructed object from the third experi
ment with 124 pictures. (b) Windows of the reconstructed object from the
first experiment.

cases we selected, our solution had a marginally better result
on average (56.40%, against 54.58% for MVE and 50.48%
for COLMAP), showing that the pipelines are quantitatively
equivalent. One of the possible causes of this result is the
low number of images used (49), which generated the need
for the third experiment, which will be better discussed be
low. Noteworthy, however, is the significantly higher result
in scan 118, which was the best result in the entire dataset.

Table 5. Execution time decrease (in%) of our pipeline with respect
to COLMAP and MVE in different datasets

COLMAP MVE
DTU MVS Average 74.15% 81.05%
Mug 61.21% 69.13%
Pikachu 46 74.62% 73.23%
Pikachu86 72.80% 70.23%
Pikachu 124 64.31% 64.90%
Average 69.42% 71.71%

The mug dataset was the one that presented the worst re
sults for all solutions. We consider this to be due to some
characteristics of the dataset itself, causing inconsistencies in
the point cloud, mainly in the handle and the hole. These in
consistencies generate an incomplete, blurry, and very noisy
point cloud, and none of the solutions could reproduce the
object satisfactorily. The point cloud of our solution is bet
ter, but the mesh generated a problem in the hole, causing
a malformed object. In terms of time, our solution remained
61.52% faster than COLMAP and 69.41% faster than MVE.
Finally, in our third experiment, we verified the influence

of the number of images on the final result of the approaches.
Qualitative analysis shows a poor result from our systemwith
only 46 photos, but the result improves with 86 and 124 im
ages. This result highlights one of the flaws in our solution,
which suffers a more significant impact from the number
of images. However, the result with 124 photos proves to
be denser and with higher quality compared to the best re
sults of the other techniques. Even the addition of more im
ages causes noise in the COLMAP andMVE reconstructions,
with the background color bleeding from the object, as in the
stuffed toy gloves (Figure 18).
Regarding the execution time, our solution kept the aver

Figure 19. Relation between the number of inputs and execution time.

Figure 20. Qualitative results for Tanks and Temples dataset.
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age speed of the other experiments. The speed was partic
ularly higher precisely in the dataset with only 46 images
but with a much worse result. With 86 pictures, and con
sequently with higher quality results, our solution was still
approximately 20 minutes faster than COLMAP with 46 im
ages, proving to be a valid alternative both in processing time
and in image quality to the two pipelines compared. Table 5
shows the speed gain of our solution in each of the different
datasets used.
Figure 17 shows the qualitative results of our dataset in

several scans of the DTU dataset. Even in some cases where
the Fscore result was poor, the model generated was satisfac
tory, as seen in Figures 17(a) and 17(h). However, in some
cases, our technique had problems doing the reconstruction,
as in Figures 17(f) and 17(o). For these cases, a more signifi
cant number of images could be sufficient for a better recon
struction, following the other results presented here.
Because the number of input images in a photogramme

try application depends on the scene’s size, for large envi
ronments like a museum or a residential area, the number of
images can easily exceed the thousands. Figure 19 shows the
relation between time and the number of input images for all
three pipelines. In this plot, we see that our implementation
has a less steep curve than COLMAP or MVE, which means
that our pipeline may run much faster in a scenario that re
quires more images as inputs.
Figure 20 shows the qualitative results of the Tanks and

Temples dataset (Knapitsch et al., 2017) for a large scale
test. Each image has a resolution of 1920×1056 and we used
150, sometimes 300 images as input depending on the scene.
We achieved comparable results with stateoftheart meth
ods, the point cloud generated preserves most of the scene,
and since the scenes of this dataset are large, it makes diffi
cult for the mesh to fully reconstruct the surface making a
few artifacts in some spots, but our solution trades it with a
faster execution time compared to other solutions. This re
sults shows that our method is reliable for different datasets,
without further training by the RMVSNET model.
As for the surface reconstruction algorithms, it is impor

tant to discuss why the Poissonmethod was our choice, when
in our experiments the greedy projection triangulation was
more stable, as can be seen in Figure 21. As shown in Table
6 the execution time of the Poisson compared to the greedy
and grid algorithms was significantly lower. So even with
better overall results, the greedy method has a high cost in
runtime, making the Poisson method more efficient for our
solution.

Table 6. RunTime comparison of surface reconstruction
Pikachu Mug

Greedy Projection
Triangulation 120 sec 9 sec

Grid Projection 180 sec 120 sec
Poisson 18 sec 3.6 sec

6 Conclusion
This paper presented a 3D reconstruction method with batch
processing, with only permissive dependencies, making it

Figure 21. Surface reconstruction using the mug and pikachu dataset with
different algorithms. (a) Greedy projection triangulation; (b) Poisson surface
reconstruction

possible for commercial use. To achieve this goal, we com
bined COLMAP SfM, RMVSNet as a depth estimation step,
and PCL for mesh reconstruction, obtaining good quality
results with an expressive gain of time, making it possible
to create a fully merchantable technology. Even when com
pared to stateoftheart methods like COLMAP and MVE,
this solution was approximately 3 to 4 times quicker in run
time. The technique also showed good scalability with the
increase in the number of images used for reconstruction,
which allows its users to reconstruct large objects or com
plete scenes in less time since these approaches require a sig
nificantly large amount of information to create your point
clouds.
For the 3D reconstruction task, this kind of application has

the potential to make 3D scans of some artifacts, building a
virtual collection for exhibition, 3D models to real objects re
pairing (also using virtual reality) rebuilding, in case, for ex
ample, of loss of historical material in some disaster. Another
possible application is in architecture, where the professional
can work with a 3D model instead of the actual scene, reduc
ing costs. And the speed of our model is also a significant
improvement. The user can do a quick scan, apply modifica
tions to the object, becoming a solution for everyday appli
cations with 3D models.
In future work, we intend to improve some flaws found in

our solution, such as recognizing some of the dataset scans.
This problem can be solved by changing the deep estima
tion stage, generating more accurate point clouds. Another
improvement is to better understand the reaction of our solu
tion to holes in images, as in the case of the mug, to gener
ate more consistent results. We have already done some tests
with textures, but the results have not been satisfactory, re
quiring further investigation.
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