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Abstract: This work present the TeamBridge 2.0, a middleware able to perform the communication between digital
games and hardware devices, like joysticks, mice and cameras (both rgbd and monocular). That communication
does not require any modification to the game source code, allowing an old game to be adapted to work with a
new hardware device. To prove this, tests were carried out with several games, including one of them being a
commercial game. This middleware also allows the use of more than one device at the same time, so we can obtain
more accurate information, one device can supply the deficiencies of the other. Finally, we performed tests to make
sure that the middleware would not interfere with the user experience. Tests have shown that TeamBridge 2.0 can
receive, interpret and send information quickly, the time varies according to the device used, getting 33ms when
used with Kinect, 40ms with Leap Motion and 255ms with a DIY Data-Glove.
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1 Introduction

The serious games market reached US$ 5.94 billion' (3.7%
of the games market) in 2020. A part of these serious games
is formed by games created for health care (Drummond et al.
[2017]). A systematic review developed by Lu and Khar-
razi [2018] analyzed 1553 health games and organized them
by primary health topics. Among the games found by Lu
and Kharrazi [2018], 5.47% are games aimed at physical ac-
tivities. These games for physical activities require move-
ment from the user and are also known as exergames (Oh
and Yang [2010]). The Nintendo Wii leveraged the popu-
larity of exergames since it allowed the control of the game
through real movements (Jones and Thiruvathukal [2012]).
Hence, other devices appeared, like Kinect, Leap Motion,
etc. Many researchers already used exergames to increase
the level of physical activity, motivation, and participation
of players (Mugueta-Aguinaga and Garcia-Zapirain [2017]).

These kinds of games and their (console or hardware) plat-
forms are used in physical therapy and virtual reality rehabil-
itation (Weiss et al. [2014]) to increase the engagement of
the participants (Rose et al. [2018]). VR (Virtual Reality)
devices have been used along with exergames to motivate
patients to attend therapy and engage them during the repet-
itive tasks. The ability of Games to cause an immersion and
thus make people engage in exercise acknowledging their
creation for therapeutic purposes since (Bianor et al. [2017b];
Silva et al. [2016]; Silva et al. [2013]; Igbal et al. [2010];
Takaiwa et al. [2011]; Borja et al. [2018]).

Besides the engagement, some studies demonstrate the
benefits of rehabilitation with virtual reality to improve
balance (Park et al. [2017]; Corbetta et al. [2015]), gait
(Cano Porras et al. [2019]), motor function (Matamala-

Uhttps://www.alliedmarketresearch.com/serious-games-market

Gomez et al. [2022]) and other body movements. How-
ever, VR devices are constantly evolving, bringing more
data, more precision, or lower cost. With that, they lose
compatibility with existing games due to the strong coupling
(Fregnan et al. [2019]) between the hardware and the game.
Because of this constant evolution, a new study could use
completely different hardware from another just one year
apart (Garrett et al. [2018]). A new VR software can be eas-
ier to use than the old ones, but the preparation time of a
single VR experiment with an exergame still takes a lot of
time (Tieri et al. [2018]).

These problems are associated with the fact that there is
no standardization for VR device integration with other soft-
ware (Lee and Shin [2021]) and exergames. This lack of
standardization is one of the challenges for the use of VR
in Clinical Research (Garrett et al. [2018]). Part of the soft-
ware that will be prepared for a new VR experiment will use
code snippets already used in previous experiments, and be-
cause of this, it would be practical to reuse code or adopt a
framework (Wang et al. [2020]). Suppose this experiment
uses hardware never explored for VR applications, a new
type of hardware, or a fusion of different hardware. In that
case, we’ll have a heterogeneous environment requiring a
middleware?(Milazzo et al. [2018]; Sartori [2020]) instead
a framework.

Based on this set of heterogeneous devices and the lack of
standardization found in VR for rehabilitation, we propose
the Teambrige 2.0 middleware that can perform the commu-
nication between digital games and hardware devices in a
non-invasive way so it does not require modification of the
game source code, this allows the use of the devices in al-
ready developed games. With this solution, it is possible
to reuse exergames that are already built, in addition to not

2Middleware - Software that mediates between software.
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needing developers to worry about the particularities of each
new device. If we had to create a game to work only on the
pinch movement, which is an essential movement for therapy
(Mathiowetz et al. [1985]), we could program the game to
work with Kinect v2, Leap Motion, and other devices, how-
ever, for each device, we would need a Software Develop-
ment Kit (SDK), plugin or some driver. Furthermore, the in-
formation generated by each device would be heterogeneous.
Kinect v2, for example, generates a yes or no value for the
hand-close, while Leap Motion generates a value between
0.0 and 1.0. Our middleware transforms these values into
standard data input to software. In addition to solving the
strong coupling, this middleware allows the use of one or
more devices at the same time, allowing one device to sup-
plement the deficiencies of the other one.

We organized this work into seven sessions: Introduction,
where the problem had been reported; Related work, where
works that treated the same situation were listed; Specifica-
tions and Architecture; we talked about specifications, struc-
ture, and how to configure it; Results, reporting experience
to make games compatible with the devices through the mid-
dleware; Performance tests, describing the tests performed
to ensure that the middleware does not spoil the player ex-
perience; Conclusion, where we present final considerations
and future works.

2 Related work

Developed by Suma et al. [2011], the Flexible Action and Ar-
ticulated Skeleton Toolkit (FAAST) is a middleware that al-
lows the user to perform gestures to trigger certain keyboard
or mouse commands. Thus, FAAST manages to adapt games
to receive, indirectly, sensor inputs, such as Kinect, without
the need to modify the game source code.

