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Abstract

Automated Machine Learning (AutoML) is a research area that aims to help humans solve Machine Learning
(ML) problems by automatically discovering good ML pipelines (algorithms and their hyperparameters for every
stage of a machine learning process) for a given dataset. Since we have a combinatorial optimization problem for
which it is impossible to evaluate all possible pipelines, most AutoML systems use a Genetic Algorithm (GA) or
Bayesian Optimization (BO) to find a good solution. These systems usually evaluate the performance of the pipelines
using the K-fold cross-validation method, for which the more pipelines are evaluated, the higher the chance of
finding an overfitted solution. To avoid the aforementioned issue, we propose a system named Auto-ML System
for Text Classification (ASTeC), that uses the Bootstrap Bias Corrected CV (BBC-CV) method to evaluate the
performance of the pipelines. More specifically, the proposed system combines GA, BO, and BBC-CV to find a
good ML pipeline for the text classification task. We evaluated our approach by comparing it with state-of-the-
art systems: in the the Sentiment Analysis (SA) task, we compared our approach to TPOT (Tree-based Pipeline
Optimization Tool) and Google Cloud AutoML service, and for the Intent Recognition (IR) task, we compared
with TPOT and MLJAR AutoML. Concerning the data, we analysed seven public datasets from the SA domain
and sixteen from the IR domain. Four out of those sixteen are composed by written English text, while all of the
others are in Brazilian Portuguese. Statistical tests show that, in 21 out of 23 datasets, our system’s performance is

equivalent to or better than the others.
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1 Introduction

We are living in an era where data are readily available and
accessible. In this way, an increasing number of people with
different levels of skills in the Machine Learning (ML) field
are trying to apply a great variety of machine learning ap-
proaches to extract useful information hidden in data. In this
context, the need for off-the-shelf solutions in ML to help
different types of users is increasingly evident. Thus, Au-
tomated Machine Learning (AutoML) arose aiming at de-
mocratizing ML to enable a wider audience, including non-
experts, to benefit from its potential (Hutter et al., 2019).

AutoML is the process of automating multiple machine
learning tasks (Guyon et al., 2015; de Sa et al., 2017; Hut-
ter et al., 2019), such as preprocessing, model selection and
hyperparameters optimization. Therefore, it can be used to
find an optimized group of tasks automatically, decreasing
the specific knowledge required by its user. Given a dataset,
an AutoML system can be used to recommend a pipeline (se-
quence of tasks) to solve a machine learning problem.

Most existing AutoML solutions (Thornton et al., 2013;
Feurer et al., 2015; Olson et al., 2016; de Sa et al., 2017)
present a similar way of operating, where several pipelines
are created and evaluated. Basically, an optimization tech-
nique is used to indicate which pipelines will be created.
Then, each of these pipelines is evaluated using a chosen met-

ric (such as accuracy or F1-Measure) and the cross-validation
technique. Currently, optimization techniques such as Ge-
netic Algorithms (GAs) and Bayesian Optimization (BO) are
the main differential amongst AutoML solutions, while the
cross-validation approach remains common to all of them.

The K-fold cross-validation is a technique that can be
used to estimate the generalized predictive performance of
a pipeline for a supervised machine learning task. In this ap-
proach, a labeled dataset is divided into k groups (folds) of
approximately equal size. Then, a model is trained and eval-
uated k times, each time a group is used as a test set and
the remaining ones as training set. Finally, the average of
the metrics obtained in these k evaluations summarizes the
pipeline’s performance. This process tends to present a sat-
isfactory estimate for evaluating a single pipeline. However,
this may not apply when comparing several pipelines.

When comparing multiple pipelines with K-fold cross-
validation, one of the main problems that arise is predic-
tive performance overestimation (Tsamardinos et al., 2015).
This is mainly due to the repetitive use of training sets by
several pipelines. In this situation, the chance of overfitting
the pipeline with the best performance to the data increases
with the number of pipelines evaluated. One of the possi-
ble solutions to this problem would be using Bootstrap Bias
Corrected CV (BBC-CV), proposed by Tsamardinos et al.
(2018), to correct the performance evaluation bias.
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BBC-CV is a method designed to estimate the perfor-
mance of a predictive algorithm based on the predictions
of its previously evaluated models (with different hyperpa-
rameter configurations) without adding too much computa-
tional cost. It selects a sample from the predictions, finds the
best configuration for that sample and estimates its predic-
tive performance based on the remaining instances. This pro-
cess is repeated many times and the average of its results
is the final estimation. Hence, we proposed in our previous
work (de Oliveira and de Campos Merschmann, 2022) a new
AutoML approach that combines a Genetic Algorithm (GA)
with Bayesian Optimization and the BBC-CV, and evaluated
it for the Sentiment Analysis(SA) task. In this work, which
is an expansion and revision of that previously published pa-
per, we now focus on evaluating our previously proposed
AutoML approach on Intent Recognition (IR) tasks. Further-
more, MLJAR AutoML (Ptonska and Ptonski, 2021) was in-
troduced in this expansion as an additional AutoML solution
to be used as benchmark for the AutoML system proposed in
the original paper.

In our previous work (de Oliveira and de Campos Mer-
schmann, 2022) we focused on the Sentiment Analysis task,
which is a field that studies techniques capable of automati-
cally extracting information related to opinions and feelings
from natural language data. It has become a remarkably ac-
tive research area in recent years, motivated by the increas-
ing amount of text produced in online social networks. Due
to its high applicability, it has been used as a tool in industry
and commerce (Ravi and Ravi, 2015; Ribeiro et al., 2016),
besides being an object of study in the academy. In the con-
text of SA, only texts written in the Brazilian Portuguese
language were considered because, although it is the ninth
most spoken language in the world with more than 250 mil-
lion speakers (Eberhard et al., 2022), the number of papers
focused on sentiment analysis for the Portuguese language
is relatively small (Souza et al., 2016; Pereira, 2021) when
compared to other languages, such as English. Besides, de-
spite multiple language solutions being available, such as
the ones proposed by Silva et al. (2011), Narr et al. (2012),
and de Oliveira and de Campos Merschmann (2021), their
performance may be unstable for different languages.

