
Journal on Interactive Systems, 2024, 15:1, doi: 10.5753/jis.2024.3728
 This work is licensed under a Creative Commons Attribution 4.0 International License.

A User Evaluation of a Collaborator Recommender based on
Co-Changed Files
Kattiana Constantino [Federal University of Minas Gerais | kattiana@dcc.ufmg.br]
Raquel Prates [Federal University of Minas Gerais | rprates@dcc.ufmg.br]
Eduardo Figueiredo [Federal University of Minas Gerais | figueiredo@dcc.ufmg.br]

 Department of Computer Science, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo
Horizonte, MG, 31270-901, Brazil.

Received: 01 October 2023 • Accepted: 13 February 2024 • Published: 01 March 2024

Abstract:
Active collaboration is essential for the success of software projects across the development life-cycle. Unfortu-
nately, in social coding platforms, such as GitHub, it is still challenging for developers to identify potential collabo-
rators with whom they could engage to create new/stronger ties and enhance the quality of contributions. To this end,
we implemented developer recommendation strategies and prototype tool to help project contributors improve their
collaborations. Thus, in this work, we described a controlled experimental study concerned usability and user satis-
faction to investigate the developers’ perceptions of using CoopFinder, a prototype tool to support two strategies for
recommending collaborations. These developer recommendation strategies aim to connect developers of a specific
project based on their similar interests. The study involved 35 participants, 18 of which were GitHub users, and 17
were non–GitHub users. We asked participants to perform the experiment tasks to find collaborators with similar
interests using a prototype recommendation tool and GitHub. We reported a quantitative and qualitative evaluation
of strategies and tool using the state of the practice as a baseline. As a result, we observed that recommender based
on co–changed files can provide suitable collaborator recommendations to developers of a specific project. About
66% of the participants confirmed they would use or recommend this tool.

Keywords: Open-Source Software Projects, Collaborative Software Development, Distributed Collaboration, Devel-
oper Recommendation.

1 Introduction
Active collaboration is essential for the success of software
projects across the development life-cycle. Contributors who
appreciate the work or feel responsible for the project are
more likely to persist than those driven by particular interests
[Shah, 2006; Crowston and Fagnot, 2018]. Thus, it would
be useful to support contributors to stay in the project and
make quality contributions [Qiu et al., 2019; Crowston and
Fagnot, 2018; Barcomb et al., 2019, 2020]. However, social
coding platforms, like GitHub1, can present challenges in
finding potential collaborators with whom they could create
new/stronger ties and enhance the quality of contributions.
One of the challenges associated with identifying collabora-
tors is that reliable information is often not readily available
[Minto and Murphy, 2007; Surian et al., 2011; Canfora et al.,
2012].
Previous works have explored developer recommenda-

tions for collaborative interactions in software engineer-
ing development. For instance, Minto and Murphy [2007]
ranked a list of the likely emergent team members based on
a set of files of interest. Surian et al. [2011] recommended
a list of top developers that are most compatible based on
their programming language skills, past projects, and project
categories they have worked before. Canfora et al. [2012]
identify and recommend mentors for newcomers in software
projects bymining data frommailing lists and versioning sys-

1https://github.com/

tems. Finally, Thongtanunam et al. [2015] recommended
pull-request reviewers based on past reviews of files with
similar names and paths. Most of these studies mainly focus
on specific software tasks and limit the recommended candi-
dates to the core developers of the projects. Inspired by these
previous work [Canfora et al., 2012; Thongtanunam et al.,
2015], we recommend collaborators based on a set of files
that have been mutually edited to increase engagement in the
project and enhance the opportunities for collaborations, not
only core members, code-reviewers, or mentors but also all
active collaborators of the project that need some help. In
this work, we have denominated these mutually edited files
as co-changed files [Constantino et al., 2023a; Constantino
and Figueiredo, 2023].
In previous work, we presented a prototype–tool named

CoopFinder2 [Constantino and Figueiredo, 2022], which sup-
ports two developer recommendation strategies. In another
previous work [Constantino et al., 2023a], we evaluated
these developer recommendation strategies based on co–
changed files from the point of view of who receives the
recommendations. We observed that these strategies helped
developers and maintainers find opportunities for collabora-
tions.
To support the strategies, CoopFinder is an interactive vi-

sual tool allowing developers to select collaborators and see
in which part of the project they have similar interests. The
interactive ability of the tool allows developers or maintain-

2https://github.com/kattiana/coopfinder

https://doi.org/10.5753/jis.2024.3728
https://orcid.org/0000-0003-4511-7504
mailto:kattiana@dcc.ufmg.br
https://orcid.org/0000-0002-7128-4974
mailto:rprates@dcc.ufmg.br
https://orcid.org/0000-0002-6004-2718
mailto:figueiredo@dcc.ufmg.br

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

ers to follow the activities of the collaborator in order to iden-
tify potentially interesting collaborators. Based on previous
works [Constantino et al., 2020, 2021], we considered that
the set of files of interest represent strong ties in connecting
developers of a project. That is, coding tasks may point to
opportunities for joint contributions to the project.
In this paper, we extend our prior research [Constantino

et al., 2023b], which describes a controlled experimental
study3 to investigate the developers’ perceptions of using
CoopFinder prototype. The study involved 35 participants,
of which 18 were GitHub users and 17 were non-users. We
asked participants to perform the experiment tasks to find
collaborators with similar interests using a prototype recom-
mendation tool and GitHub. Each participant completed the
following tasks: fill out a background questionnaire before
the experiment and execute a set of tasks. To reduce the learn-
ing effect on the assessment results, we used the Latin square
[Fisher, 1992] to distribute the tasks and tools between two
groups of (random) participants. Afterward, participants an-
swered a post–assignment questionnaire about their opinions
on the developer recommendations.
As results, participants pointed out that CoopFinder is easy

to use, intuitive, exciting, and supports project maintainers.
Besides, we observed that participants were able to perform
tasks more easily using CoopFinder than GitHub. About
66% of the participants confirmed they would use or recom-
mend this tool. Our primary contributions can be succinctly
summarized as follows:

• We propose developer recommendation strategies, sup-
ported by a visual and interactive tool to connect col-
laborators based on a set of files of their interest. Fur-
thermore, the tool provides metadata and links different
attributes that could not be analyzed using the GitHub
interface;

• We describe a quantitative and qualitative evaluation of
strategies and tool using the state of the practice as a
baseline;

• We designed and conducted a controlled experiment to
evaluate the developer recommendation strategies and
tool;

• We evaluated the usability of CoopFinder with 35 de-
velopers. About 51% of them are collaborators and
maintainers of real-world open-source projects hosted
on GitHub;

• We obtained insights from the users to improve the de-
veloper recommendation algorithms and the supporting
tool.

Our comprehensive replication package is readily acces-
sible online to facilitate future replications and extensions4.
The structure of this paper unfolds as follows. Section 2 in-
troduces the problem we address. Section 3 offers insight
into the developer recommendation strategies, encompassing
their design, implementation, and practical usage within the

3As required, the study was approved by the University’s
(UFMG) Committee for Ethics in Research - Protocol number:
55476922.0.0000.5149.

