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Abstract The Cerrado biome in Brazil plays a vital role in preserving biodiversity, providing essential ecosystem
services, and supporting agriculture, making it a crucial and valuable natural resource. Sete Cidades National Park
stands out for its rock formations, 10,000-year-old cave paintings and its Cerrado vegetation. The Cerrado is known
for being a pyrobiome, so its patrolling becomes essential. In this context, this paper introduces a novel approach
to swarm robotics patrolling in the unique ecosystem of the Sete Cidades National Park, located within the Cerrado
biome. The study presents three distinct cellular automata models designed for the task, aiming to enhance the
efficiency and coverage of patrolling efforts. The key difference between our model presented in this research
and the previous one is our focus on a map that encompasses diverse vegetation types, specifically designed to
represent the Sete Cidades National Park, with a primary goal of monitoring forest fires. The results demonstrated
that the best-performing model was the Forest Tabu Inverted Ant Cellular Automata, which achieved an average
of 21.77 complete patrol cycles with 95% confidence. This outcome was obtained using three robots, a tabu queue
of |Q| = 80, and a maximum pheromone per cell equals to ρ = 103. These parameters highlight the efficacy of
this model in optimizing patrol cycles and the efficient use of resources for environmental surveillance in the Sete
Cidades National Park, particularly in the context of fire prevention.

Keywords: Swarm Robotics, Cellular Automata, Inverted Ants Pheromone, Environmental Surveillance, Sete Cidades
National Park, Cerrado Biome, Interactive Patrol, Geographic Information System.

1 Introduction

Preserving the environment is crucial because it safeguards
the delicate balance of ecosystems, sustains biodiversity, en-
sures clean air and water for all living beings, and ultimately
secures a habitable planet for future generations (Alencar
et al., 2019). The Cerrado in Brazil, often referred to as
“Brazil’s savanna”, is a remarkable and diverse biome known
for its unique landscapes and rich biodiversity, making it a
vital part of the country’s natural heritage (Ferreira et al.,
2022a). It also plays a crucial role in preserving biodiversity,
storing carbon, and providing essential ecosystem services,
underlining its pivotal importance for both Brazil and the
world (Lima and Lima, 2014). During the dry seasons of win-
ter and fall, the Cerrado faces an increased risk of firespread,
posing significant challenges to its unique ecosystem and un-
derscoring the need for proactive fire management strategies
(Ferreira et al., 2022b). Therefore, it is very important to pay
attention to these areas during these periods.
The Sete Cidades National Park is a valuable Brazilian

conservation entity dedicated to the comprehensive protec-
tion of nature. It encompasses areas in the northern regions
of Piauí, spanning across the municipalities of Brasileira and
Piracuruca (Alvarado et al., 2019; Gaia et al., 2022). This
natural gem plays a pivotal role in conserving the area’s
wealth and biodiversity. The park’s distinctive landscapes
and ecosystems have been meticulously studied, revealing

six distinct vegetation types/classes (|Ck| = 6): Riparian
Forest, Evergreen Forest, Dense Cerrado, Typical Cerrado,
Clean Camp and Rupestrian Cerrado (Oliveira et al., 2007;
Matos and Felfili, 2010). We employed a Geographic Infor-
mation System to obtain information metrics1.
Forest patrolling plays a pivotal role in safeguarding and

overseeing these vital ecosystems, guaranteeing their well-
being and conservation for generations to come. The deploy-
ment of robots in forest patrolling holds great significance,
as it not only improves the effectiveness and safety of mon-
itoring efforts but also plays an important role in conserv-
ing the rich biodiversity these ecosystems support, as previ-
ously noted by (Ferreira et al., 2022a; Lima and Lima, 2014).
In this context, we have swarm robotics that deals directly
with multiple robots capable of performing a task in parallel,
spending less time using controllers that guarantee this multi-
agent approach.
Cellular automata (CA) and bioinspired computing offer

intriguing opportunities for controlling robotics (Souza and
Lima, 2019; Zeng et al., 2022), with their applications ex-
tending to various domains, including autonomous naviga-
tion, swarm robotics, quantum computing and adaptive con-
trol systems (Gharaibeh et al., 2020; Mordvintsev et al.,
2020). In this situation, cellular automata, a discrete compu-