In this work we expand the evaluation of our Auto-ML
technique to the Intent Recognition (IR) domain. IR is a well-
established NLP task where the goal is to determine which
of a set of classes matches a given written or spoken utter-
ance to best respond to an interaction. This technology is
widely used on chatbot systems to improve user experience,
and while a rule-based approach to this problem exists, it falls
short when faced with new dialogue contexts (Huggins et al.,
2021). For the IR context, the proposed approach was evalu-
ated using datasets with text written in English and Brazilian
Portuguese. The decision to add English datasets in the evalu-
ation of the IR case was based on the lack of open datasets for
Intent Recognition in Portuguese. While being real examples
of the usage of IR in chatbots, the Portuguese datasets were
smaller than the ones used in the SA case. So, to complement
the results and also begin to explore the performance of our
approach in another language, we also tested the IR task on
English datasets.

The remainder of this paper is organized as follows. Sec-
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tion 2 provides a brief description of the main related works.
Background about the BBC-CV is presented in Section 3.
Then, the proposed method is presented in Section 4. In
Section 5, we present an overview of the baseline methods
used in the comparative study carried out here. Section 6
presents the details of the computational experiments and re-
ports on the obtained results for both tasks. Finally, Section 7
concludes this experience and presents guidelines for future
work.

2 Related Work

Auto-WEKA (Thornton et al., 2013; Kotthoff et al., 2017)
and the Auto-Sklearn (Feurer etal., 2015) are open-source au-
tomated machine learning toolkits and are quite similar. They
both use the same BO algorithm, named Sequential Model-
based Algorithm Configuration (SMAC, proposed by Hut-
ter et al. (2011)). The principal difference is the usage of
WEKA package by the former, and scikit-learn library by the
latter. Besides that, the Auto-Sklearn can use meta-learning
and work with ensembles of the best pipelines evaluated. Al-
though the Auto-WEKA tries to use the repeated random sub-
sampling validation (Kohavi, 1995), Auto-WEKA and Auto-
Sklearn end up using the k-fold cross-validation method to
estimate the evaluated model’s predictive performance.

In the same way that several Auto-ML approaches,
TPOT (Olson et al.,, 2016) and REsilient Classiflcation
Pipeline Evolution (RECIPE, proposed by de Sa et al.
(2017)) also use an Evolutionary Algorithm. The first one
uses Genetic Programming (GP), while the second one uses
Grammar-based Genetic Programming (GGP). They both
have statistically similar predictive performance, but the sec-
ond one implements methods to prevent the generation of
invalid pipelines. Both TPOT and RECIPE use k-fold cross-
validation, but the RECIPE resamples the folds after every
five generations, trying to avoid overfitting.

To the best of our knowledge, our approach is the first
that combines the BO algorithm with the Genetic Algorithm
and uses BBC-CV to estimate the predictive performance.
Also, none of the previously mentioned methods are ready
for SA task, since they focus only on classification task, dis-
regarding the Natural Language Processing tasks involved
in the preprocessing step. The only Auto-ML methods that
we found ready for this were the AutoML Natural Language
available on the Google Cloud AutoML platform (Google
Cloud, 2019) and MLJAR AutoML. More details on Google
Cloud AutoML and MLJAR AutoML on Section 5.2 and Sec-
tion 5.3.

3 Background

Overfitting is still an open problem in hyperparameter opti-
mization as well as in Auto-ML systems (Feurer and Hut-
ter, 2019). It is well-know that some machine learning al-
gorithms models can be biased towards some data, and this
can also happen to its hyperparameters (Cawley and Talbot,
2010). This problem can cause Auto-ML systems to select
machine learning models that appear to have good general-
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ized predictive performance, but that actually perform well
only on the data used. We could find, for example, the values
for the SVM classifier hyperparameters (such as C and ker-
nel) that would make a model perfectly fit the training data,
but this model would probably have a low predictive perfor-
mance for new data because of overfitting.

Several approaches are used to try to solve this problem,
such as shuffling the train and test data for each evaluation,
using a separate holdout to evaluate the configurations, se-
lecting sub-optimal hyperparameter configurations, or even
using ensembles (Feurer and Hutter, 2019). However, most
of them ignore one of the main problems of overfitting,
which is correctly estimating the generalized predictive per-
formance of the evaluated models.

K-fold cross-validation is commonly used to estimate the
predictive performance of machine learning models, but it
can be biased accordingly to the number of folds, number
of configurations evaluated and the dataset used. The proper-
ties of cross-validation and some variants are explored in the
hyperparameter optimization context by Tsamardinos et al.
(2015). In short, that study shows that the cross-validation
overestimates the predictive performance on the hyperparam-
eter optimization context, while the nested cross-validation
yields the most precise results with a high computational cost.
They also show that the method presented by Tibshirani and
Tibshirani (2009) is promising to estimate the bias in most
scenarios, but should be used with care, considering the num-
ber of folds in the cross-validation method and the number
of configurations evaluated.

BBC-CV and the Bootstrap Bias Corrected with Drop-
ping Cross-Validation (BBCD-CV, proposed by Tsamardi-
nos et al. (2018)) are other promising methods for estimat-
ing predictive performance, and were developed considering
the hyperparameter optimization context. BBC-CV method
was developed with the objective of estimating the general-
ized predictive performance of the evaluated models in an
accurate and efficient way. This method works with the pre-
dictions obtained by all models evaluated using k-fold cross-
validation. Basically, b iterations are made, in each one the
best configuration is chosen according to a replacement sam-
pling containing n instances. In each iteration, the perfor-
mance of the selected configuration is calculated considering
the instances that were not chosen in that sample. Finally, the
average of these performances obtained is returned as a result
of the estimated performance of the best configuration. In ad-
dition, it is also possible to calculate the confidence intervals,
adding more information to this assessment.

BBC-CV was developed to estimate the performance of
a group of configurations already evaluated, however, these
configurations are generally evaluated iteratively. Such as-
sessments can be made with the help of the k-fold cross-
validation however, the BBCD-CV can be more efficient. In
this method, new configurations are evaluated considering
the previously evaluated configurations. For this, each fold
is evaluated similarly to the one that would be performed us-
ing the k-fold cross-validation, however, the predictions of
the configurations already evaluated are used to determine if
it is advantageous to evaluate this new configuration in all
folds. For this, the probability of the new configuration be-
ing better than the old ones is calculated after evaluating it in
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each fold. In this context, the evaluation of this configuration
can be terminated early if the value of this probability is less
than a value of p. This way, it is not necessary to evaluate all
folds with the configurations that perform poorly in the first
folds.