Movements, such as moving arms or legs, stationary walk
and jumping, among others, are computed by FAAST, con-
verted to keyboard or mouse commands and sent to the op-
erating system. When compared to the TeamBridge, FAAST
uses an own VRPN (Virtual Reality Peripheral Network)
(Taylor II et al. [2001]), different from the open VRPN mid-
dleware. In addition, FAAST has no open source code, it
is only compatible with Kinect and PrimeSensor, being not
applicable to motor rehabilitation. Thus, the creation of a
gesture setting is very comprehensive and also more com-
plex. The TeamBridge goes a little further, the programmer
can record all the gestures performed by the patient for later
playback and, depending on the configuration, it can gener-
ate danger alerts.

A Flexible Input Mapping System (FIMS) proposed by
Lee and Shin [2021] and is capable of receiving input from
new input devices, including new data structures and inter-
preting and converting them to structures already known by
game engines. The objective of this project is similar to ours,
the main difference is that it needs access to the game source
code, in addition to not working via the network and not hav-
ing any data storage method, an important feature when it
comes to therapy.

Santos [2016] designs another tool that uses a similar ap-
proach called uOS Plugin. However, according to the de-

Dantas et al. 2024

veloper it would still need the development of a wrapper
that allows compatibility with games that are external to the
project. The work of Shen and Pantic [2009] (named HCI)
uses the same idea, converting data from common web cam-
eras, Kinect, Tobii Eye Tracker® into user-configurable key-
board or mouse outputs. With the GEMINI (Tedfilo et al.
[2013]), it was possible to match the game The Elder Scrolls
V: Skyrim, with Kinect. According to the author, the choice
of this game was because of its complex interaction system.
Based on this premise, the authors decided to use the game
Mount and Blade as a test target for the project, since it has
a complex interaction system.

The other solution for the compatibility issue would be to
create a framework or game engine. In the case of Intelligent
Game Engine for Rehabilitation (IGER), a game engine fo-
cused on motor therapy was created by Pirovano et al. [2013].
Among the attributes of IGER, some are essential: monitor-
ing, evaluating, and abstraction of input devices. The game
engine manages to monitor the patient, being capable to de-
tect whether the gestures are being performed properly, and
the therapist is able to do evaluation of all movements per-
formed by the patient after the section. In addition, the tool
is compatible with Sony PlayStation Eye, Microsoft Kinect,
Wii Balance Board, Omni Phantom, Novint Falcon 4, Tyro-
motion Tymo > e o Moticon OpenGo Insoles .

The IGER is based on the game engine Panda 3D that uses
C++. The negative point of this approach is the obligation
for games to be developed in this game engine. The aim of
the middleware present in this paper is that any game can
be used and its functionalities as cross device, incorrect mo-
tion alerts and the therapy session recording been automat-
ically incorporated. Other works have developed game en-
gines or frameworks to solve the problems as RehabConnex
and PlayMancer by Conconi et al. [2008], the VR-Rides by
Wang et al. [2020], also propose a framework for Unity .
In addition, the ARTiFICe by Mossel et al. [2013] followed
a similar logic, however instead of developing a complete
game engine, they build a plugin for the Unity.

In the work of Pandit et al. [2019] a web platform was de-
veloped with machine learning techniques for remote moni-
toring and evaluation of physiotherapy. This system is com-
posed of a Kinect, capable of specifically detecting the hu-
man skeleton in 16 key points through the joints. In addition,
it has the integration of a web server, a front-end web ap-
plication and a desktop application. Although the study by
Pandit et al. [2019] is not entirely focused on games, they
make it clear that there are benefits to including games and
hardware devices as a motivating object for clinical purposes
in rehabilitation.

Rybarczyk et al. [2019] proposed a web-based platform for
telemotor rehabilitation applied to patients after hip arthro-

3Tobii Eye Tracker - Hardware that reads the position on the monitor
where the user’s eyes are focusing

4Omni Phantom e Novint Falcon - Haptic devices that enable the simu-
lation of object manipulation on the computer. The user moves a part of the
device which sends the movement information to the computer.

5Tyromotion Tymo - Device with sensors for capturing posture, focused
on therapy applications

%Moticon OpenGo Insoles - It has sensors to capture pressure, weight,
balance and movement and is used as the sole of the shoe.

"Unity - One of the most popular game engines on the market.
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plasty surgery. These patients need a postoperative func-
tional rehabilitation program to regain strength and joint mo-
bility. The study justifies that many of the individuals after
this surgical procedure have difficulty getting to the rehabil-
itation center. Therefore, it is necessary to use a technology
that enables rehabilitation at home. The architecture of this
solution is based on modules composed of a Kinect v2 de-
vice that is used to capture the patient’s movements and to
extract the coordinates of the body’s joints. In another work
on Telerchabilitation, Souza et al. [2022] developed an ex-
ergame that is controlled by the pedaling movement. The
authors used an Arduino board with sensors coupled to a cy-
cle ergometer. The Arduino sends data via the serial port to
the game (using JSON format).

According to Siddiqui et al. [2015], human action recogni-
tion has many aspects: full body movement recognition, fa-
cial movement, expression recognition and hand gestures. In
the aspect of hand gesture recognition, Siddiqui et al. [2015]
used Kinect to extract the skeletal tracks from the dataset to
recognize hand gestures in a vehicular driving approach in
videogames. The study proposes recognizing acceleration
gestures, turning right with acceleration and turning left with
acceleration.

Luo et al. [2019] developed a low-cost 3D motion capture
system of human skeletal joints. They use a normal monoc-
ular RGB camera as a sensor to capture the images and feed
a neural network that estimates the pose in 2D. After pro-
cessing, the neural network returns the 3D estimation. The
system is even capable of detecting multiple people in real
time with a single image as input.