4https://github.com/kattiana/coopfinder

Coopfinder tool. Section 4 describes the study design. Fur-
thermore, we analyze and report the results of this study (Sec-
tion 5). Section 6 explores potential threats to the validity of
our study. Finally, we end this paper with some concluding
remarks and discuss directions for further work (Section 7).

2 Problem Statement
Previous works show that developers usually ask for help
from the core team members, who should be expected to
share their motivation, knowledge, and experience [Minto
and Murphy, 2007; Kononenko et al., 2016]. However, this
may not always work as the core team members could be too
busy to respond [Yu et al., 2015; Gousios et al., 2015; Stein-
macher et al., 2018]. Other experienced developers outside
of the core team could also be helpful, and might be more
available. That is, all collaboration is essential for the project
to succeed [Gamalielsson and Lundell, 2014]. Hence, all
contributions should be appreciated and encouraged [Pham
et al., 2013; Gousios et al., 2014; Pinto et al., 2016].
Previous research also mentions that not having enough

people to perform core team roles, such as maintainers,
supporters, and reviewers, impacts the sustainability of the
project [Jiang et al., 2015; Costa et al., 2021]. Developer
turnover can also have a negative impact, as a small group
of developers may become overloaded with information and
knowledge [Avelino et al., 2016; Ferreira et al., 2017], while
others may have limited access to knowledge-sharing oppor-
tunities (e.g., collaborations, discussions) [Tamburri et al.,
2015]. These situations can lead to frustration and encour-
age developers to leave the project. These issues all relate
to how developers interact with each other and how these
relationships affect the project. Therefore, it is crucial to op-
timize collaboration among project developers and maintain
a balanced team.

3 Strategies for Recommending De-
velopers

Strategies for recommending developer are supported by
CoopFinder, a prototype tool that enhances opportunities for
collaboration in a project based on co-changed files. These
co-changed files refer to files that two or more developers
have modified. CoopFinder is an interactive and visually-
rich web application that helps connecting developers of
these files.

3.1 Developer Recommendation Design

CoopFinder implements two developer recommendation
strategies, namely Strategies 1 and 2, which are based on co–
changed files. For Strategy 1, the number of commits was
mined to determine the frequency of file modifications by a
developer. For Strategy 2, the number of changed lines of
code (LoC) was extracted. This metric computes the sum
of code lines added and removed by a developer in a spe-
cific file [Constantino et al., 2023a]. Figure 1 presents an

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

Extracting name of changed files
based on the number of commits

Extracting name of changed files
based on the number of lines of code

modified (additions and deletions)

Source Feature Extraction Changed File Scoring

TF-IDF Algorithm Cosine Similarity Algorithm

Developer
Recommendations

3
1

2

3
1

2

Strategy 1

Strategy 2

Figure 1. Two developer recommendation strategies [Constantino et al., 2023a].

overview of the steps required to recommend a developer to
another developer in the software project, as follows.
Step 1 – Feature Extraction: The modification history

made by all developers in a project was extracted concerning
the inputs, as illustrated in Figure 1. The GitHub platform,
a social network hosting projects and supporting the fork &
pull model, was utilized for this purpose. GitHub develop-
ers create copies of the original repository and make changes
in their respective copies. Once these changes are finalized,
they have the option to submit them back into the original
repository via a pull request.
Step 2 – Changed File Scoring: We performed file min-

ing for each developer of the project by extracting the set of
co–changed files. This set of files was then ranked using the
Term Frequency – Inverse Document Frequency (TF–IDF)
algorithm [Salton, 1989]. The resulting rank of relevant files
for each developer is presented in Figure 1. We repeated this
step for both strategies, yielding different ranks for each de-
veloper.
Step 3 – Developer Recommender Model: The rank of

relevant files for each developer of the project, calculated
using the vector space model, was utilized to calculate their
similarity via the widely-used cosine metric [Salton, 1971;
Salton and Harman, 2003]. This metric has been extensively
employed [Rahman et al., 2016; Franco et al., 2019] due to
its ability to quantify the similarity of two objects [Ricci et al.,
2011]. We repeated this step for each strategy, as shown in
Figure 1.

3.2 Implementation Technologies
Our web tool is built upon a client-server architecture, lever-
aging effective visualization techniques to enhance user ex-
perience. The server-side is developed using Python 35,
with the support of the scikit-learn libraries6, a robust and
free machine learning library for Python. For the visualiza-
tions in CoopFinder, we integrated HighCharts7, a powerful
JavaScript library specializing in analytical data visualiza-
tion. This library facilitates document manipulation based on
data, contributing to a compelling and informative user inter-
face. To ensure a seamless and interactive user experience,
we incorporated Bootstrap Framework8 components. These
components encompass a variety of stylesheets and jQuery

5https://www.python.org/
6https://scikit-learn.org/stable/index.html
7https://www.highcharts.com/
8https://getbootstrap.com/

plugins9, enabling the creation of a responsive and dynamic
interface. Our selection of these technologies is purposeful,
driven by our commitment to delivering a dynamic explo-
ration and visualization experience for our users.

3.3 Interface and Interaction
The screenshots of CoopFinder related to the list of contrib-
utors of a selected project are depicted in Figure 2. This list
includes all contributors who have modified any files in their
copies from a selected project from GitHub, as described in
Section 3.1. In Figure 2, Frame (A) displays project informa-
tion, such as the repository name, number of stars, number
of forks, and number of open issues, to which the collabo-
rators belong. Frame (B) presents a table of all collabora-
tors of the selected project. For each collaborator, the table
provides their developer information, including their avatar,
name, fork, number of followers, number of following, num-
ber of commits in upstream, number of non-merged commits,
and the date of their last commit. Frame (C) displays code
activity for upstream and non-merged commits, along with
the last commit date. This helps users assess the status of
the collaborators in the project, including their activity level
based on merged commits and last commit date. Recent non-
merged commits may signal a need for assistance. Further-
more, maintainers can review the interests of the collabora-
tors in the project or build teams around of their co-changed
files. Finally, the button “Run” runs the algorithms of the
recommendations and the results are presented as following.
Figure 3 depicts a screenshot of CoopFinder with a list of

recommended collaborators for the target developer, which
may vary depending on the selected strategy and the rank of
relevant files for each project developer, as described in Sec-
tion 3.1. Frame (D) displays project information, such as the
repository name, number of stars, number of forks, and num-
ber of open issues, to which the recommended collaborators
belong. Frame (E) presents information about the target de-
veloper, such as their name, avatar, last commit date, number
of total commits, followers, and followings. Finally, Frame
(F) shows a list of recommended developers with similar in-
terests based on co-changed files.
In Frame (F), users can select one of the recommended

collaborators to compare with the target developer shown in
Frame (E). Once selected, Frame (G) displays the two chosen
collaborators along with their names and forks, linked with

9https://jquery.com

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

A

B

C
Developer 1 Fork 1

Developer 3 Fork 3

Developer 2 Fork 2

Developer 4 Fork 4

Developer 6 Fork 6

Developer 5 Fork 5

Developer 7 Fork 7

Developer 9 Fork 9

Developer 8 Fork 8

Developer 10 Fork 10

Figure 2. Overview of the contributors information from a specific GitHub project [Constantino and Figueiredo, 2022].