Thus, the BBC-CV can be used in an Auto-ML system
to select better models among the evaluated ones, while
the BBCD-CV can be used to reduce the computational re-
sources used.

4 Proposed Method

An Auto-ML problem can be defined as a Combined Algo-
rithm Selection and Hyperparameter Optimization (CASH)
problem (Thornton et al., 2013). As the name implies, the
objective is to select an algorithm and its hyperparameters
while optimizing the predictive performance for a dataset.
However, this objective can be extended to select an entire
pipeline (set of preprocessing methods with their hyperpa-
rameters and a classifier with its hyperparameters). Defining
the entire pipeline can be helpful in problems where the data
preprocessing has a large impact on the classifier’s perfor-
mance.

Previous works, done by Uysal and Giinal (2014), Alam
and Yao (2019), and de Oliveira and de Campos Merschmann
(2021), show that the preprocessing tasks can impact the pre-
dictive performance of the classifiers in text classification.
Considering this, the proposed method was designed to au-
tomatically select an entire pipeline for a text classification
problem.

While most of the work treats the algorithm selection and
the hyperparameter optimization as a single problem, our ap-
proach divides it into two subproblems and combines their
results to return the full pipeline. Below, we present the de-
tails of the proposed approach that combines the Genetic Al-
gorithm and the Bayesian Optimization (BO) approach.

The purpose of the GA in our approach is to suggest a good
set of algorithms with their hyperparameters (pipeline) given
a dataset. So, it is used to select a set of preprocessing algo-
rithms and a classifier (represented by an individual of the
GA). To complement the pipeline definition, the BO is used
to suggest good hyperparameters values (configurations) to
the individuals generated by the GA. Last but not least, the
BBC-CV (Tsamardinos et al., 2018) is used to select the
best individual (pipeline), while the BBCD-CV (Tsamardi-
nos et al., 2018) is used to select the best hyperparameters
set for an individual.

Figure 1 shows an overview of the proposed method. It has
four steps named Individual Management, Pipeline Manage-
ment, Pre-evaluation, and Evaluation, each one represented
as a rounded rectangle. After each step, it also shows its out-
put.

The proposed approach needs a dataset and a group of
methods to work. The dataset is composed of labeled in-
stances, that is, a group of instances where each one is as-
sociated with a class label. The group of methods defines
what methods can be used to create combinations, and each
method must have its specifications defined. These specifica-
tions are used to make sure that only valid combinations are
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Figure 1. Proposed Method Overview
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generated, and could be the type specification or the hyper-
parameter search space specification. The type specification
is used to define the method type, e.g., the Gaussian Naive
Bayes and the Random Forest are typed as a classifier, and
what kind of method types can precede it or succeed it. This
is used to avoid different methods to do the same task and
prevent the generation of invalid combinations. The hyperpa-
rameter search space defines the rules used by the BO method
for each method.

A GA is responsible for the Individual management step.
The objective of this step is to manage the individuals by
choosing which individuals will be evaluated in each genera-
tion. The widely known (i, \) evolution strategy (Beyer and
Schwefel, 2002) is being used in the GA with a fixed num-
ber of generations and some minor changes. The first mod-
ification is that the initial population for the GA is created
randomly, but tries to use each defined method at least once.
The evaluation step is also different, but will be described
in more detail later in this section. A tournament without re-
placement is used to select the combinations that will survive
to the next generation. The GA operators, crossover, and mu-
tation were also modified to meet the problem requirements.
A single-point crossover technique was adapted to consider
the specifications of the methods, so it selects only valid cut
points. The mutation can happen in any method of an indi-
vidual, and it was also modified to use three different opera-
tions. The first operation appends a new method after the se-
lected one. The second operation swaps the selected method
with a different one. The last operation removes the selected
method from the individual. The mutation can select only one
operation for each method, and the operations have the same
chance of being chosen. After this step, a set of individuals
(population) is created.

A BO is responsible for the Pipeline management step.
The objective of this step is to choose which configurations
will be evaluated for each individual. A BO is used to ana-
lyze the results of previously tested pipelines from the same
individual and suggests new ones to be evaluated. More pre-
cisely, we use a Gaussian Process Regressor (GPR) inter-
changing in each iteration between the Upper Confidence
Bound and the Expected Improvement as its acquisition func-
tion. The size of the search in each evaluation is directly
proportional to the hyperparameters search space size. A
pipeline set for each individual is created after this step.

The Pre-evaluation step has two main objectives, i.e., to es-
timate the predictive performance and to get the predictions
matrix for each pipeline. BBCD-CV is used to accomplish
these objectives. The estimated predictive performance is
calculated similarly to the traditional k-fold cross-validation,
but it considers the previously evaluated pipelines from the
same individual to decide if that pipeline should be evaluated
in all folds. After this step, the predictive performance and
the predictions for each pipeline are stored in pre-evaluation
sets for each individual.

The Evaluation step has the objective to estimate the pre-
dictive performance of each individual, and the BBC-CV is
responsible for this. BBC-CV is used to estimate the pre-
dictive performance of each individual by considering the
predictions collected from its pipelines in the pre-evaluation
step. This estimation is used as the fitness for each individual.
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These four steps (Individual Management, Pipeline Man-
agement, Pre-evaluation, and Evaluation) are repeated inter-
actively. In the end, the best pipeline found from the best
individual obtained is returned by the approach. Although
the best pipeline evaluated can be the one chosen in the
end, its predictive performance alone does not guarantee
this, since it can be from a different individual than the best
one found. For example, for one dataset the best evaluated
pipeline could be one with the SVM classifier with C' = 10
and kernel = Linear, but the best individual could be one
with the MLP classifier. In this case, our method would re-
turn the best pipeline with the MLP classifier, since the one
with the SVM was less robust than the one with the MLP.

Algorithm 1 presents the proposed approach pseudocode.
It aims to return the best pipeline found for a given dataset.
For this, this algorithm follows a flow similar to that used by
a GA and receives these parameters as input:

* D: D = {(x;,y;)}}-1, is a labeled dataset containing
n documents, where x; represents a text document and
y; represents its label. Tables 1 and 2 show examples
of labeled datasets for Sentiment Analysis and Intent
Recognition tasks, respectively.

Table 1. Labeled dataset example for Sentiment Analysis.