Mehta et al. [2017] presents a method of capturing the 3D
pose of the entire human skeleton in a stable and temporally
consistent manner using a single RGB camera. The method
combines a convolutional neural network based on a pose
regression with a kinematic skeletal fit, making it feasible to
estimate the human skeleton pose as a control in real-time
applications with an RGB camera. The study demonstrates
that the solution achieved significant accuracy with the use
of sensors when compared to RGB-D sensors.

In the Konstantinidis et al. [2015] solution, the CAC
Framework captures the Kinect data, Wii controls, NeuroSky
MindWave, Android devices and disclose it through a Web
Service RESTFUL 8. So any application can connect with
the Web Service and extract data. Although the CAC Frame-
work does not allow compatibility with closed source games,
the idea of providing the data as a service can be useful for
other purposes. It is possible to implement this approach in
the middleware used in this paper by creating a module for
that purpose. The code was already organized to implement
easily these adaptations.

The Table 1 presents a summary of the characteristics of
each project compared to our middleware. A differential of
our proposal is that it is the only one that reports being able
to work with more than one different device at the same time.

Our approach does not require the modification of the
game’s source code since the main problem to be solved was
the need to modify the games whenever a new device was

8RESTFUL - RESTful is a system that uses the REST https: //wuw.
w3.0rg/2001/sw/wiki/REST standard, which are services that respond
to common HTTP POST and GET calls, among others.
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Table 1. Comparison between tools.

. Non Works on Has
Project . . .
invasive network persistence

FAAST Yes VRPN -
IGER - - Yes
uOS Plugin - uOS Yes
RehabConnex Yes - Yes
HCI Yes - -
PlayMancer - - Yes
VR-Rides - - -
GeMiNI Yes - -
ARTiFICe - VRPN -
FIMS - - -
CAC Framework - Web Service Yes
TeamBridge Yes VRPN Yes

created. It is possible to use Kinect, Leap Motion, and other
devices within the game engines. However, for any update,
it would be necessary to modify the source code of each of
the games and recompile everything. So, more than the game
engine is needed to solve this problem. That’s why we say
our approach is non-invasive.

It is important to remember that TeamBridge 2.0 is not in-
tended to adapt VR games but games for motor rehabilitation.
However, we use VR tools, so our middleware has a data
structure called Tracker compatible with VR environments,
but our focus was to make any type of computer game com-
patible with any input device, so in most cases, the input data
will be converted to mouse or keyboard commands. For this
reason, TeamBridge will not be compatible with cardboard,
as it runs on Android; it will only be compatible with a VR
environment that runs on Windows and accepts keyboard or
mouse input.

3 Specifications and architecture

Since this is a device for rehabilitation, a support structure to
therapy was adopted. Methods were created to record all the
data generated during the therapy and mechanisms capable
to identify and alert the patient about an exaggerated speed
during the gesture and a possible loss of balance. Although it
is focused on therapeutic games, there is no limitation from
it being used for exergames in general.

The programming language C++ was chosen for develop-
ment because the VRPN was already developed in this lan-
guage and for better performance issues.

This is a tool that will be used in games, so it is important
that it does not hinder the player’s experience to response
time. In this way, a performance test was structured, being
it validated and compared with FAAST developed by Suma
et al. [2011], that is a similar tool.

3.1 Input devices

This project required compatibility with some devices, such
as Leap Motion (Bianor et al. [2017a]) or Kinect (Lun and
Zhao [2015]).

Leap Motion uses infrared cameras to observe an area one
meter around, connects to the computer via USB, and pro-
vides an Application Programming Interface (API) for data
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Table 2. Overview of the devices used in this project

Device Connection SDK  Type of data
NED Glove USB No Analog
Physio Happy USB No Button
Leap Motion USB Yes Tracker/Analog
Kinect v1 USB Yes Tracker
Kinect v2 USB Yes Tracker/Analog
Monocular Cam USB Yes  Tracker/Analog

access (Weichert et al. [2013]). Developed for hand and fin-
ger capture, the SDK itself already performs the recognition
of the most important gestures: close and open the hand and
the tweezers gesture. Therefore, this information was reused
in this project.

Kinect, which acts as a depth sensor, has a normal camera,
an IR emitter and receiver. There are three different versions
of the hardware, each one working with their specific SDK.
Kinect v2 already has close/open hand gesture recognition
(Lun and Zhao [2015]).

In addition to the commercial devices, there was also a
need for compatibility with NED Glove developed by Silva
et al. [2013] and Physio Happy (Bianor et al. [2017b]), de-
vices developed by our research group. The NED Glove uses
JS and C# and it is connected via USB. The output generated
is something similar to “760,730,831,720,710”, where each
number represents a finger and how much it is flexed.

In relation to Physio Happy, the focus was to get a very
low cost. It is a data glove built only with cloth, elastic, vel-
cro, plastic bottle and a mouse. The data generated by the
device are just the mouse clicks, limiting the amount of exist-
ing buttons, so the natural connection of the mouse via USB
is maintained. The Physio Happy interprets when the user
flexes to one side or to the other, and can be adapted to parts
of the body such as knee, elbow, wrist and ankle.

The Table 2 summarizes the type of connection for each
device, amount of protocols, and heterogeneity of the data.
The Button is just pressed or not; Analog is a range of values,
and the Tracker is a position in a three-dimensional space.

3.2 VRPN

The VRPN ? is a network protocol for VR input devices that
has been developed to facilitate the use and assembly of a
VR lab (Taylor II et al. [2001]). It already has a well-defined
client and server architecture, also it has several mechanisms
for transmitting data across the network.