D

H

I

fork 1

fork 2

fork 3

fork 4

fork 5

developer 1

developer 2

developer 3

developer 4

developer 5

developer target

developer target developer 4

developer 4

fork 4

developer target

fork target

E

F

G

Figure 3. Overview of developer recommendations and their aggregated information [Constantino and Figueiredo, 2022].

their GitHub profile. Frame (H) enables users to analyze the
common files of the two developers. For instance, “t/discov-
ery/nacos.t” and “apisix/discovery/nacos.lua” are common
files that both developers. They are interested in and are
familiar with these files (Figure 3). Finally, in Frame (I),
the recommended developer’s expertise (programming lan-
guage) related to the focused project is presented. This ex-
pertise is calculated as a percentage of the total number of
files changed in each programming language. Note that, this
feature is not the primary focus of our current work. How-
ever, we leave this space open for potential avenues for future
research. Other works, such as [Oliveira et al., 2019, 2020;
de Neira et al., 2018], explored the expertise of the develop-
ers.

4 Study Design
This section presents the design of an experiment study
to evaluate the developer recommendations based on
co–changed files supported by a prototype-tool, namely
CoopFinder. Due to the Covid-19 pandemic, we performed
the experiment remotely. However, all instructions and tools
necessary were available to participants. Besides, the first au-
thor was available to clarify any doubts. To collect the data,
we adopted questionnaires specially designed for this evalua-
tion by using the Google Forms10 service. Next, we describe
our goal, research questions, formulated hypotheses, and the
research method.

10https://docs.google.com/forms, accessed in April 2022.

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

4.1 Study Goal

We set the goal of our study using the Goal/Question/Metric
(GQM) template [Basili and Weiss, 1984], as outlined below.

Analyze a tool-supported recommendation strategy
for the purpose of evaluation
with respect to ease of use
from the point of view of developers
in the context of recommendations based on co–changed files in
the open-source environment.

4.2 Research Questions

To achieve our goal, we based our evaluation method on the
following research questions.
RQ1 - How easy is it to find collaborators using

CoopFinder? We compared CoopFinder with GitHub (state-
of-the-practice) related to ease of use to find collaborators.
Davis (1989) defined ease of use as the degree to which a user
believes that using a specific system would be effort free.
RQ2 – Does the expertise with GitHub impact on the ef-

fectiveness of finding collaborators? With this RQ, we re-
late the background of participants with their experiencewith
GitHub when using the analyzed tools.
RQ3 – How fast is it to find a collaborator using

CoopFinder? In this RQ, we also compared CoopFinder with
GitHub (state-of-the-practice) in regard to the time required
to perform all tasks for finding collaborators.
RQ4 – How do participants perceive CoopFinder? In

this RQ, we report the perceptions of the participants about
the CoopFinder tool, as commented by them in the post–
assignment questionnaire of the experiment.
RQ5 – How could the developer recommendations be im-

proved? In this last RQ, we report the suggestions of the
participants related to developer recommendations features
to improve the developer recommendations.

4.3 Hypotheses Formulation

We defined hypotheses for RQ1: in which tool (CoopFinder
or GitHub) would it be easier for finding collaborators with
similar interests. To answer RQ1 we evaluated the ease of
use of the tools in terms of the scale: 1 (very easy), 2 (easy),
3 (hard), and 4 (very hard). Thus, RQ1 was turned into the
null and alternative hypotheses as follows.

H0: There is no significant difference related to ease of use be-
tween CoopFinder or GitHub.
Ha: There is significant difference related to ease of use between
CoopFinder or GitHub.

We defined hypotheses for RQ2: which group (GitHub
user or non-user) would it impact the use of the CoopFinder
or GitHub. To answer RQ2 we evaluated the answers (cor-
rect, incorrect and the blank) that participants should provide
for each task proposed. Thus, the null and alternative hy-
potheses are:

H0: There is no significant difference in the hit rate between the
GitHub users and non-users.
Ha: There is significant difference in the hit rate between the
GitHub users and non-users.

Finally, we designed hypotheses for RQ3: which tool
(CoopFinder or GitHub) requires more time for finding col-
laborators with similar interests in co–changed files among
developers. As mentioned, to answer RQ2, we evaluated the
duration of the tasks in terms of the time required to perform
all tasks. Thus, the null and alternative hypotheses are:

H0: There is no significant difference related to time (in minutes)
to perform all tasks using CoopFinder or GitHub.
H1: There is significant difference related to time (in minutes) to
perform all tasks using CoopFinder or GitHub.

4.4 Research Method
To answer the research questions, we planned and performed
an experiment study, as shown in Figure 4.
Participant selection. We selected the participants by

convenience and using the snowball recruitment technique
(i.e., one participant indicates another one, and so on) [Flick,
2018]. To be eligible to participate in this study, they must be
collaborators of software development projects (developers
or maintainers), especially collaborators who work on open-
source projects in GitHub. Section 5.1 presents the overview
of the participants selected. We received responses from 43
participants. Eight participants did not complete all question-
naires; thus, they were excluded.
Experiment design. First, we asked participants to com-

plete a demographic and background questionnaire (10 min-
utes). After, we provided a training and explanation session
about the experiment related to CoopFinder and GitHub (10
minutes) (Figure 4). After the training session, we asked
participants to perform a set of seven tasks for each tool -
CoopFinder and GitHub (1 hour). We instructed the partic-
ipants to perform the tasks using both tools. To reduce the
learning effect on the assessment results, we used the Latin
square [Fisher, 1992] to distribute the tasks and tools be-
tween two groups of participants, as presented in Figure 4.
Each treatment appears only once in each row (group of par-
ticipants) and only once in each column (tools), allowing a
broader evaluation concerning the tool and the group of par-
ticipants. Finally, we presented a post–questionnaire with
open-ended questions, allowing participants to give feedback
about the CoopFinder tool.
Experiment tasks. We defined and adapted the tasks for

each tool to have the same goal (Table 1) and difficulty level.
Moreover, we presented a brief scenario for each task to di-
rect the activity of the participant to achieve the task goal.
For each task, participants should provide an answer for the
activity proposed and indicate their perception on how easy it
was to perform the task. All scenarios and tasks are available
online for future replications/extensions11.
Post–assignment questionnaire. After the experiment,

we sent a short questionnaire to the participants regarding

11https://github.com/kattiana/coopfinder

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

Experiment (~ 1:10 hour)

Latin square design -
Experiment tasks (1 hour)

Data collection

Quantitative and qualitative analysis

Group 2

Session training First tool Second tool

Group 1

(10 min)

Pré-questionnaire (10 min)

Answering (10 min)

Demographic
information

Post-questionnaire (10 min)

Answering (10 min)

CoopFinder
feedback

Participant selection

Convenience and
snowball recruitment

technique

Figure 4. Experiment Design.

Table 1. List of tasks to be performed by participants.
Task ID Goal
Task 1 Exploring project information
Task 2 Exploring collaborators of a specific project
Task 3 Exploring (non-merged and merged) commits of the collaborators
Task 4 Exploring similar interests among collaborators
Task 5 Exploring contributions to identify relevant files for the collaborators
Task 6 Exploring developer recommendations
Task 7 Exploring expertises of a specific collaborator

their perceptions about CoopFinder. In this questionnaire,
we asked the following questions; and we received responses
from all 35 participants.