J x Y
1 Positive document example.  Positive
2 Negative document example. Negative

n  Neutral document example. Neutral

Table 2. Labeled dataset example for Intent Recognition.

J z Y
1 I would like to buy a bag. Buy
2 Ineed to cancel my plan.  Cancel
n  Change my login email. Update profile

e M: M = {(pk,tr, Ir, ok, Hr) }7'q, is a set that con-
tains the methods available to be used to make an indi-
vidual. In this context, py is a preprocessing algorithm
or classification algorithm of the type t;; I, = {i1}]_,
is a set of data types, where ¢; represents the accepted
input data type by the p;, method; oy, represents the ac-
cepted output data type by the uj method; and H =
{(hg, Sy)}y=1 represents the iy, method hyperparame-
ter search space, where h is the hyperparameter name
and S, is the possible values set for . Table 3 presents
an example of a set of methods that can compose an in-
dividual.

* Bbedev: BBC-CV and BBCD-CV parameters set. In-
cludes the number of bootstraps (Bbcdcuvy), number of
samples to be selected in each bootstrap (Bbcdcv,,),
evaluation dropping probability (Bbcdcv,), confidence
interval (Bbcdcvgipnq) and the number of partitions to
be used internally (Bbcdcuv,,).
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Table 3. Methods set example.

k I t I 0 H
1 Simple Tokenizer Tokenizer  {Text} Tokens 1%}
2 Simple N-gram N-Gram {Tokens} Tokens See Table 4
<
3 Simple converter Lowercase {Text, Tokens} . Same as
converter input>
m  SVM Classifier Classifier {Features} Predictions  See Table 5

Table 4. Simple N-gram hyperparameter search space example.
g h S
1 N {2,3,4}

Table 5. SVM classifier hyperparameter search space example.
g h S

1 c {0.01, 0.1, 1, 10, 100}
2 kernel  {Linear, RBF, Sigmoid}

* BO: Bayesian optimization parameters set. Includes
the minimum number of pipelines to be evaluated
(Bomin), maximum number of pipelines to be evalu-
ated (Bomaz), and a generation step value to execute
deep searches (Bostep).

* Gen: Set composed of the parameters used by the
GA. Includes the probability of combining 2 in-
dividuals (Genp coms), the probability of mutating
an individual (Genp mut), the probability of mutat-
ing each gene (method representation) of an indi-
vidual (Geny ind mut), the number of generations
(Gengiy ger), the number of individuals selected for the
next generation (Gen,,,, ), the number of individuals in
each generation (Genjgmpdq) and the number of indi-
viduals selected in each tournament (Genior size)-

Flirst Population function (line 3 of Algorithm 1) is used
to create the first individuals. For that, it receives a set of
methods (M) and a set of parameters (Gen). Its objective
is to return a set of Genjgmpde individuals created with the
methods of the set M. It tries to create a diverse population
by creating individuals with methods least used.

MakePartitions function (line 4 of Algorithm 1) re-
ceives as input a labeled dataset D and a set of parameters
Bbcdcv. From this input, the algorithm generates Bbcdcuv,,
stratified partitions and a set of tuples formed by sets of in-
stances for training and testing is returned.

PreFEwval function (lines 7 and 15 of Algorithm 1) re-
ceives as parameters the sets with all the previous pipelines
evaluations (Evals), the partitions used for cross-validation
(Partitions), the individual to be optimized (individual),
the pipelines quantity to be evaluated (qty), in addition with
the Bbcdcv and Bo parameter sets. In the end, it returns all
the individual’s (individual) pipelines evaluations obtained.

GenOps function (line 11 of the Algorithm 1), is used to
generate new individuals from the current ones. For that, this
algorithm receives as input a set of individuals (Population)
and the parameters used by the genetic algorithm (Gen). In

the end, this algorithm returns a set containing the new indi-
viduals by applying the mutation and crossover operations.

CalcSearchSize function (line 12 of Algorithm 1), is
used to define the number of pipelines that must be evalu-
ated for each individual. To perform this task, this function
receives as input a set of individuals (Children), a set with
the executed evaluations (Evals), the ordinal number of the
current generation (generation), and the hyperparameters
used by the Bayesian optimization method (Bo). In the end,
this function returns a set with the number of pipelines that
must be evaluated for each individual.

Select function (line 18 of Algorithm 1) is used to choose
which individuals will survive to the next generation. To
achieve this goal, this algorithm receives a set of individuals
(Children), a set of its evaluations (Fwals), the hyperpa-
rameters set used by the genetic algorithm (Gen), the hyper-
parameters set used by the BBC-CV method (Bbcdcv), and
the partitions sets (Partitions). In the end, this algorithm se-
lects a subset from Children using a tournament selection
method.

GetBest Pipeline function (line 20 of Algorithm 1) aims
to create a pipeline from the best individual with the best
configuration found. For this, this algorithm receives as input
the set with all executed evaluations (Fvals) and the used
partitions (Partitions).

To implement and evaluate the ASTeC we used these open-
source tools:

+ Chocolate (Alworx, 2017): used in the BO.

« DEAP (Fortin et al., 2012): used in the GA.

* Nlpnet (Fonseca and Rosa, 2013): used in the PoS-
tagger.

* NLTK (Bird et al., 2009): used in the n-gram, stemmer,
and tokenizers.

* Scikit-learn (Pedregosa et al., 2011): used in the classi-
fier, TF-IDF vectorizer, and Feature selector.

5 Baseline methods

In this section, we present an overview of the baseline meth-
ods used on the two study cases detailed in this research, Sen-
timent Analysis and Intent Recognition. Section 5.1 provides
a brief description of the TPOT. The Google Cloud AutoML
service is discussed in Section 5.2. Then, in Section 5.3 we
describe the MLJAR method.
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Input: D, M, Bbedev, Bo, Gen.
Output: Best pipeline found for the dataset D.
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1 begin

2 Fuals + @,

3 Population < FirstPopulation(M, Gen);

4 Partitions < MakePartitions(D, Bbedev);

5 qty < Bomax;

6 foreach ind C Population do

7 NewEwvals < PreEval(Evals, Partitions, ind, qty, Bbcdcv, Bo);,
8 Fvals + FEvals U NewFEvaluations;

9 end

10 for i = 2 to Gengiy ger do

u Children < GenOps(Population, Gen);

12 SearchSize < CalcSearchSize(Children, Evals, i, Bo);

13 foreach ind C Children do

14 qty < SearchSizeng;

15 NewFEvaluations < PreEval(FEvals, Partitions, ind, qty, Bbcdev, Bo);
16 FEwvals < FEwvals U NewEvaluations;

17 end

18 Population < Select(Children, Evals, Gen, Bbcdcv, Partitions);
19 end

20 BestPipeline < GetBestPipeline(FEvals, D);

21 return Best Pipeline;
22 end

Algorithm 1: ASTeC
51 TPOT to search, select and tune different models. This system im-

TPOT is an AutoML method that automates the steps of
feature preprocessing, feature selection, feature construction,
model selection, and parameter optimization. It uses genetic
programming to automatically optimize data transformations
and machine learning model training. Each pipeline is repre-
sented as a tree composed of four operators (preprocessors,
decomposition, feature selection, and models) and they are
evolved using Genetic Programming (GP) while trying to
maximize the classification accuracy.