3.3 Architecture

The TeamBridge architecture was separated into client and
server. It follows the same structure of the VRPN, making
the input devices connected to the server side of the applica-
tion.

The Figure 1 presents the middleware architecture. Our
middleware is only compatible with Windows, which must
have all the necessary software to communicate with the in-
put devices. VRPN is the transport layer itself. The VRPN
also does the communication between the server and the

9An existing VRPN that has open source available at https://
github.com/vrpn/vrpn was opted to be used.
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client. The Data Capture layer is responsible for capturing
the data from the input devices and sending it to the client
through VRPN. In this layer, it is possible to create drivers
to adapt new hardware devices. The server side does not per-
form any processing of this data. It only collects them and
makes them available to the client. Since this work used the
open VRPN, some drivers were already ready, such as the
mouse and the keyboard. The Physio Happy uses the mouse
driver, but we created new drivers for the others.

The client-side has most of the code. The VRPN will re-
ceive the data from the server side and forward it to the Inter-
pretation layer. In this layer, we have the gesture recognition
package; each device can provide several gestures, so it is
possible to create classes to interpret more gestures. Still, in
this layer, we have the Actions package; an action is a code
that executes in the operating system or in the middleware
itself. For example, the KeyPress sends to the operating sys-
tem the signal that simulates a key being pressed. The mid-
dleware receives the ShowMessage and displays a message
on the screen.

New actions can be created, for example, an effort to run
an application, trigger a command over the network, or pro-
vide a Web Service. The operating system makes the com-
munication between the middleware and the game. In addi-
tion to these, there is also the Therapy module, which has the
unique functionality of persisting the interpreted data. In ad-
dition, some gesture captures aimed at therapy were created,
such as detecting stationary walking, stepping up and down,
wrist flexion, raising the hand or legs, and body angle about
the floor.

3.4 The controll module

The Teambridge version 2.0 architecture features a module
called CONTROLL. This module uses machine learning and
computer vision techniques as a way to manage actions in
games. The use of these techniques allows the capture, train-
ing, and classification of image models for three functionali-
ties: face, hands, and body capture. The CONTROLL uses a
monocular camera to make these three types of capture.

The use of monocular cameras allows the system in its 2.0
version to no longer need Kinect v1 or v2. Studies still need
to be done with Kinect Azure integration with Teambridge
2.0. However, the objective of enabling a monocular camera
is to reduce the cost of using our middleware.

The system captures the image using an RGB camera for
recognition. The image acquisition serves as input to feed
the feed-forward convolutional neural networks of the sys-
tem. The trained models are used to analyze and process the
images. These training models are returned as the output of
the neural network in the form of a matrix of coordinates.

In addition to the coordinate arrays, the trained and pre-
trained models return coordinate confidence scores, which
correspond respectively to the key points of the poses. The
structures generated by neural networks are not anatomically
correct structures. They are just an arbitrary set of points
identified by the models, and the number of epochs is de-
fined in the model training process by the rehabilitation pro-
fessional.

The CONTROLL system interacts through movements (of
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Kinect SDK | | Leap Motion SDK ‘ CONTROLL Operational System (Windows)

t

Input Devices

Figure 1. Architecture of the middleware.

the hands, face, and human skeleton) and the selected game.
The basic operating flow of the system has its starting point
with the choice of the model or neural network (that will be
used during the experiment). The user informs this choice.
After the user informs which pose he wants to manipulate,
the system makes it possible to train a new model or load a
pre-trained model, as shown in Figure 2.

The image acquisition phase is related to the production
of the digital image by the camera. The pixel values of the
images produced are generally related to the intensity of the
light reflected from the objects. However, they can also quan-
tified in another way related to different mathematical mea-
sures, depending on the sensor used.

The pre-processing phase is responsible for executing the
transformations in order to standardize and facilitate the way
the image is recognized. In this phase, the CONTROLL cor-
rects the real-world coordinate system to the sensor coordi-
nate system. The proposed process makes other corrections
in the pre-processing phase: the image’s projection in the
sensor’s coordinates, and the reduction of noise introduced
during image acquisition, among others.

The high-level processing phase executes the verification
of the received data. This phase also realizes the estimation
of the parameters for carrying out the verification of cor-
respondences between the known features and the features
present in the image.

The phase responsible for obtaining the response from the
system is the decision and classification phase. This response
can be represented by a position in the image of a pose or
a set of data to make automatic decisions. Finally, the last
phase of the CONTROLL system is responsible for assigning
the output of the neural network to a given action in a digital
game. This process converts a network pose to a keyboard
key. The system’s interface allows rehabilitation profession-
als to customize and assign poses to specific keys. Through
the CONTROII, it is possible to assign poses for specific ac-

tions in digital games. This attribution process is done exclu-
sively by the rehabilitation professional and the development
team, allowing the creation of poses to be specific according
to the treatment needs of each patient.

3.5 Human body pose estimation with the
CONTROLL

The generic functioning of access to the neural networks of
the CONTROLL system occurs through image acquisition,
pre-processing, feature extraction, high-level processing, de-
cision, and classification.

Implementing the neural network responsible for estimat-
ing the human body pose is done through the PoseNet model
with the ml5 js library. PoseNet is a machine learning model
that detects key points of joints in the structure of the hu-
man skeleton in real time and of several people. However,
CONTROLL works to monitor only one person per image.

In this work, the PoseNet neural network recognizes the 17
key points of a human and classifies the pose defined by the
rehabilitation professional. These points come from a matrix
of coordinates that the model processes.