• What did you think about the CoopFinder tool?
• What are the strengths of the CoopFinder tool?
• What are the points to improve this tool?
• What other technical or social information do you think
could be explored to improve developer recommenda-
tions?

• Would you use and/or recommend this tool? Why?

Data collection. We collected data from the demographic
and background questionnaire, the questionnaires of experi-
mental tasks for both tools (CoopFinder and GitHub) and the
post–experiment questionnaire related to the feedback of the
participants for the CoopFinder tool (Figure 4). All data were
analyzed, interpreted and reported in the results. Besides, all
questionnaires, experiment tasks are available online for fu-
ture replications/extensions.
Quantitative and qualitative analysis. First, we collect

quantitative and qualitative data from the online survey and
mined data about the participants in social platforms, such
as GitHub and LinkedIn. Section 5 presents the descrip-
tive analysis of these data andWilcoxon (W) test [Wilcoxon,
1992]. We applied the Wilcoxon test for testing the statis-
tical significance. This test is non-parametric; it makes no
assumptions about the data distribution. Thus, we can use
this test when comparing two groups by continuous or or-
dinal non-normally distributed dependent variables [Wohlin
et al., 2012].
We applied the Chi-Squared test to analyze categorical

grouped responses to Likert scale questions and to test the
hypotheses of no association between the two groups (i.e., to

check independence between two variables). Furthermore,
to apply the Chi-Squared test, we should fulfill three prereq-
uisites: (1) random data from a population; (2) the expected
value of any cell should not be less than five; (3) if the value
in any cell is less than five, it should not occupy more than
20% of cells, i.e., in two by two table, no cell should contain
an expected value less than five. Violation of this assump-
tion needs to be corrected by Yate’s correction or Fisher’s Ex-
act test [Miller and Siegmund, 1982]. All three assumptions
were met in our case. We used the R language, RStudio12,
and some statistical R packages, such as “ggplot2”, “scales”,
and “rstatix”.
Ethical considerations. This work involves experiments

with human subjects. All participants gave the consent for
their answers to be used in this research. Regarding partic-
ipant data, all sensitive information (i.e., names or GitHub
profile) has been previously anonymized to ensure the pri-
vacy of participants. Last, this research was approved by the
Committee for Ethics in Research of our institution before
performing this work.

5 Study Results
This section presents the results regarding each research
question of this study. These results provide insights into
the participants’ perspective.

5.1 Participant Overview
A user study was conducted with 35 participants to evaluate
the usefulness and satisfaction of users with the CoopFinder

12https://www.rstudio.com/

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

tool. Participants involved in this study are 35 developers
enrolled in courses related to Software Engineering. All par-
ticipants are graduated (M.Sc. and Ph.D students) or close to
graduate. Table 2 shows some profiling information of these
participants related to gender (26 males and 9 females par-
ticipants), the time of experience in software development
contributions. Finally, if they were or not a GitHub contrib-
utor.

Table 2. Profiling information of the participants.
%

Gender Female 9 26
Male 26 74

Software None 8 23
Development Less than 1 year 9 25
Contributing 1 year to 3 years 11 31

More than 3 years 7 20
GitHub Yes 18 51
Contributor No 17 49

About 51% of the participants who are not GitHub contrib-
utors declared that they already have tried to make contribu-
tions to a GitHub project. We also asked them which kind
of actions they have taken on GitHub. Participants P02, P20,
and P035 noted that they only opened issues for a project.
On the other hand, participant P03 faced some difficulties
and declared “I found exciting projects, but due to entry bar-
riers (understanding of the code, time of dedication) I ended
up postponing my work.” This kind of declaration is in ac-
cordance with the literature on barriers faced by developers
when trying to collaborate in a project [Steinmacher et al.,
2015; Gousios et al., 2016].
Furthermore, participant P21 also declared “I had diffi-

culty in understanding the code or the lack of help from
the leading developers of the project so that I could make
the contributions.” This finding is consistent with literature
[Bird, 2011; Zhou and Mockus, 2011; Gousios et al., 2016]
related to the barriers of collaboration, such as lack of knowl-
edge about the code–base and lack of interaction with project
members. Besides, this result also reinforces the importance
of providing support for developers to find appropriate de-
velopers to help them and strengthen the ties among them
for improving collaborations in the project.

5.2 How easy is it to find collaborators using
CoopFinder? - RQ1

In this section, we present the results related to the ease of
use of each tool (CoopFinder and GitHub), i.e., the degree of
effort demanded by participants. We applied the same set of
tasks with little adaptations for each tool. The tasks are re-
lated to exploring information on the project, collaborators,
and their contributions and interests. Each task has a specific
goal, as detailed in the Table 1. However, the general goal
of this set of tasks is to make it easier to find a suitable col-
laborator with similar interests in co–changed files. Table 3
shows the statistical descriptive (Median (Med), Minimum
(Min), Maximum (Max), Distribution (D)), and Wilcoxon
(W) test result for each task performed by participants us-

ing both tools (CoopFinder and GitHub). After participants
performed each task, they could express their experience re-
lated to ease of use with a scale ranging from 1 (very easy),
2 (easy), 3 (hard), and 4 (very hard).
We applied the Wilcoxon test to compare how easy the

tasks were for participants when using CoopFinder and
GitHub. According to theWilcoxon test, the p-value for Task
1 is 0.03, and for the others, the p-value is less than 0.001,
which allows us to conclude that the ease of use is statisti-
cally different for CoopFinder and GitHub (Table 3). Indeed,
the CoopFinder prototype is a visual and interactive tool for
finding suitable collaborators to improve collaborations into
projects. Moreover, the tool provides metadata and links to
different attributes that could not be analyzed efficiently us-
ing the GitHub interface. For example, this information is
related to the source code activities of the collaborators of a
specific project. Furthermore, this information can help find-
ing collaborators based on similar interests in files that they
have modified.

RQ1 Summary: We observed that participants were able to per-
form tasks more easily using CoopFinder than GitHub. Wilcoxon
test showed that there is statistical difference related to ease of use
between CoopFinder or GitHub.

5.3 Does the expertise with GitHub impact on
the effectiveness of finding collaborators?
- RQ2

In this section, we analyze whether the background related
to GitHub expertise of participants can impact the use of the
analyzed tools. To this end, we separated the participants
into two independent groups (GitHubUser group andGitHub
non-user group). The former group is for participants who
are developers or maintainers of, at least, one open-source
project hosted on GitHub. The latter group is for participants
who do not have experience with GitHub. Table 4a and 4b
present the results about the correct (C), incorrect (I) and the
blank (B) answers that participants should provide for the
activity proposed. For each independent group, the first and
second columns show the number of correct (C) and incorrect
(I) answers for each task, respectively. Finally, the “blank”
(B) column indicates when participants could not answer cor-
rectly and left them blank. For this analysis, we applied the
Fisher’s exact test to compare the hit rate between groups that
are GitHub users and non-GitHub users (independent vari-
able) and the answers (“correct”, “incorrect”, and “blank”),
both are qualitative nominal variables.
Table 4a shows the predominance of correct answers when

participants performed the tasks using the CoopFinder tool.
On the other hand, Table 4b shows the answers were more
distributed when participants used GitHub. The “blank” col-
umn draws attention to the fact that, except for Task 1, in
all other questions, at least half of the participants left the
answer blank when they performed the tasks using GitHub.
Comments such as “I didn’t find this information” or “I don’t
know” were common during the execution of the tasks. Par-
ticipant P22 (GitHub user) explored GitHub to try to answer
the tasks correctly. However, P22 stated “I found it very dif-

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

Table 3. Statistic Table.