The current TPOT version doesn’t natively work with text
datasets. To be able to do this, it needs to implement text pre-
processing techniques to, at least, transform the text data into
dataset features. And since each language has its own rules,
many techniques are language-dependent (i.e. POS-tagger,
stemmer, etc.).

To be able to use text data with TPOT one needs to trans-
form it into dataset features. But choosing the best combina-
tion of preprocessing tasks isn’t an easy task, since they are
directly related to the generated features. But once we turn
the text data into dataset features, we can use the TPOT to
train a machine learning model.

5.2 Google Cloud AutoML

Google Cloud AutoML ! is a paid platform provided by
Google that allows users to create custom machine learn-
ing models based on images, videos, text, and tables from
custom datasets. AutoML Natural Language ? allows users
to create supervised models for text classification, entity ex-
traction, and sentiment analysis. For that, it uses the Google
Vizier (Golovin et al., 2017) black-box optimization system

Ihttps://cloud.google.com/automl/
Zhttps://cloud.google.com/natural-language/automl/docs

plements multiple search methods and can swap between
each one according. Besides that, it also has the ability to
transfer knowledge between different runs (meta-learning)
and to stop early accordingly to the search progress. The user
doesn’t have direct access to the trained model and the train-
ing information, but he can interact with the system through
an Application Programming Interface (API).

From the user perspective, the service takes a labeled
dataset and offers an API that accesses the model and can
be used to predict new documents. This simplicity can be
seen as an advantage because it allows non-experts to eas-
ily use machine learning techniques, but it has its drawbacks.
The user doesn’t know which methods are used to process
the text, train the classifier model, and neither the hyperpa-
rameter’s optimization details. These pieces of information
are private to Google, but the Google Vizier (Golovin et al.,
2017) is probably used to tune the hyperparameters.

5.3 MLJAR

MLJAR AutoML is a package for automating algorithm
selection, preprocessing techniques, model training, expla-
nation, and evaluation. The mode used in the experiments
was ‘Perform’, in which the MLJAR uses a random search
method in combination with hill climbing. Every checked
model in this mode is saved and used for building an ensem-
ble at the end of each step. MLJAR accepts textual data as
input, so it is not necessary to perform any data transforma-
tion or preprocessing to use it.
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6 Computational Experiments

In this section, we examine two study cases. In the first
subsection, we compare our approach with that used in the
Google Cloud AutoML and TPOT for the Sentiment Anal-
ysis task. After, in the second subsection, we compare our
approach with TPOT and MLJAR for the Intent Recognition
task.

The datasets used for both study cases are detailed in
Section 6.1 for the SA task and in Section 6.2 for the IR
task. Then, the entire experimental setup is presented in Sec-
tion 6.3.

6.1 Sentiment Analysis Datasets

For the computational experiments on the sentiment analysis
task, we selected seven datasets composed by texts in Por-
tuguese. These datasets were selected because, to the best
of our knowledge, they were all of the public sentiment
analysis datasets in Brazilian Portuguese. The datasets re-
ceive the following names: Application Comments (AC) (Ju-
nior and de Campos Merschmann, 2016), Financial Mar-
ket News (FMN) (Martins et al., 2015), Automobiles
Tweets (AT) (Martins et al., 2015), Prodemge MG Tweets
(PMGT) (Ferreira, 2017), Tweets in Portuguese (TP) (Narr
et al.,, 2012; Araujo et al., 2016), Traffic Related Tiveets
(TRT) (Xavier, 2018), and TweetSentBR (TSBR) (Brum and
das Gragas Volpe Nunes, 2018).

The AC dataset consists of app comments taken from the
Google Play virtual store. It was originally developed and
presented by dos Santos and Ladeira (2014) and revised
by Junior and de Campos Merschmann (2016).

The AT dataset was presented by Martins et al. (2015) and
contains tweets published in 2012 related to the “Fiat” brand.

The FMN dataset was made with financial market news
extracted from different news websites in 2014. This dataset
was created by a team from the INWeb project (Martins et al.,
2015). Its documents were labeled by experts taking into con-
sideration the impact of each news on the market, consider-
ing an investor’s point of view.

The PMGT dataset was presented by Ferreira (2017) and,
according to information provided by its author, it was col-
lected by the IT staff of Prodemge MG and manually labeled
by the analysts of that sector.

The TP dataset was initially presented by Narr et al. (2012)
and also used by Aratijo et al. (2016). It is composed of
tweets related to eleven popular brands (“Microsoft”, “Adi-
das”, “Audi”, etc.), and its documents were manually labeled
through the Amazon Mechanical Turk service.

The TRT dataset is composed of tweets about the traffic in
a city and was presented by Xavier (2018). Its documents
were manually labeled as positive if they reported a good
situation, as negative if they reported a problem, or as neutral
if neither.

The TSBR dataset is composed of tweets about TV shows
and was presented by Brum and das Gracas Volpe Nunes
(2018). It was labeled by seven annotators. Each dataset in-
stance is available with the individual label given by each
annotator, in addition to the number of annotators that had
problems to decide between the labels. Considering all this
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information, we decided to work with only a fraction of the
TSBR dataset. So, we selected only the instances that were
labeled by at least three annotators with at least 2/3 of agree-
ment and without any problem.

Table 6 presents the characteristics of each dataset, that is,
the number of instances for each class (positive, neutral, and
negative), and the average number of characters and words
per instance.