The implementation of human pose capture has two neural
networks: a PoseNet type neural network to detect body key
points and another neural network of ml5 type. This ml5
network receives the output of the first network, allowing it
to create and train a new model.

The PoseNet neural network sends the 17 combinations
of numbers that represent the human pose. Each combina-
tion has two coordinates in the matrix: an x coordinate and
a y coordinate, resulting in 34 entries. The neural network
of the ml5 js library classifies these 34 inputs. So, It makes
appropriate output assignments for the keyboard keys. The
implementation adds the 17 key point pairs into a simple ar-
ray. In addition to identifying the key points, through a state
machine, it is possible to create, save, and load new poses
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Figure 2. Basic functioning diagram of CONTROLL neural networks.

through the compact .JSON file (JavaScript Object Notation).
For each group, there are a series of functions with different
functionalities. For example, in the function imageClassifier,
through neural networks, we can recognize the image’s con-
tent, returning an object with information about the image
coming from a pre-trained model. With the imageClassifier
function, we can train our model.

3.6 Hand pose estimation

The Handtrack.js library is used to make interactions based
on web games through hand gestures. CONTROLL uses
handtrack.js to capture an html image element and returns an
array of bounding boxes, class names and confidence scores.
The user does not need to connect any sensors or additional
hardware, but can immediately reap the engagement benefits
that result from gesture-based interactions and body input.

The data used by this neural network are mainly from the
Egohands dataset as defined by Bambach et al. [2015]. It
consists of 4800 images of the human hand with bounding
box annotations in various configurations, captured using a
Google glass 1 device. A model is trained to detect hands
using Tensorflow’s object detection API. For this project, an
SSD was used with the MobileNetV2 Architecture. The re-
sults of the trained model were exported as a saved model.
Handtrack.js represents really early steps towards the overall
potential of enabling new forms of human-computer interac-
tion with Al in the browser. Therefore, this technology al-
lows mouse movement and keystrokes to be mapped to hand
movement for control purposes in digital games.

3.7 Data collect

CONTROLL comprises two dedicated blocks: the main block
and the Real-Time Interaction block ( as shown in Figure 3).
The main block is an environment dedicated to the profes-

sional therapist who receives all the results from the patient.
The Real-Time Interaction block is where all patient data will
be acquired.

The CONTROLL allows rehabilitation professionals to as-
sign poses, train models, and use these models as a form of
control in digital games. The system follows these steps:

1. Data collection: where the professional will inform the
poses he wants his patients to perform;

2. Training the model: in this step, the professional re-
trieves the data collected from the previous step and in-
troduces the model with the number of epochs that suits
him;

3. Validate model: where the professional can verify that
the models are behaving as expected, that is, if they gen-
erate the correct output when classifying a pose.

The data collection step works through the identification
of key points by PoseNet. After detecting these points, the
game programmer references the key points with geometric
figures in the final version of the game. At the end of data
collection, the programmer assigns poses to keyboard (or joy-
stick) inputs corresponding to game controls available in the
game. Finally, the system generates an extension file, .json,
which has the coordinate matrices of all the collected poses.

With the collection stage completed, the rehabilitation pro-
fessional must train the data so that it is possible to generate
the model that patients will use in their sessions. Thus, the
step involves informing the .json file generated by data col-
lection and the number of epochs the algorithm will run.

In training the models, the ml5 js library acts to receive the
input and output parameters, the task it will perform (which,
in the case of the CONTROLL system, is the classification al-
gorithm), and the normalization of the data. After the ml5.js
library receives all the necessary parameters, model training
starts.

If the input variables are linearly combined, as in the case
of the multilayer perceptron, it is necessary to standardize the
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Figure 3. CONTROLL module architecture.

inputs. The reason is that any resizing of an input array can be
effectively undone by changing the corresponding weights
and offsets, leaving the same outputs as before. However,
there are several practical reasons why standardizing entries
can make training faster and reduce failures.

4 Results

The main result of this research is the Teambridge
2.0 middleware, which is available in this repository:
https://github.com/Natalnet/teambridge2. To demonstrate
the effectiveness of Teambridge 2.0, we carried out tests
which we will present in this section. The first is a load test
was carried out with the following objectives:

* Compare the middleware with other similar software.
The FAAST was chosen because it’s the only one avail-
able to download.

* Validate the TeamBridge 2.0 for use, in relation to the re-
sponse time required to read a device gesture and trans-
late it to the form of a keyboard or mouse command.

+ Compare the performance of the devices in various sce-
narios.

+ Identify bottlenecks in reading or interpreting devices.

When conducting the tests, the authors followed this stan-
dard performance tests defined by Meier et al. [2007]:

1. Identify the test environment. - two computers were
used in this test. The first one has an 15-5200 proces-
sor with 8 GB of RAM and Windows 10 as operating
system. The second computer had a 3.4 Ghz processor
(AMD Athlon IT X2 B28) with 4 GB of RAM and Win-
dows 7 as operating system.

2. Identify performance acceptance criteria. - events
that have a maximum delay of 56ms are recognized by
humans as a single event, according to Michotte [2017],

in a study was published in 1946 and became known
as “launching effect”. Therefore, the delay below the
56ms is the criterion of acceptance for this test, since it
is the ideal time to not feel the delay in the commands’
execution.

3. Plan and draw the tests. - The TeamBridge has been
tested with each of the compatible devices separately;
With devices combined locally and networked; And
even two servers on the same physical machine.

4. Setting up the test environment. - Unnecessary appli-
cations were removed. The memory used, adding the
client and server application, came to occupy 15 MB
of RAM. For this reason, the goal is not to verify the
processing or use of memory, but the software perfor-
mance.