1TerraBrasilis portal is a web platform developed by INPE for ac-
cess, consultation, analysis and dissemination of geographic data http:
//terrabrasilis.dpi.inpe.br/.
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tational model inspired by the behavior of biological systems,
provide a framework for simulating and understanding com-
plex, distributed processes (Monteiro et al., 2020). The no-
tion of local interactions and rule-based behaviors in cellular
automata can be harnessed to govern robotic collectives and
networks (Lopes and Lima, 2021). This is especially rele-
vant in swarm robotics, where numerous simple robots work
together, mirroring natural phenomena such as bird flocking
or fish schooling.
Bio-inspired computing, on the other hand, draws inspi-

ration from biological processes and organisms to devise
novel algorithms and optimization techniques (Castello et al.,
2016). These methods often emulate the adaptive and in-
telligent behaviors observed in nature, such as genetic algo-
rithms, neural networks and ant colony optimization (Dorigo
et al., 2006). When applied to robotics, bio-inspired al-
gorithms can facilitate learning, adaptation, and problem-
solving in dynamic and uncertain environments. For in-
stance, ant colony optimization (ACO) can be used for per-
ception and decision-making in robots, mimicking the ant
colonies’ structures and behaviors in search and exploration,
using inverted pheromone approach techniques.
The integration of CA and bioinspired computing in

robotics holds significant promise for creating more resilient,
adaptive, efficient interactive robotic systems (Lima and
Oliveira, 2017). Such approaches can enable robots to
navigate complex and unpredictable terrains, collaborate in
swarms for tasks like search and rescue, and optimize their
operations through learning and evolution (Souza and Lima,
2019). Furthermore, these techniques contribute to the devel-
opment of environmentally conscious robotics that can effi-
ciently manage and conserve natural resources.
In this context, the objective of our work is to develop

model control strategies for robotics using Cellular Au-
tomata and the pheromone-based optimization inspired by
ant colony behavior to efficiently patrol and protect the veg-
etation in Sete Cidades National Park from the spread of
wildfires. Such approaches can enable robots to navigate
complex and unpredictable terrains, collaborate in swarms
for tasks like search and rescue, and optimize their opera-
tions through learning and evolution. Furthermore, these
techniques contribute to the development of environmentally
conscious robotics that can efficiently manage and conserve
natural resources.

2 Theoretical foundation
In this section, we will delve into the theoretical founda-
tion that underpins the design and development of our inno-
vative patrolling model for the Sete Cidades National Park
within the Cerrado biome. This theoretical foundation con-
sists of two fundamental pillars: cellular automaton and re-
lated works about swarm robotics control.

2.1 Cellular automata
Cellular automata are computational systems comprising sets
of interacting cells, each represented by a state and following
predetermined rules. Originally introduced as mathematical

models to simulate the intricacies of natural systems, includ-
ing the one discussed in this article, CA operates on the funda-
mental concept of state transformations among neighboring
cells (Alexan et al., 2022). The system’s evolution is contin-
gent on transition rules, which can be either deterministic or
probabilistic (Horibe et al., 2021).
Cellular automaton can be depicted as either a vector or a

matrix. They are categorized based on the number of dimen-
sions in which their cells are organized. They can be one-
dimensional, with cells arranged linearly, two-dimensional
with cells forming a grid, or three-dimensional when the cells
form a cube. CA consists of a set of cells (xij) within a lattice
(L) of dimension (d), which can be updated over a specified
time interval (t ∈ T ). An example of a two-dimensional cel-
lular automaton is Conway’s Game of Life (GL), created by
mathematician John Conway in 1970, as illustrated in Figure
1. The game is played on a grid of square cells, where each
cell can be in one of two states: (1) alive, colorful, or (0) dead,
in white. The rules of Conway’s Game of Life are as follows:
(i) any living cell with fewer than two living neighbors dies
of loneliness; (ii) any live cell with two or three live neigh-
bors continues to live in the next generation; (iii) any live
cell with more than three live neighbors dies from overpop-
ulation; (iv) any dead cell with exactly three live neighbors
becomes a live cell. These rules are applied to each grid cell
simultaneously to produce the next generation of cells. The
game starts with an initial pattern of cells and then evolves
from that pattern according to the game rules. The GL is an
example of a complex dynamic system, with unpredictable
emergent behavior based on simple rules.
Cellular automata are widely used in several areas of sci-