6.2 Intent Recognition Datasets

We selected two groups of datasets for the task of Intent
Recognition. The first group, composed of texts in English,
comprises the following datasets: BANKING77 (Casanueva
et al., 2020), CLINC150 (Larson et al., 2019), HWU64 (Liu
et al., 2019) and SNIPS (Coucke et al., 2018). They were se-
lected from a repository of Intent Detection datasets that was
made available by Zhang et al. (2021). We decided to work
with them because they are publicly available and are sim-
ilar in structure to the datasets of the second group. These
datasets also allowed us to evaluate our approach with texts
written in English. Table 7 presents the following datasets’
characteristics of this first group: number of domains it spans,
number of instances, training set size, and testing set size.

The second group, composed of texts in Brazilian
Portuguese, comprises the following original datasets:
BANKING19, CONSTR25, UTILITY21, RETAIL32,
DEBTRELIEF13, BANKING3, BANKING10, TELCO33,
CREDIT60, HEALTH32, BANKINGS51 and TELCOS.
They contain data from real chatbot intent recognition cases
from different domains. Table 8 shows their characteristics,
including text domain, number of intents, training set size,
and test set size. They are datasets used to set up intent
recognition models used on the customer communication
channels of client companies. They were anonymized and
granted to the study after the client companies consented to
their use.

6.3 Experimental configuration

In the current stage, ASTeC has 15 hyperparameters. We
used the same configuration for both study cases. A brief
explanation and the value used for each one are presented
below:

* Bbcdcvgipna: Alpha parameter used inside the BBCD-
CV method. Set to 0.05.

* Bbcdcvy,: Number of bootstraps to be executed. Set to
1000.

* Bbcdcv,,,: Number of partitions to use in the internal
cross-validation. Set to 5.

* Bbcdcv,: Number of samples to select in each boot-
strap. Set to 500.

* Bbcdcv,: Probability parameter used inside the BBCD-
CV. Set to 0.1.

* Bopq,: Maximum number of pipelines evaluated for a
combination in each generation. Set to 10.

* Bopin: Minimal number of pipelines evaluated for a
combination in each generation. Set to 5.



Evaluating a New Auto-ML Approach for Sentiment Analysis and Intent Recognition Tasks

Table 6. Sentiment Analysis datasets characteristics
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Dataset # Negative # Neutral # Positive # Total # Avg characters # Avg words
AC 815 - 815 1630 73.17 13.25
AT 6054 - 5997 12051 102.67 16.74
FMN 751 453 928 2132 2195.02 282.27
PMGT 2446 2453 3300 8199 116.46 16.14
TP 213 264 297 774 78.36 14.08
TRT 1757 1442 752 3951 111.24 16.48
TSBR 398 325 687 1410 73.76 11.58
Table 7. English IR datasets characteristics
Dataset # Domain # Intents # Training # Testing
BANKING77 (Casanueva et al., 2020) 1 77 10162 3080
CLINC150 (Larson et al., 2019) 10 150 18000 4500
HWUG64 (Liu et al., 2019) 21 64 10030 1076
SNIPS (Coucke et al., 2018) 1 7 13784 700

* Bogtep: Number of generations that it should use the
Boy,in after using the Boyy,q,. Set to 3.

* Geny comp: Crossover probability between combina-
tions. Set to 0.35.

* Geny mue: Mutation probability for the combinations.
Set to 0.35.

* Geny ind mut: Method mutation probability for a com-
bination selected for mutation. Set to 0.1.

* Genggy ger: Number of generations to execute. Set to

* Genyy,,: Number of combinations to be kept from one
generation to the next. Set to 6.

o Gengmpde: Number of combinations to be evaluated in
each generation. Set to 12.

* Gengor size: Number of the combinations to be selected
for each tournament. Set to 4.

These hyperparameters were obtained through empiri-
cal tests and were used in all experiments. More specifi-
cally, for the BBCD-CV we used the same values adopted
by Tsamardinos et al. (2018). For the selection of the BO and
GA hyperparameters, we used a small sample (100 instances)
from the smallest dataset (TP). This calibration procedure
was made only to speed up the search for a good combination
instead of optimizing the general predictive performance of
our method.

6.3.1 Configuration for Sentiment Analysis

Our approach generates the pipelines based on preprocessing
tasks and classifiers commonly used in the problems under
consideration. To optimize processing time, we used differ-
ent sets of preprocessing tasks and classifiers for Sentiment
Analysis and Intent Recognition problems. The options for
the Sentiment Analysis task are presented below:

 Feature selector.

» Lowercase converter.
* MLP classifier.

* Nlpnet PoS-tagger.

* RF classifier.

e RSLP stemmer.

* SVM classifier.

* Simple N-gram.

* Simple tokenizer.
* TF-IDF vectorizer.
» Tweets tokenizer.

Using these tasks and classifiers, a simplified example of
aresulting pipeline could be a Lowercase converter, a Tweets
tokenizer, an RSLP stemmer, a Simple N-gram using n = 2,
a TF-IDF vectorizer, and the SVM classifier with C' = 10
and kernel = Linear.

TPOT lacks native text classification support. To be able to
execute it, we have applied the following text preprocessing
steps Tweets tokenizer, Nlpnet PoS-tagger, RSLP stemmer,
Lowercase converter, Simple N-gram (with n = 2), and the
TF-IDF vectorizer. Then, the resulting datasets were used as
input for the TPOT method considering the same classifiers
used in ASTeC (MLP, RF, and SVM). For each dataset, we
limited the TPOT run time to the average time observed in
the proposed method (not considering the text preprocessing
steps). Google Cloud AutoML supports text, but since it is a
black box, we don’t have access to the preprocessing meth-
ods used.

6.3.2 Configuration for Intent Recognition

When compared to the configuration for Sentiment Analysis,
in the case of Intent Recognition, we incorporated a sentence
transformer vectorizer and removed the SVM classifier to
reduce the search space. The set of options is the following:

» Feature selector.

» Lowercase converter.
* MLP classifier.

* Nlpnet PoS-tagger.

* RF classifier.

e RSLP stemmer.

+ Simple N-gram.