5. Implementation of the test design. - In order to per-
form these tests, a small software was developed.

6. Run the test. - Finally, the tests were executed and
monitored.

7. Analyze the results, report and redo the test. - To
ensure greater accuracy in the average population, the
tests, which the standard score was below 68%, were
repeated.

For the verification of significance between the compar-
isons, a paired T-test was used to compare two data sets, such
as verifying the difference between the running time of one
program and another. Also, a paired T-test is stronger than
the common T-test, justifying the choice of it in this work
(Wainer et al. [2007]).

4.1 Software for performance testing

In order to do the performance test, a project was created
and had the function of receiving several keyboard inputs
and counting the time between each. The goal is to iden-
tify how much time will be spent for the software to read the
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device data, interpret it, and deliver a keyboard input. In or-
der to obtain a statistical significance, a sample of at least
100 measurements is recommended in two independent tests
(Meier et al. [2007]). In the case, 300 iterations were per-
formed. This amount of iterations has been chosen to take
around 10 seconds via Kinect (vl and v2), allowing to ob-
served network oscillations. The application calculates the
average, median, and standard deviation of the time, in addi-
tion to storing the minimum and maximum interval between
one input and another. This application was built in C++ and
is also available on GitHub to be used for future tests.

4.2 Running the performance Test

The first test was the validation of the optimal time of 56ms,
according to the acceptance criteria, in which it was decided
to test a common USB keyboard.

The following tests involved comparing the FAAST with
the TeamBridge. For this, it was configured in both that the
gesture of raising the hand above the head triggers a key for
the test software. The tests with FAAST were performed
in two scenarios: on a single machine and networked. In
this case, a 100mbps-head network was used. The Figure 4
presents the arrangement performed in the test.
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Figure 4. Organization of the comparative test with the FAAST.

First, we ran the test with the FAAST and then with the
TeamBridge, because they can not be tested at the same time.
Since FAAST cannot normally be used on a network, the
client of the TeamBridge was used with the FAAST server,
so that the network test was performed.

After being compared with the FAAST, other tests were
carried out — local and on the network — combining de-
vices. However, these tests could not be performed with the
FAAST, since it does not have compatibility with other de-
vices besides the Kinect. The Figure 5 presents a representa-
tion of the arrangement for these tests.
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Figure 5. Arrangement of the combination test via Kinect and other devices.
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In the end, the middleware developed in this work was
also tested on a single machine, however with a server appli-
cation for each device, in which a server was configured on
the original port of VRPN, to the Kinect (vl and v2), and a
server for Leap Motion, on another port.

During the tests, it was observed that errors occurred inter-
mittently, closing the application. After verification, it was
found that the error occurred when the two devices tried to
send messages at the same time. In order to resolve this issue,
the VRPN code was modified by implementing a mutex or
lock, which is used to prevent two processes or threads from
simultaneously accessing a critical sector of the code (Mar-
shall [1999]), the latest version of VRPN already has the fix
for this problem. This technique can affect the performance
of the application, as part of the code should wait for the other
to continue, so tests were done to check the performance with
and without this modification.

4.3 Tests results

The time measured by the keyboard was below the 56ms,
with 32 £3, 97ms, validating the criterion of acceptance. So
most people will not notice a time difference between press-
ing a key and the software answer.

The Kinect v2 with SDK 2.0 was also tested. However, its
performance was similar to the Kinect v1, with no statistical
significance (p=0.9831), therefore, the authors decided that
both devices will be referenced in this work only as “Kinect”.
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Figure 6. Load test comparing a keyboard with FAAST and with the Team-
Bridge.

In figure 6, it is possible to notice that the TeaTeamBridge
2.0 has an acceptable performance, providing inputs with a
range of 33.3 £5, 37ms, close to a keyboard and below 56m:s.
On the other hand, the FAAST showed an unexpected result,
being able to deliver inputs twice faster than the USB key-
board. Due to this result, the test was repeated — maintaining
the FAAST server — but with the interpreter (client) from the
TeamBridge. According to the result, it was still possible to
maintain the interval smaller than that of the keyboard, with
no statistical significance (p=0,4802) in the scenario of pure
FAAST against the FAAST server with the client of Team-
Bridge.

The Figure 7 shows the network test, and it is possible
to observe that the standard deviation of the remote FAAST
increased from 15.6 +4,9ms to 17.1 £7,21ms, with a sta-
tistical significance (p=0,0041). On the other hand, the
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developed middleware went from 33.3 +5,37ms to 33.4
+8, 29ms, with no statistical significance (p=0,097).
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Figure 7. Load test comparing local and remote modes.

The Figure 8 shows the results of the Leap Motion and
its combination with Kinect. It is possible to observe that
the close hand gesture showed a much lower performance
than the wrist flexion. The difference between these gestures
is because the close hand gesture was reused from the Leap
Motion SDK, however the wrist flexion was implemented in
the TeamBridge.
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Figure 8. Load test using Leap Motion with Kinect.

Although the close hand gesture is slower, it is still within
the 56ms acceptance criterion. The Figure 9 presents the re-
sults of the association between Kinect and NED Glove.
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Figure 9. Load test using NED Glove with Kinect.

The NED Glove presented the time of 255 +3, 45ms, well
above of the acceptable. Thus, this test allowed the observa-
tion of this fact and the possibility of a future work in order
to improve the performance of this device. However, it also
brings a greater concern in the development of future devices
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for this requirement. It is important to notice that the identi-
fication of these problems was part of the objectives of this
test.