CoopFinder GitHub W

Tasks Med Min Max D* Med Min Max D* p**
1 2 3 4 1 2 3 4

Task 1 1 1 1 1 2 2 0.037
Task 2 1 1 2 4 1 4 <0.001
Task 3 1 1 2 4 1 4 <0.001
Task 4 1 1 3 4 1 4 <0.001
Task 5 1 1 4 4 1 4 <0.001
Task 6 1 1 3 4 1 4 <0.001
Task 7 1 1 2 1 1 4 <0.001

The acronyms used in the columns stand for: Median (Med), Minimum (Min), Maximum (Max), Distribution (D), and Wilcoxon test (W). * Note: The scale ranges from 1 (very
easy) to 4 (very hard) on experience of participants for each task. ** p-value < 0.05.

Table 4. Results of tasks performed by GitHub user and non-user.
User (#) Non-User (#)

Tasks C I B C I B p*
Task 1 16 2 0 15 2 0 1.00
Task 2 18 0 0 17 0 0 **
Task 3 16 2 0 17 0 0 0.48
Task 4 15 3 0 16 1 0 0.60
Task 5 17 1 0 12 3 2 0.15
Task 6 11 7 0 12 5 0 0.72
Task 7 18 0 0 17 0 0 **

(a) CoopFinder

User (#) Non-User (#)

Tasks C I B C I B p*
Task 1 18 0 0 17 0 0 **
Task 2 7 0 11 9 4 4 0.02
Task 3 2 2 14 2 3 12 0.86
Task 4 2 5 11 2 5 10 1.00
Task 5 3 2 13 4 3 10 0.68
Task 6 2 0 16 3 0 14 0.65
Task 7 15 1 2 14 0 3 1.00

(b) GitHub

The acronyms used in the columns stand for: correct answers (C), incorrect answers
(I), and in blank (B). * Fisher’s exact test (p-value < 0.05).** Test was not applied
because the task contains fewer than 2 levels.

ficult to find the necessary information on GitHub to do the
analyses”. It reinforces that CoopFinder provides metadata
and links to different attributes that could not be explored
efficiently using the GitHub interface. Fisher’s exact test
showed there was no significant difference in the hit rate be-
tween the users and non-users groups for almost all tasks (p-
value > 0.05). When participants used GitHub to perform
the task, exploring collaborators of a specific project (Table
3), the Fisher’s exact test showed a significant statistical dif-
ference for the two samples (p-value = 0.02).

RQ2 Summary: We observed the predominance of correct an-
swers when participants used CoopFinder. On the other hand,
we also observed the predominance of blank answers when using
GitHub indicating that participants either did not know or did not
find the correct answers. In general, Fisher’s exact test showed
no significant difference in the hit rate between the users and non-
users groups for all tasks.

5.4 How fast is it to find a collaborator using
CoopFinder? - RQ3

In this section, we analyzed the amount of time it took partic-
ipants to perform tasks using CoopFinder and GitHub. This
amount of time could be taken as an indicator of each tool’s
ease of use. Figure 5 shows the amount of time spent per-
forming the set of tasks using CoopFinder and GitHub. The
boxplot represents the median as the horizontal line within
the box. Besides, the 25th and 75th percentiles are the lower
and upper sides of the distribution box, respectively. Visu-
ally, we can notice that performing tasks using GitHub took
more time than when using CoopFinder. Table 5 presents the
descriptive statistic for both tools. For CoopFinder, the me-
dian of time spent performing all tasks was 11.2 minutes, and
the 25th and 75th percentiles were 7.58 and 13.1 minutes, re-
spectively. On the other hand, the median of minutes spent
on GitHub was 25.9. The percentiles in minutes were 19.7
and 38.8 for the 25th, and 75th percentiles, respectively.

We use the Shapiro-Wilk test to verify if the data fol-
lowed a normal distribuition. Shapiro-Wilk result is 0.659
and p–value < 0.001. This p–value suggests a violation of
the assumption of normality. Afterward, the non–parametric
Wilcoxon test showed that there is a difference related to time
(in minutes) to perform all tasks using CoopFinder or GitHub
(W=9 and p–value < 0.001). It shows that the time required
for performing all tasks using CoopFinder and GitHub was
significantly different. Combined with Figure 5, we ob-
served that participants spent less time using CoopFinder,
than using GitHub to perform the tasks.

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

CoopFinder GitHub

10

20

30

40

50

60

M
in

ut
es

Figure 5. Distribution of time (in minutes) of the tasks performed by par-
ticipants when they used CoopFinder and GitHub.

Table 5. Descriptive statistic. Minutes spent performing the tasks
using both tools.

Mean Med SD Min Max
CoopFinder 11.4 11.2 5.4 3.3 26.7
GitHub 36.1 25.9 33.6 5 159

The acronyms used in the columns stand for: Median (Med), Minimum (Min), Maxi-
mum (Max).

RQ3 Summary: We observed that participants spent less time
using CoopFinder than GitHub to perform the tasks. This result
could also indicate that CoopFinder is easier to use.

5.5 How do participants perceive
CoopFinder? - RQ4

In this section, we report the results of the Post–assignment
questionnaire of the experiment. We received responses
from 35 participants. For the data analysis, we employed
an approach inspired by the open and axial coding phases
of ground theory [Corbin and Strauss, 2014]. The open cod-
ing examines the raw textual data line by line to identify dis-
crete events, incidents, ideas, actions, perceptions, and in-
teractions of relevance that are coded as concepts [Corbin
and Strauss, 2014]. To do so, one researcher analyzed the
responses individually and marked relevant segments with
“codes” (i.e., tagging with keywords) and organized them
into concepts grouped into more abstract categories. After-
ward, a second researcher reviewed and verified the cate-
gories created (the conflicts in labelling were resolved by re-
searchers).
Perceptions of the participants. In general, the

participants commented positive impressions related to
CoopFinder. That is, about 49% of the participants pointed
out that CoopFinder is exciting and supports project main-
tainers. For instance, participant P14 remarked “CoopFinder
shows exciting information about developers and projects
they are involved.” Furthermore, for other 37% of partici-
pants, the tool is easy to use (intuitive or simple). For in-
stance, participant P03 stated, “Much more practical than
GitHub. I could not find any of the requested information in
git. The tool clearly shows what I need to do and is much

more intuitive”. Besides, other participants (34%) consid-
ered this tool helpful in finding new developers to collabo-
rate with and manage a possible project. For instance, par-
ticipant P10 noted “It is useful both for finding new people
to collaborate with and managing a potential project.” Fi-
nally, three participants pointed out that the tool needs some
improvements.
Strengths. About 43% of participants indicated the easy