* Simple tokenizer.

e TF-IDF vectorizer.
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Table 8. Portuguese IR datasets characteristics

Dataset Domain Area # Intents  # Training # Testing
BANKING19 Banking 19 216 157
CONSTR25 Construction 25 227 339
UTILITY21 Utility Provider 21 759 362
RETAIL32 Retail 32 320 315
DEBTRELIEF13 Debt Relief 13 290 210
BANKING3 Banking 3 30 28
BANKING10 Banking 10 391 1698
TELCO33 Telecommunication 33 683 1698
CREDIT60 Credit 60 683 2181
HEALTH32 Health 32 393 601
BANKINGS51 Banking 51 1020 497
TELCOS8 Telecommunication 8 504 196

» Sentence Transformer vectorizer.
* Tiveets tokenizer.

Considering this set of options, a pipeline could be, for ex-
ample, composed of a Lowercase converter, an RSLP stem-
mer, a Sentence Transformer vectorizer model name =
sentence — transformers/all — MiniLM — L12 — v2,
and the MLP classifier with activation = relu and alpha =
0.01.

In the case of Intent Recognition, we used only a
Sentence Transformer model name = sentence —
transformers/all — MiniLM — L12 — v2 (Reimers and
Gurevych, 2019; Wang et al., 2020) before passing the result-
ing datasets to TPOT. Since MLJAR can handle textual data,
we did not perform any preprocessing tasks in the datasets
before running it.

6.4 Results

In the case of SA, the experiments performed in this work
were conducted using the stratified 10-fold cross-validation
technique. We created 10 pairs (train and test) for each
dataset using this technique. We trained each approach with
the same train partitions and evaluated it with the same test
partitions to make sure all evaluations were fair. As for the IR
problem, we have pairs of train and test data for each datasets.

6.4.1 Sentiment Analysis Result

For the Sentiment Analysis task we choose to work with the
F1-Measure as the predictive performance metric since some
datasets are binary class and others are multi-class. The ex-
periments conducted with the proposed approach were exe-
cuted in an Intel Xeon E-2136 (12 x 3.30GHz) with 64 giga-
bytes RAM computer. The experiments carried out with the
Google service were performed on its platform, and its com-
putational configuration is not public, which makes it unfea-
sible execution time comparison. The detailed results can be
found on https://github.com/dgspai/ASTeC-detailed-results .

Table 9 presents the average and the standard devia-
tion of the obtained results (F1-Measure). We also compare
each approach with ASTeC using Wilcoxon’s Signed-Rank
Test (Wilcoxon, 1945) with 5% significance as suggested

by Rodriguez-Fdez et al. (2015). The highlighted results in-
dicate the best method considering its absolute performance,
and the results statistically different are marked with the %
symbol.

From the Table 9 it is possible to see that considering only
the average results obtained by ASTeC and Google for each
dataset, the proposed approach was superior to Google’s ap-
proach in four datasets (FMN, TA, PMGT, and TRT) and
inferior in three (AC, TP, and TSBR). However, considering
the statistical test results, the proposed approach was supe-
rior to Google’s approach in the AT dataset and equivalent in
the remaining.

Table 9 also shows that considering only the average re-
sults, the ASTeC method has better predictive performance
than the TPOT method in six datasets (AC, AT, PMGT, TP,
TRT, and TSBR) and worse in one (FMN). However, consid-
ering the statistical test results, the proposed approach was su-
perior to TPOT’s method in five datasets (AC, AT, TP, TRT,
and TSBR) and equivalent in the remaining.

6.4.2 Intent Recognition Result

In the case of the Intent Recognition task, we worked with the
Weighted F1-Measure as the predictive performance metric
since all of the datasets are multi-class and imbalanced. The
experiments conducted with the proposed approach were ex-
ecuted on an Azure NCasT4_v3-series virtual machine (8 vC-
PUs, 56 GB memory), with Nvidia Tesla T4 GPUs with 16
GB of memory each.

Intent Recognition solutions are often used in commercial
chatbots. For this application, it is usual for the predicted
intent of a given sentence to go through another validation
before it is outputted to the user. This validation considers
the confidence score of the prediction (usually the probabil-
ity score returned by the model for each prediction), com-
paring it to the confidence threshold set for the chatbot. If
the prediction probability score is equal to or higher than the
chatbot threshold, the label predicted by the model is used.
Otherwise, the label “none” is returned, which means that
the model did not recognize any label for that sentence. This
is done because when users build a dataset for their chatbot
model, the most common practice is to use only texts and
classes in a given text domain (i.e., a financial chatbot can-
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Table 9. Comparison between the F1-Measures of our approach, TPOT and the Google Cloud AutoML.

Dataset ASTeC Google TPOT

AC 0.963 (0.024) 0.979 (0.012) % 0.917 (0.017)
AT 0.845 (0.035) *0.817 (0.023) % 0.784 (0.032)
FMN 0.700 (0.023)  0.657 (0.063) 0.701 (0.027)
PMGT  0.891 (0.108) 0.890 (0.125) 0.857 (0.131)
TP 0.670 (0.047) 0.692 (0.062) x 0.628 (0.046)
TRT 0.934 (0.036) 0.923 (0.026) % 0.922 (0.033)
TSBR 0.650 (0.107)  0.660 (0.084) x 0.582 (0.054)
Average 0.808 (0.137) 0.803 (0.140) x 0.770 (0.140)

not understand texts outside financial context). Therefore, us-
ing threshold is essential to filter out-of-domain sentences for
which the chatbot is not supposed to recognize any label.

It is usually up to the user to set the confidence thresh-
old for its chatbot. Then, to evaluate the predictive perfor-
mance of each analyzed method, we calculated the Weighted
F1-Measure for each model considering different threshold
values, i.e., from 0 to 100 in steps of 1 percent as seen in Ta-
ble 10. So, for each dataset, we have a weighted F1-Measure
file, where each line contains the F1 scores for different meth-
ods considering a given threshold value. By calculating the
F1 score for distinct threshold values and using the complete
set of observations in the experimental comparisons, we hope
to evaluate the robustness of each method against user set
thresholds.

Table 10. F1 Score table for one dataset per Confidence Threshold
example.

method x method y method z threshold
0.929 0.898 0.719 0.0
0.929 0.898 0.719 0.01
0.696 0.033 0.682 0.98
0.697 0.033 0.686 0.99
0.512 0.033 0.623 1.0

The results of this case study are detailed in two parts, the
first concerning the Portuguese datasets and the second for
the English datasets. Tables 11 and 12 present the average
and the standard deviation of the obtained results (Weighted
F1-Measure) for the Portuguese and English datasets, re-
spectively. We have compared each pair of approaches us-
ing Friedman’s Aligned-Rank Test (Hodges Jr and Lehmann,
1962) with 5% significance as suggested by Rodriguez-Fdez
etal. (2015). The highlighted results indicate the best ranked
method considering the result of the Friedman’s Aligned-
Rank Test, and the results statistically different from AsTeC
are marked with the * symbol.