In results of the test performed using Leap Motion with
Kinect, it was observed that only the slowest device, Leap
Motion, lost performance, shifting from 40.4 +3,59ms to
48.1 +10,62ms, with statistical significance (p=0,0001).
The Kinect kept its time with no statistical significance
(p=0,93). While, in the test with NED Glove there was a
drastic decrease in the performance of Kinect, going from
33.3 £5,37ms to 255 +4, 88ms. In this case, the slower de-
vice influenced considerably in the performance of the faster
device, being the Response time determined by the slowest
device.

The Figure 10 presents the tests carried out in relation to
the mutex, in order to verify that it brings a considerable dif-
ference to the performance loss. Then, it can be inferred
that the mutex does not impair the performance significantly.
The problem of performance loss when using more than one
device can be circumvented by using more than one server,
both local or network. When networked, it was possible to
observe that the TeamBridge operates with stability, so that
in some cases it performs better than locally. Therefore, it is
possible to connect a device on each computer.
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Figure 10. Load test of the devices with and without mutex.

However, it will not always be possible to have multiple
computers available. In this case, the VRPN also allows the
creation of more than one server on the same machine, just by
modifying the port where the server will operate. The Figure
?? shows the same tests performed on the Kinect with Leap
Motion, however with two server applications on the same
machine. It can be observed that the Leap Motion was did
not suffer any interference, since its average operating alone
was 40.4 +3, 59ms and passed to 41 +4, 26ms, including no
statistical significance (p=0,0502). The average Kinect re-
mained in 33.3 £2, 2ms, also without statistical significance
(p=0,925).

4.4 Teambridge 2.0 integration with commer-
cial games

To prove that the TeamBridge 2.0 developed in this work can
adapt games without modification of source code, we per-
form a test with the commercial game, the Mount and Blade.
We chose this game because it is incompatible with Kinect
or any other VR device and allows the execution of several
different commands, such as attack by the right, attack by the
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left, attack from above, defense with shield, walk, and others.
With these commands, it was possible to make an analogy to
the gestures performed via Kinect. In this experiment, we
use both Kinect v1 and v2.

Since TeamBridge 2.0 captures the stationary walk, this
gesture made the character walk. When the user rotates the
body, the player’s character also rotates. For the command
defense with shield, the user needs to raise the left hand
at chest height. The attack commands require the player
to place the right hand on the side — left or right — of the
body or on top of the head to define the direction of the hit.
Then, the player must take his right hand in front of him
at the chest height to do the hit. A demo is available at (
https://www.youtube.com/watch?v=hQgXh6EPxDw ).

4.5 Integration with exergames

Our research group developed some games for motor reha-
bilitation. Other team developers created these games (not
the team who created Teambridge 2.0). These games were
considered legacy games but were still functional.

One of the games is the exergame Fat Bird, an imitation
of Flappy Bird. This game has compatibility only with Leap
Motion and Physio Happy developed by Silva et al. [2020].
Its development took place before our middleware. Physio
Happy captures wrist flexion. So, the player uses the wrist
down or up while flexing to control the game. Leap Motion
has native detection of opening and closing the hand, so with
Leap Motion, the user needs to perform opening and closing
movements. However, through TeamBridge 2.0, it was also
possible to reproduce it via Kinect and Leap Motion using
the wrist flexion gesture. It is important to note that wrist
flexion is usually not identified by either the Leap Motion
SDK or Kinect, and it is possible to use this configuration
only through TeamBridge 2.0. We did not make changes to
the game’s source code.

The other game, “The Kayak Supremo” (Cassiano [2013]),
was the only game with its source code modified. This modi-
fication was necessary because it was only possible to play it
with NED Glove (Silva et al. [2013]). Therefore, the adapta-
tion only allowed keyboard inputs, creating four commands
with the keys Q, A, E, and D, where the keys Q and A take
the Kayak to the left and the keys E and D take it to the
right. However, the A and D keys make the Kayak move
faster. This speed difference helps interpret when the glove
is slightly or significantly closed.

The TeamBridge 2.0 captures gestures and configures
them in a range of values. Therefore, the NED Glove was set
to trigger the key A if the hand closing force is between 30
and 50. That is, when the hand is slightly closed, the Kayak
goes to the left, but if the hand is completely closed, it moves
faster. The configuration editor also allows testing the force
so the person who is setting it up knows which track should
insert. Just plug in the glove and click the "force test” button.
With this, the glove captures the force and displays it on the
screen.

Another project used the TeamBridge 2.0 successfully.
This project involved 50 elderly patients and 11 experts for
game validation. The project involved an exergame called
Virtualter created for a study of Pacheco [2020]. The game
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uses Kinect (v1 and v2), but the game also accepts a keyboard
as input (without any concern for Kinect).

The study was carried out within the guidelines of the Re-
search Ethics Committee of the Federal University of Rio
Grande do Norte (Opinion number 2.628.749) and follow-
ing resolution 466/12 of the National Health Council. All
participants involved in the research signed a Term of Free
and Informed Consent - TCLE, authorizing their voluntary
participation. Figure 11 shows a volunteer performing a test.

[ l- e

Figure 11. Patients using the Virtualter. Fonte: Pacheco [2020].

This game has a unique feature compared to the others. In
it, the player controls his character, walking in stationary mo-
tion. Stationary walking is flexing and stretching the knees
alternately while standing and without bending the trunk for-
ward. In other words, it’s simulating walking without leav-
ing where it is. This type of movement is helpful for a semi-
immersive Virtual Reality simulation, which is the case of the
Virtualter game. The Kinect v1 and v2 models can perceive
this stationary motion. So, it is acceptable for the project or
TeamBridge 2.0.