and intuitive interface as strengths of the tool. For exam-
ple, P01 pointed out that “the information about develop-
ers and projects would not be easy to retrieve using more
popular tools.” Other 40% of participants mentioned that
CoopFinder readily provides aggregated and organized infor-
mation on GitHub projects and their developers, represent-
ing an improvement related to finding information or collab-
orators on CoopFinder. For instance, P02 noted, “We can
quickly locate information about contributors. Besides, we
carried out the tasks quickly. I also consider the column with
the contributor’s fork name very useful. Unfortunately, this
information is unclear on the GitHub interface.” Moreover,
about 31% of participants voted as a strength the purpose of
connecting developers to improve collaborations to project.
Furthermore, they mentioned the collaborator rankings, the
recommendation based on similar interests, and the general
management of collaborators. For instance, P17 commented,
“the strength point of this tool is the comparison of the skills
and parts of the project that collaborators have the most in
common. Another one is collaborators management.” Fi-
nally, 11% of participants mentioned the use of data visu-
alization techniques, participant P09 said “CoopFinder is a
visualization tool for collaboration with a clean and well-
organized interface and no visual clutter.”
Weaknesses. We received 32 responses pointing out lim-

itations in CoopFinder. For example, 60% of the partici-
pants gave some suggestions to improve the interface. For
instance, participants suggested improvements to the design
of the buttons to click. Besides, they asked for an interface
in “dark mode”. About 20% of participants indicated some
new functionalities to the tool, such as opening the reposi-
tory link or direct the user to GitHub, adding textual search,
adding some similarity metrics between developer profiles.
Besides, the participants also suggested adding new features
to improve the way to group collaborators and adding the
possibility to analyze other projects.
Recommending the tool. We asked if participants would

use or recommend CoopFinder to others. About 66% of the
participants answered that they would use or recommend this
tool. They explained that CoopFinder may help to better un-
derstand the progress of the project concerning the collabora-
tors and who can help whom. For instance, P01 commented,
“Yes. CoopFinder helps a lot in managing collaborators on
a project. Besides, you can allocate people with the same in-
terests/skills to work together and other features that GitHub
does not have.” On the other hand, 14% of the participants
answered negatively and justified that the tool was inappro-
priate for their work context. For example, participant P28
remarked, “I would not use it because I do not have or main-
tain a project with many users where it is needed.” Other
participants (20%) conditioned the use or recommendation
of the tool. For example, participant P01mentioned “I do not

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

see much use in my daily life, as I work with smaller projects.
However, putting myself in the position of the maintainer of
large projects, I believe the tool should be handy. If I knew
a developer with the mentioned profile, I would recommend
it.”

RQ4 Summary: Participants mentioned that CoopFinder is ex-
citing and supports project maintainers. As for the strengths of
the tool, they pointed out its easy and intuitive interface. Besides,
about 66% of the participants answered that they would use or rec-
ommend this tool. However, other participants (20%) conditioned
the use or recommendation of the tool.

5.6 How could the developer recommenda-
tions be improved? - RQ5

In this research question, we asked for participants which
social or technical features we could explore to improve
the developer recommendation. Table 6 summarizes the re-
sponses of participants. “Programming language” is themost
common suggestion to improve the developer recommenda-
tion algorithms (97%); followed by “communication in the
project forums” and “professional experience level”, with
66% and 63% (Table 6).
Furthermore, participants also mentioned “language” and

“source code (libraries, API, feature)”. Several works
[Oliveira et al., 2019, 2020] identified developers with exper-
tise in specific libraries from GitHub. Moreover, about 31%
of participants indicated the followers and following (Table
6). Previous works [Wu et al., 2014; Blincoe et al., 2016]
used it as an awareness mechanism to discover new projects
and trends. Certainly, these features can be interesting in im-
proving the developer recommendations.
“Gender” is the least common suggestion, with just 5%.

It was mentioned mainly for non–GitHub users which may
reflect the barriers faced by newcomers collaborators. For
instance, participant P02 noted “Considering gender issues
can be interesting. For example, women will be able to look
for other women to collaborate with them. As a result, they
feel more comfortable with people of the same gender. That
is, they would be in a safe environment.” This result coin-
cides with literature, for instance, Vasilescu et al. [2015a,b]
argue that there is discrimination in online software engineer-
ing communities, and women are known to face more signif-
icant barriers than men. As gender diversity increases, team
productivity increases.
Finally, participants cited freely other features, such as par-

ticipation in issues, previous communication, and openness
to answer issues/doubts. Besides, they suggested the devel-
opers who participated in new projects and complementary
technologies. Finally, they suggested exploring personal pro-
files, soft skills, and collaboration on similar projects, check-
ing programming language skills based on personal reposito-
ries.

RQ5 Summary: Participants suggested mainly features to im-
prove the developer recommendation system, such as program-
ming language, communications, and professional experience
level. They also suggested gender issues, soft skills, and collabo-
ration in similar projects.

6 Threats to Validity

Even with careful planning, this research can be affected by
different factors which might threaten our findings. We dis-
cuss these factors and decisions to mitigate their impact on
our study divided into categories of threats to validity pro-
posed by Wohlin et al. (2021).

Construct Validity. This validity is related to whether
measurements in the study reflect real-world situations
[Wohlin et al., 2012]. This kind of threat can occur in formu-
lating the questionnaire in our experiment (quantitative and
qualitative analysis). We designed the questionnaire with
open questions as a qualitative study to list users’ satisfaction
provided by the CoopFinder tool. Tominimize this threat, we
cross-discuss all the experimental procedures. [Basili et al.,
1999] and [Kitchenham et al., 2002] argue that qualitative
studies play an essential role in experimentation in software
engineering.

Internal Validity. The validity is related to uncontrolled as-
pects that may affect the strategy results [Wohlin et al., 2012].
Since we employed a snowballing approach to sampling our
participants, we acknowledge that sampling bias affects the
selection of the participants, namely self-selection and social
desirability biases. However, we counteracted this effect by
inviting people with different profiles, from various projects,
and with diverse backgrounds, seeking out different perspec-
tives. Another threat is the use of statistical tools. We paid
particular attention to the suitable use of statistical tests (i.e.,
Wilcoxon test) when reporting our results. This decreases the
possibility that our findings are due to random events.

External Validity. The external validity concerns the abil-
ity to generalize the results to other environments [Wohlin
et al., 2012]. There are three major threats to the external va-
lidity of our study, such as baseline tool, the selected project
and participants. First, we choseGitHub as baseline of the ex-
periment, and we cannot guarantee that our observations can
be generalized to other tools. Second, we analyzed public
and different open-source projects hosted on GitHub, differ-
ent community sizes, and programming languages, among
many available ones. Moreover, we cannot guarantee that
our observations can be generalized to other projects. Fi-
nally, participants may not reflect the state of the practice
developers. Furthermore, our results could also be different
if we had analyzed another software development network
or projects hosted on other repositories, such as private or
industrial projects.

Conclusion Validity. The conclusion validity concerns is-
sues that affect the ability to draw the correct conclusions
from the study [Wohlin et al., 2012]. The approach used to
analyze our experiment results represents the main threat to
the conclusions we can draw from our study. Thus, we dis-
cussed our results by presenting descriptive statistics and sta-
tistical hypothesis tests. Besides, all researchers participated
in the data analysis process and discussions on the main find-
ings to mitigate the bias of relying on the interpretations of
a single person. Nonetheless, there may be several other im-
portant issues in the collected data, not yet discovered or re-
ported by us.