ence to develop the spatial modeling of complex systems that
have a large number of local interactions and that can ex-
hibit unpredictable behavior, among them, we can mention
forest modeling (Lima and Lima, 2014; Brasiel and Lima,
2023), modeling of diseases (Monteiro et al., 2020), and even
robotics control (Lopes and Lima, 2022), which is the focus
of our work. Different works have already been proposed
with the objective of create swarm robotics control through
CA and using bio-inspired strategies, among them, we can
mention the work of (Lopes and Lima, 2022) in which CA
was used in a 2D form. In this article, we will explore their
use in creating controllers, a complex process influenced by
several variables, including the number of robots, vegetation
type, pheromone and queues. CA can simulate these factors
on a smaller scale, enabling more precise modeling of the
controller’s response to variations in the environment. This
level of detail can contribute to the development of sophisti-
cated control strategies and enhance the performance of var-
ious robotic systems.

2.2 Related works
In this subsection, we will provide an overview of robot nav-
igation models based on two-dimensional cellular automata
and their evolution. Additionally, we will offer a concise
summary of the key characteristics of each model.
The initial model developed for swarm robotics in the con-

text of surveillance tasks was the Inverted Ant Cellular Au-
tomata model, referred to as IACA, introduced by Lima et al.
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(a) Step t = 0. (b) Step t = 1. (c) Step t = 2. (d) Step t = 3. (e) Step t = 4. (f) Step t = 5.

Figure 1. Time evolution by (t = 6) steps of the Game of Life, a two-dimensional cellular automaton created by John Conway in 1970.

(2016). The study incorporated four parameters, with an em-
pirical alteration of the decay effect for comparison with the
generic model introduced by Calvo et al. (2014), whichwas a
navigationmodel for surveillance robots not utilizing cellular
automata. In 2017, Tinoco et al. (2017) enhanced the earlier
IACA model by introducing additional parameters to refine
real-world experiments. This enhanced model was named
Inverted Ant Cellular Automata with Discrete Pheromone
Diffusion and Inertial Motion (IACA-DI). In this context,
the Genetic Inverted Ant Cellular Automata (GIACA)model
was implemented, further enhancing the IACA using a non-
random Genetic Algorithm (GA), this GA was guided by bi-
ological and evolutionary strategies.
A meta-optimization approach based on genetic algo-

rithms (GA) was investigated by Lopes and Lima (2021). In
their subsequent work Lopes and Lima (2022), the model
was referred to as Evolutionary with Genetic Algorithm for
Inverted Ant Cellular Automata Discrete Inertia. This model
was capable of refining parameters such as pheromone lev-
els, evaporation rates, and the number of robots, among oth-
ers, from precursor models (Lima et al., 2016; Tinoco et al.,
2017). This GA implementation featured a distinct fitness
function and a unique selection approach, generating a sin-
gle offspring per crossover in each generation.
The adoption of Tabu search, inspired by the CAAM (Cel-

lular Automata Ant Memory) robotic foraging task intro-
duced by Lima and Oliveira (2017), led to the creation of
TIACA (Tabu Inverted Ant Cellular Automata). TIACA in-
corporated a Tabu memory to assist in avoiding redundant
paths for a single robot Souza and Lima (2019). There are
other models that utilize the CA technique to address various
problems in robotics. For instance, Ioannidis et al. (2011)
focuses on solving the path-planning problem, while Lima
andOliveira (2017) addresses the issue of foraging task using
swarm robotics. This model integrates local and global mem-
ory elements inspired by Tabu Search and genetic algorithms,
leveraging evolutionary computation for optimization.

3 Proposal

In this section, we will introduce three models related to au-
tonomous robot exploration of the environment. We will be-
gin with a fundamental model that primarily employs cellu-
lar automata rules while considering vegetation probabilities.
Next, we will delve into a model that incorporates the in-
verted pheromone concept from ant colonies. Finally, we
will explore a model that integrates Tabu Search and Ants’
Optimization for robot navigation.