The game had a second requirement: the player would find
steps in the game, and the character should be able to climb
those steps. A camera must capture the player’s movement
in the real world. The game environment needs a gym step (
1 or 2 equipment of this type). The player must climb and de-
scend the steps in the real world for his character to replicate
this movement in the game. The game was proposed for bal-
ance training in older adults, and this movement of climbing
and descending the steps is essential for analyzing postural
balance.

During testing with Kinect, some limitations were ob-
served. The device did not capture the data correctly when
the player descended or climbed the step. When walking
in front of the Kinect, we identified that the user’s height
changed as he approached or distanced from Kinect, and this
would hinder TeamBridge 2.0 from placing when the user
climbed or descended the ladder. Because of this problem,
our goal has become to find a region where this distortion is
minimal.

4.6 Device merging

Unlike FAAST, our middleware can work with more than
one input device at the same time. The other studies did not
observe this possibility.
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It is interesting working with two devices simultaneously.
One can supplement the deficiencies of the other. Kinect has
already been used in conjunction with a smart glove (Huang
etal. [2012]), precisely because the Kinect v1 cannot capture
hands, so the smart glove meets this need.

Figure 12 is part of a video showing Kinect being used
with Leap Motion. The TeamBridge identifies when the user
closes the hand to hold the object and sends the signals to
the application that cause the object to be carried by the user.
This is also an example of how you could use TeamBridge
with VR, as this application created in Unity receives the
Tracker data structure through a VRPN plugin for Unity. So,
Kinect sends the data to Unity through VRPN via the Team-
Bridge server. Unity updates the skeleton pose according to
the data, in addition to receiving mouse inputs in place of
Leap Motion inputs.

Kinect + LeapMotion via TeamBridge

Figure 12. Kinect union with Leap Motion via TeamBridge.

4.7 Control of robotic equipment

In another experiment, we evaluate the possible use of Team-
Bridge to allow the control of robotic equipment through sen-
sors such as Kinect; with this, the project would enter the
area of telerobotics, also known as teleoperation, which oc-
curs when the user is capable of remotely controlling robotic
equipment according to Davies et al. [1995].

The main objective of this experiment is the conversion of
Kinect data to Arduino. For this conversion, the communica-
tion channel, the interpretation of the data, the code, and the
physical equipment for tests are necessary.

First, we define how the communication between the de-
vices would be. TeamBridge collects and converts the infor-
mation before sending it through the serial port to the Ar-
duino. Such information understood which angle the engine
should perform.

We developed a piece of equipment with Arduino Mega to
execute the tests. The equipment received the angles and had
two servo motors with a capacity of 15 kg, model msg99, and
two voltage regulators. We use one servo to move the base
joint with the arm. The other servo moves the wrist joint.
Figure 13 represents the constructed device.

The architecture of TeamBridge made it necessary to cre-
ate only a single class to communicate with the Arduino, the
ArduinoAction shown in Figure 14. This class was created
in the client part of the application and contains the method
for connecting and sending messages to the Arduino.

We already implemented all the code for interpreting the
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Figure 14. Representation of the place in the architecture where the class
was created.

gestures in Kinect, and it was possible to reuse it. However, it
was also necessary to create the implementation of capturing
the angle between the points.

During the final test, we observed an inconsistency in the
connection with the Arduino. This inconsistency blocked the
Arduino after a few seconds of sending information. Suppos-
edly, this crash is due to the amount of information transmit-
ted. To solve this crash, we implemented a delay of 40ms in
sending data to the Arduino. With this delay, the Arduino can
operate for up to 7 minutes before crashing. When the crash
occurs, it is necessary to reconnect the Arduino. Delays from
500ms to 10ms were tested, but with values below 40ms, the
robotic arm behaved unexpectedly, executing sudden com-
mands, and with very high values, the delay in activating the
commands was noticeable.

5 Conclusion

With the TeamBridge, it was possible to obtain a mediation
between the input devices and the games in a non-invasive
way, taking into consideration that it was possible to recon-
cile the devices that were approached in this project, even
with commercial games, there was no need to modify the
source code. This also allowed that the production of ex-
ergames not require direct contact with such devices, so a
programmer interested in building an exergame will not need
to learn the functioning of the SDK. He will program so that
the game works with keyboard or mouse, being only neces-
sary that the person responsible for applying the exergames
knows how to create a configuration file. The programmer
will need to modify the source code of the TeamBridge only
if he wants to include compatibility with a new device or to
include a new feature or gesture.

With this work, it was also possible to generate an accep-
tance criterion, as well as performance tests for the input de-
vices, an issue that was not taken into consideration, but that
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could hinder the player’s experience. With such tests, it was
possible to identify that NED Glove needs performance im-
provements. Also, it was identified that, although Leap Mo-
tion complies with the acceptance criterion, the modification
of certain algorithms of this device may greatly increase its
performance. Finally, the comparative test performed with
FAAST identified that the TeamBridge has bottlenecks when
operated with Kinect, but even with such performance loss,
it is still within the acceptance criterion.

There were also two problems in the usage of two or more
input devices, along with a need for a message flow control
and a performance problem. However, the possible solution
to both problems was also identified.

5.1 Future work

This work opens several opportunities for future work, such
as:

* The use of machine learning, so the TeamBridge recog-
nizes a new gesture.

* Creations of a smartphone driver and application in or-
der to allow the use of the data generated on the device,
making it a joystick.

* Creation of a speech interpreter to be able to use words
like input.

* Provide input device data via a Web Service instead of
triggering keyboard commands.

+ Allow control of drones through TeamBridge.

+ Implementation of a reverse data stream in order to en-
able the development of haptic devices or devices that
generate some kind of feedback to the user. Currently,
the data departs from the device to the TeamBridge, to-
ward the application.
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