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

Table 6. Other features to improve the recommendations.
GitHub

User non–User Total
Tasks # # # %
Programming language 18 16 34 97
Communication in the project forums 13 10 23 66
Professional experience level 12 10 22 63
Language 11 10 21 60
Source code (libraries, APIs, features) 15 5 20 57
Location 3 10 13 37
Followers and following 6 5 11 31
Gender 1 4 5 14

7 Conclusion and Future Work

This work described a controlled experimental study to inves-
tigate the perceptions of the developers using CoopFinder a
prototype tool to support two strategies for recommending
collaborations. This developer recommendation strategies
aim to connect developers of a specific project based on their
similar interests. The study involved 35 participants, 18 of
which were GitHub users, and 17 were non-users. Partici-
pants answered the background questionnaire, the question-
naires for the experiment tasks for both tools. As results, par-
ticipants pointed out that CoopFinder is easy to use, intuitive,
exciting, and supports project maintainer. Besides, we ob-
served that participants were able to perform tasks more eas-
ily using CoopFinder than GitHub. For instance, they spent
less time using CoopFinder. While GitHub required more
time to perform the tasks. It may indicate the ease of use
of the CoopFinder tool. Moreover, about 66% of the partici-
pants answered that they would use or recommend this tool.
As future work, we intend to evaluate CoopFinder in real

context of use, to see how often the recommendations actu-
ally foster collaboration. Furthermore, we intend expand this
work to recommend developers based on other no-coding ac-
tivities, such as documentation, issue tracking, and reposi-
tory management activities, that is, the other activities men-
tioned by the participants. Moreover, another interesting line
as future work is to investigate the social relationships be-
tween developers. For example, some developers want to
contribute to a project due to the project’s popularity. As
well as they want to contribute to a project of a specific “in-
fluencer”. Therefore, identifying which social network fea-
ture most attracts developers to a particular project or to work
on a particular issue can further strengthen the ties between
them and the project.

8 Acknowledgments

Many thanks to participants of our experiment and review-
ers. This study is an extended version of the paper pub-
lished in the XVIII Brazilian Symposium on Collaborative
Systems (SBSC 2023). This researchwas partially supported
by Brazilian funding agencies: CNPq/FAPEMIG(PROFIX-
JD 155774/2023-9) and FAPEMIG (Grants PPM-00651-17
and BPD-00460-22).

References

Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2016).
A novel approach for estimating truck factors. In Proc. of
the 24th International Conference on Program Compre-
hension (ICPC), pages 1–10.

Barcomb, A., Stol, K.-J., Fitzgerald, B., and Riehle,
D. (2020). Managing episodic volunteers in free/li-
bre/open source software communities. IEEE Trans-
actions on Software Engineering (TSE), 48(1):260–277.
DOI: 10.1109/TSE.2020.2985093.

Barcomb, A., Stol, K.-J., Riehle, D., and Fitzgerald, B.
(2019). Why do episodic volunteers stay in floss commu-
nities? In Proc. of the 41st International Conference on
Software Engineering (ICSE), pages 948–959.

Basili, V. R., Shull, F., and Lanubile, F. (1999). Building
knowledge through families of experiments. IEEE Trans-
actions on Software Engineering (TSE), 25(4):456–473.

Basili, V. R. and Weiss, D. M. (1984). A methodology for
collecting valid software engineering data. IEEE Transac-
tions on Software Engineering (TSE), (6):728–738.

Bird, C. (2011). Sociotechnical coordination and collabo-
ration in open source software. In Proc. of the 27th In-
ternational Conference on Software Maintenance (ICSM),
pages 568–573.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., and
Damian, D. (2016). Understanding the popular users: Fol-
lowing, affiliation influence and leadership on github. In-
formation and Software Technology (IST), 70:30–39.

Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S.
(2012). Who is going to mentor newcomers in open source
projects? In Proc. of the 20th International Symposium on
the Foundations of Software Engineering (FSE), pages 1–
11.

Constantino, K., Belém, F., and Figueiredo, E. (2023a). Dual
analysis for helping developers to find collaborators based
on co-changed files: An empirical study. Journal of Soft-
ware: Practice and Experience (JSPE), pages 1–27. DOI:
https://doi.org/10.1002/spe.3194.

Constantino, K. and Figueiredo, E. (2022). Coopfinder:
Finding collaborators based on co–changed files. In Proc.
of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1–3.

Constantino, K. and Figueiredo, E. (2023). Finding collab-
orations based on co-changed files. In Anais Estendidos

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

do XVIII Simpósio Brasileiro de Sistemas Colaborativos,
pages 57–66. DOI: 10.5753/sbscestendido.2023.229735.

Constantino, K., Prates, R., and Figueiredo, E. (2023b). Rec-
ommending collaborators based on co–changed files: A con-
trolled experiment. In Proc. of the 18th Brazilian Symposium
on Collaborative Systems, pages 154–168.

Constantino, K., Souza, M., Zhou, S., Figueiredo, E., and Käst-
ner, C. (2021). Perceptions of open-source software develop-
ers on collaborations: An interview and survey study. Jour-
nal of Software: Evolution and Process (JSEP), 33:e2393.

Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and Käst-
ner, C. (2020). Understanding collaborative software devel-
opment: An interview study. In Proc. of the 15th Interna-
tional Conference on Global Software Engineering (ICGSE),
page 55–65. DOI: 10.1145/3372787.3390442.

Corbin, J. and Strauss, A. (2014). Basics of Qualita-
tive Research: Techniques and Procedures for Developing
Grounded Theory.

Costa, C., Figueirêdo, J., Pimentel, J. F., Sarma, A., and Murta,
L. (2021). Recommending participants for collaborative
merge sessions. IEEE Transactions on Software Engineering
(TSE), 47(6):1198–1210. DOI: 10.1109/TSE.2019.2917191.

Crowston, K. and Fagnot, I. (2018). Stages of motivation for
contributing user-generated content: A theory and empiri-
cal test. International Journal of Human-Computer Studies
(IJHCS), 109:89–101.

Davis, F. D. (1989). Perceived usefulness, perceived ease of
use, and user acceptance of information technology. MIS
Quarterly (MISQ), pages 319–340.

de Neira, A. B., Steinmacher, I., and Wiese, I. S. (2018). Char-
acterizing the hyperspecialists in the context of crowdsourc-
ing software development. Journal of the Brazilian Com-
puter Society (JBCS), 24(1):1–16.

Ferreira, M., Valente, M. T., and Ferreira, K. (2017). A com-
parison of three algorithms for computing truck factors. In
Proc. of the 25th International Conference on Program Com-
prehension (ICPC), pages 207–217.

Fisher, R. A. (1992). The arrangement of field experiments. In
Breakthroughs in Statistics, pages 82–91.

Flick, U. (2018). Designing Qualitative Research. Qualitative
Research Kit.

Franco, M. F., Rodrigues, B., and Stiller, B. (2019). Mentor:
The design and evaluation of a protection services recom-
mender system. In Proc. of the 15th International Confer-
ence on Network and Service Management (CNSM), pages
1–7. DOI: 10.23919/CNSM46954.2019.9012686.