3.1 General model description
This section outlines the model introduced here, which gov-
erns the operations of a robot responsible for environmental
surveillance. The model described in this research draws in-
spiration from the precursor model known as Inverted Ants
Cellular Automata, or simply IACA (Lima et al., 2016). The
primary distinction between ourmodel proposed in this study
and its precursor lies in the exploration of amap featuring var-
ious vegetation types. This map represents the Sete Cidades
National Park, with a specific emphasis on forest fire surveil-
lance. Besides that, we added a memory mechanism is influ-
enced by the Tabu search technique (Glover, 1989, 1990).

3.1.1 Environment description

The spread of forest fires is significantly impacted by the type
of vegetation present. Vegetation prone to ignition, such as
dry grasslands and wood-rich forests, escalates the risk of
rapid fire propagation. It is imperative to account for vegeta-
tion types during the modeling process because they directly
influence robot mobility. For example, in denser vegetation,
the robot is less likely to navigate through this vegetation. In
riparian forests (humid vegetation, close to rivers) the robot
should not navigate, as it could damage its monitoring com-
ponents. On the other hand, in open savannah, the robot has
a better chance of navigating, as there are not many obstacles
in these regions. In the event of a fire, robots must accurately
identify and navigate through these specific vegetation types
along their trajectories.
To simulate the environment, we utilized an image depict-

ing the primary vegetation of Sete Cidades National Park,
as illustrated in Figure 2. Given the image’s quality, we
needed to preprocess its pixels for simulation by employ-
ing Euclidean distance calculations to identify color patterns
through pixel color clustering. Applying robotics to environ-
mental surveillance can be effectively achieved through re-
alistic computer simulations. A prevalent software for two-
dimensional (2D) spatial simulations of the environment (L
CA-lattice) is Webots, which offers a lattice featuring cells
where robots, drones, objects, and textures can be seamlessly
integrated, as depicted in Figure 2.
For the implementation of robotic environmental surveil-

lance, particularly in the context of the Sete Cidades Na-
tional Park, a classification scheme with six distinct classes
was established. Image segmentation is the process of divid-
ing an image into regions based on specific criteria to iden-
tify objects, edges, colors, textures, or other visual features.
Widely used in computer vision, image processing, and anal-
ysis, techniques and algorithms, relying on grayscale, tex-
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Figure 2. General modeling for the pre-processing and clustering stage of the Sete Cidades National Park environment for the e-Puck robot simulations in
Webots.

tures or colors, divide the image into regions containing ob-
jects or features of interest, facilitating subsequent analysis.
In our paper, class signifies a specific vegetation type, as-
signed based on the Euclidean distance calculated from the
Red, Green and Blue (RGB) value of each pixel (Rodrigues
et al., 2022).
This method represents a clustering challenge, wherein

data points are categorized into groups based on their simi-
larity or proximity within a multi-dimensional space. In this
context, it is a pixel clustering approach, aligning with the
color schemes depicted in Figure 2. In this case, it helps
identify and differentiate various types of vegetation, allow-
ing for precise monitoring and management within the park.
Six types of vegetation were used, including Riparian Forest,
Evergreen Forest, Dense Cerrado, Typical Cerrado, Clean
Camp and Rupestrian Cerrado (Alvarado et al., 2019). After
defining the class type, that is, the vegetation present in that
pixel of the image, the pixel values were passed to a matrix.
This matrix serves as a structured data representation where
each cell corresponds to a pixel in the image and holds infor-
mation about the vegetation class assigned to that pixel.

3.1.2 Computational structures description

Ourmodel employs three 2-dimensional grids/computational
matrices (CA-lattices) that mirror the dimensions and obsta-
cles of the surveillance task environment. To begin, (a) an
initial pheromone grid is created with all values initially set
to zero. This grid is where the robot deposits, stores, and
experiences pheromone evaporation along its path. Follow-
ing this, (b) a physical CA-lattice represents the environmen-
tal Sete Cidades National Park, while (c) the last grid tracks
the robot’s current position. Additionally, two vectors are re-
quired to store the tabu positions queue for each robot present
in the simulation.
It’s essential to note that our proposed model exhibits both

individual and global behaviors. The individual behavior per-
tains to the process of selecting the next robot movement,
while the global behavior encompasses the robot’s interac-
tion with the grid and its surroundings. Both of these behav-
iors will be detailed in the subsequent subsections.