As it can be observed in Table 11, regarding the weighted
F1 score for the Portuguese datasets, when compared to
TPOT method, ASTeC had a superior performance in §
datasets, in which in 6 of them there is difference with statis-
tical significance. For the remaining four datasets in which
TPOT outperforms our approach, there is a significant statis-

tical difference for only one of them. Besides, ASTeC per-
formed better than MLJAR with statistical significance in
10 datasets, having an equivalent performance in only two
datasets. We also used Friedman’s Aligned-Rank Test on the
Weighted F1 measures for all Portuguese datasets to found
that the proposed method is placed on the first rank with a
significative statistical difference.

When we move to the English datasets, the results pre-
sented in Table 12 show that, although ASTeC beats the ML-
JAR in all evaluated datasets, it overcomes TPOT in only one
of them. According to Friedman’s Aligned-Rank Test, while
TPOT is the best method, there is no significant statistical
difference between ASTeC’s and TPOT’s performance.

In our analysis the F1 measures on the result tables repre-
sent the mean of the Weighted F1-measure for each method
for each dataset. Which is why in some cases, (for exam-
ple, the dataset CLINK on Table 12), even thought ASTeC’s
mean in greater than TPOT’s, TPOT turns out to be superior
in the statistical test.

7 Conclusion

The Auto-ML area gained significant attention recently. Al-
though most recent approaches have different optimization
techniques, they usually rely on the classical k-fold cross-
validation technique to evaluate the trained models.

In this work, we showed a new approach that combines
GA, BO, and the bias correcting method BBC-CV. This
proposition was evaluated in two scopes: in a SA task with
Portuguese written texts and compared with the Google
Cloud AutoML and TPOT; in an IR task using two groups of
datasets, one in Portuguese and one in English, and compared
with TPOT and MLJAR. For the SA task, were used seven
public datasets in Portuguese, while for the IR task were cho-
sen four public datasets in English and twelve in portuguese.
These last were obtained from real chatbot IR cases from sev-
eral different domains.

Regarding the Sentiment Analysis case, statistical tests
were used to compare the predictive performance applied by
the three approaches. Through these tests, it was possible to
show that the presented method has an equivalent or supe-
rior predictive performance to Google Cloud AutoML and
TPOT in the evaluated datasets. In addition, it is noteworthy
to highlight the contribution of the BBC-CV and BBCD-CV
methods to estimate the pipelines’ predictive performances.

Considering the Intent Recognition Case, when observing
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Table 11. Comparison between the F1-Measures for PT-BR datasets using confidence threshold.

TPOT

MLJAR

«0.776 (0.191)
«0.315 (0.091)
0.430 (0.146)
«0.143 (0.045)
«0.711 (0.064)
0.647 (0.015)
«0.462 (0.234)
0.845 (0.093)
«0.264 (0.075)
0.860 (0.120)
0.436 (0.115)
0.728 (0.072)

% 0.483 (0.248)
0.399 (0.130)

0.447 (0.083)

% 0.636 (0.176)
% 0.531 (0.245)
%0.180 (0.181)
% 0.561 (0.201)
%0.501 (0.201)
% 0.164 (0.095)
% 0.172 (0.181)
% 0.353 (0.076)
% 0.529 (0.297)

Dataset ASTeC

BANKING19 0.857 (0.144)
BANKINGI10 0.393 (0.111)
TELCO33 0.440 (0.142)
CREDIT60 0.648 (0.216)
CONSTR25 0.877 (0.091)
UTILITY21 0.663 (0.074)
HEALTH32 0.653 (0.184)
RETAIL32 0.783 (0.179)
DEBTRELIEF13  0.390 (0.064)
BANKING3 0.310 (0.310)
BANKINGS51 0.422 (0.096)
TELCO8 0.720 (0.021)
Average 0.596 (0.243)

«0.551 (0.260)

% 0.413 (0.243)
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Table 12. Comparison between the F1-Measures for English datasets using confidence threshold.

Dataset ASTeC TPOT MLJAR

BANKING77 0.878 (0.086) 0.927 (0.004) = 0.362 (0.201)
CLINK 0.925(0.097) 0.915(0.116)  * 0.308 (0.137)
HWU64 0.871 (0.054) 0.905 (0.018)  * 0.412 (0.156)
SNIPS 0.957 (0.096) * 0.964 (0.003) * 0.894 (0.103)
Average 0.908 (0.092)  0.928 (0.063)  * 0.494 (0.280)

the full range of confidence thresholds, we found that the
proposed approach poses a significant improvement from
the other two analysed methods, TPOT and MLJAR, but
only when working with Portuguese data. For English data,
ASTeC performs better than MLJAR and equally well to
TPOT. Since the text preprocessing task options in ASTeC
were only available for Portuguese, there is an indication
that the optimization of text preprocessing tasks are part of
ASTeC’s strengths and that with English options of text pre-
processing the performance could increase. However the En-
glish datasets were also much larger than the ones used in Por-
tuguese so to analyse this difference in performance it would
be necessary to evaluate this adaptation of the method in a
future work.

Overall, it may be said that the number of hyperparameters
required to execute the proposed approach can be considered
aweakness. These hyperparameters are necessary for the exe-
cution of the BBCD-CV, the GA, and the BO methods. Thus,
a future work suggestion is the substitution of these meth-
ods for equivalent ones with fewer hyperparameters. For ex-
ample, one can consider replacing the GA with the Covari-
ance Matrix Adaptation Evolution Strategy (Hansen and Os-
termeier, 2001). Besides that, the number of hyperparame-
ters required by the used techniques (classifiers, feature se-
lectors, tokenizers, etc.) greatly exceeds the number used on
the ASTeC.

The adaption of the proposed approach to the distributed
computing scenario could be another possible future work.
This adjustment could increase the computational perfor-
mance by reducing the time spent to evaluate a solution and,
consequently, increasing the number of solutions evaluated
in a given time interval. Finally, the proposed approach can

also be evaluated for sentiment analysis in other languages,
for intent recognition with more text preprocessing options
for English and test the approach for other tasks involving
text mining or Auto-ML.
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