Gamalielsson, J. and Lundell, B. (2014). Sustainability of open
source software communities beyond a fork: How and why
has the libreoffice project evolved? Journal of Systems and
Software (JSS), 89:128–145.

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An
exploratory study of the pull-based software development
model. In Proc. of the 36th International Conference on Soft-
ware Engineering (ICSE), pages 345–355.

Gousios, G., Storey, M.-A., and Bacchelli, A. (2016). Work
practices and challenges in pull-based development: The
contributor’s perspective. In Proc. of the 38th International
Conference on Software Engineering (ICSE), pages 285–
296.

Gousios, G., Zaidman, A., Storey, M.-A., and Deursen, A. v.
(2015). Work practices and challenges in pull-based devel-
opment: The integrator’s perspective. In Proc. of the 37th
International Conference on Software Engineering (ICSE),
volume 1, pages 358–368. DOI: 10.1109/ICSE.2015.55.

Jiang, J., He, J.-H., and Chen, X.-Y. (2015). Coredevrec: Auto-
matic core member recommendation for contribution evalu-
ation. Journal of Computer Science and Technology (JCST),
30(5):998–1016.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W.,
Hoaglin, D. C., El Emam, K., and Rosenberg, J. (2002). Pre-
liminary guidelines for empirical research in software engi-
neering. IEEE Transactions on Software Engineering (TSE),
28(8):721–734.

Kononenko, O., Baysal, O., and Godfrey, M. W. (2016). Code
review quality: How developers see it. In Proc. of the 38th
International Conference on Software Engineering (ICSE),
pages 1028–1038.

Miller, R. and Siegmund, D. (1982). Maximally selected chi
square statistics. Biometrics, pages 1011–1016.

Minto, S. and Murphy, G. (2007). Recommending emer-
gent teams. In Proc. of the 4th International Conference
on Mining Software Repositories (MSR), pages 5–5. DOI:
10.1109/MSR.2007.27.

Oliveira, J., Pinheiro, D., and Figueiredo, E. (2020). Jex-
pert: A tool for library expert identification. In Proc. of the
34th Brazilian Symposium on Software Engineering (SBES),
pages 386–392.

Oliveira, J., Viggiato, M., and Figueiredo, E. (2019). How well
do you know this library? mining experts from source code
analysis. In Proc. of the XVIII Brazilian Symposium on Soft-
ware Quality (SBQS), pages 49–58.

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and Schnei-
der, K. (2013). Creating a shared understanding of testing
culture on a social coding site. In Proc. of the 35th Inter-
national Conference on Software Engineering (ICSE), pages
112–121.

Pinto, G., Steinmacher, I., and Gerosa, M. (2016). More com-
mon than you think: An in-depth study of casual contributors.
In Proc. of the 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 112–123.

Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., and Vasilescu,
B. (2019). Going farther together: The impact of social cap-
ital on sustained participation in open source. In Proc. of
the 41st International Conference on Software Engineering
(ICSE), pages 688–699.

Rahman, M. M., Roy, C. K., Redl, J., and Collins, J. A. (2016).
Correct: Code reviewer recommendation at github for ven-
dasta technologies. In Proc. of the 31st International Confer-
ence on Automated Software Engineering (ASE), page 792–
797.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to
recommender systems handbook. In Recommender Systems
Handbook, pages 1–35.

Salton, G. (1971). The smart retrieval system: Experiments in
automatic information retrieval.

Salton, G. (1989). Automatic text processing: The transforma-
tion, analysis, and retrieval of. Reading: Addison-Wesley,

A User Evaluation of a Collaborator Recommender Constantino et al. 2024

169.
Salton, G. and Harman, D. (2003). Information retrieval. In
Encyclopedia of Computer Science.

Shah, S. K. (2006). Motivation, governance, and the viability
of hybrid forms in open source software development. Man-
agement Science, 52(7):1000–1014.

Steinmacher, I., Pinto, G., Wiese, I. S., and Gerosa, M. A.
(2018). Almost there: A study on quasi-contributors in
open-source software projects. In Proc. of the 40th Inter-
national Conference on Software Engineering (ICSE), pages
256–266.

Steinmacher, I., Silva, M. A. G., Gerosa, M. A., and Redmiles,
D. F. (2015). A systematic literature review on the barriers
faced by newcomers to open source software projects. Infor-
mation and Software Technology (IST), 59:67–85.

Surian, D., Liu, N., Lo, D., Tong, H., Lim, E.-P., and Faloutsos,
C. (2011). Recommending people in developers’ collabora-
tion network. In Proc. of the 18th Working Conference on
Reverse Engineering (WCRE), pages 379–388.

Tamburri, D. A., Kruchten, P., Lago, P., and Van Vliet, H.
(2015). Social debt in software engineering: Insights from in-
dustry. Journal of Internet Services and Applications (JISA),
6(1):1–17.

Thongtanunam, P., Tantithamthavorn, C., Kula, R. G., Yoshida,
N., Iida, H., and Matsumoto, K.-i. (2015). Who should re-
view my code? a file location-based code-reviewer recom-
mendation approach for modern code review. In Proc. of the
22nd International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER), pages 141–150.

Vasilescu, B., Filkov, V., and Serebrenik, A. (2015a). Percep-
tions of diversity on github: A user survey. In Proc. of the 8th
International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), pages 50–56.

Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G., Sere-
brenik, A., Devanbu, P., and Filkov, V. (2015b). Gender and
tenure diversity in github teams. In Proc. of the 33rd Interna-
tional Conference on Human Factors in Computing Systems
(CHI), pages 3789–3798.

Wilcoxon, F. (1992). Individual comparisons by ranking meth-
ods. In Breakthroughs in Statistics, pages 196–202.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., and Regnell,
B. (2012). Experimentation in Software Engineering.

Wu, Y., Kropczynski, J., Shih, P. C., and Carroll, J. M. (2014).
Exploring the ecosystem of software developers on github
and other platforms. In Proc. of the 17th ACMConference on
Computer Supported Cooperative Work & Social Computing
(CSCW), pages 265–268.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B.
(2015). Wait for it: Determinants of pull request evaluation
latency on github. In Proc. of the 12th International Con-
ference on Mining Software Repositories (MSR), pages 367–
371.

Zhou, M. and Mockus, A. (2011). Does the initial environment
impact the future of developers? In Proc. of the 33rd Inter-
national Conference on Software Engineering (ICSE), pages
271–280.

	Introduction
	Problem Statement
	Strategies for Recommending Developers
	Developer Recommendation Design
	Implementation Technologies
	Interface and Interaction

	Study Design
	Study Goal
	Research Questions
	Hypotheses Formulation
	Research Method

	Study Results
	Participant Overview
	How easy is it to find collaborators using CoopFinder? - RQ1
	Does the expertise with GitHub impact on the effectiveness of finding collaborators? - RQ2
	How fast is it to find a collaborator using CoopFinder? - RQ3
	How do participants perceive CoopFinder? - RQ4
	How could the developer recommendations be improved? - RQ5

	Threats to Validity
	Conclusion and Future Work
	Acknowledgments