3.1.3 Robot individual behavior

The individual functionality of our model can be effectively
depicted using a Finite State Machine (FSM), illustrated in
Figure 3, using nine states and one gateway. A FSM serves
as a mathematical model employed for depicting logical se-
quences or computer algorithms.
Initially, the robot is placed in a random location within

the surveillance environment. Subsequently, it initiates a se-
quence of actions that persist from the initial choice of move-
ment at time (t = 0) until the final time (T ). This sequence
commences by recording the current position into a circu-
lar queue (Q) implemented following the Tabu Search ap-
proach (Glover, 1989, 1990), which utilizes a first-in, first-
out (FIFO) data structure, similar to what was employed in
(Lima and Oliveira, 2017). In our model, this queue (Q) ef-
fectively prevents the robot from revisiting recently explored
positions by maintaining a finite memory of such locations.
Subsequently, the robot assesses the neighboring cells,

as defined by CA Moore’s neighborhood (ηm). Moore’s
neighborhood signifies the number of cells in the CA neigh-
borhood, represented as ηm = (2r + 1)2 − 1, where its
value is contingent on the radius (r). For instance, when
CA-radius r = 1, the ηm value amounts to 8 neighbor-
ing cells. Within these neighboring cells, the robot deposits
pheromones, a process governed by the pheromone depo-
sition rate (δ) for the cells along the robot’s cardinal lines
and the dispersion rate (σ) for diagonal cells. The extent
of pheromone deposited in each cell directly influences the
probability (P (xij)) of that cell being selected as the robot’s
next move. It’s essential to ensure that the summation of the
values being added to a cell at each time (see Equation 1)
remains below a predefined maximum pheromone threshold
(τ = 5 × 103).

ρt
max =

ηm∑
n=1

ρ(xij)t (1)

However, if any of the neighboring cells are recognized
as obstacles, pheromone deposition is omitted in those cells.
The current robot position is assigned a pheromone value of
ρmax = {1×103, 2.5×103, 4×103}, indicating that this cell
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Figure 3. Robot individual behavior represented by a finite state machine, using 9 states and one decision gateway for alternative queue Q scenarios,
considering e-Puck architecture.

might have been visited. High pheromone values in a cell
correspond to a lower probability of it being selected, and
vice versa. The probability of each cell (xij) being chosen
by the robot in the next step, considers the vegetation class
(Ck, k ≤ 6), can be determined using Equation 2.

P (xij)t+1 = ck(xij)t × (ρt
max − ρ(xij)t)∑ηm

n=1 ck(xij)t × (ρt
max − ρ(xij)t)

(2)

The subsequent action taken by the robot involves assess-
ing the positions stored in the queue Q in comparison with
the cells defined by Moore’s neighborhood. This procedure
identifies cells that have been recently visited by the robot.
The incorporation of Q in the system yields improved task
performance, specifically in terms of the number of cover-
age cycles completed by the robot within the environment.
Equation 2 exclusively represents the available cells for the
robot in the next step, excluding wall and queue cells. This
numerical value corresponds to the probability of the robot’s
next move. This process iterates continuously until the pre-
defined execution time T is attained.

3.1.4 Swarm Global behavior

The robot’s collective behavior is determined by two primary
factors: its interaction with the environment (indirect com-
munication) and the pheromone evaporation process within
the grids. While the addition of pheromone is localized to the
robot’s immediate neighborhood, the evaporation process is
an ongoing operation that affects all cells within the environ-
ment, except those marked as obstacles. This evaporation
process occurs at the end of each time step and is governed
by a constant value (β = 1). The evaporation process is
mathematically represented by Equation 3.

ρ(xij)t+1 = ρ(xij)t − β (3)

Figure 4 provides an illustrative environment that will be
used to elucidate the comprehensive behavior of the robot.
Figure 4(a) displays an environment being explored by a
robot, showcasing the path taken by the robot, which is stored
in queueQ, and the pheromone trail left behind by the robot’s
journey, similar to the behavior of ants. Remember that the

(a) Initial step t = 0. (b) Decision t′ = 0. (c) Movement t = 1.

Figure 4. Illustration of Robot Behavior, showing initial step at time t = 0,
showing the robot’s starting position, decision point at time t′ = 0, where
the robot selects its next move, movement step at time t = 1, depicting the
robot’s new position and possible movement choices.

concentration of pheromone is higher in the immediate vicin-
ity of the robot’s current position. This happens due to contin-
uous pheromone evaporation in the environment, along with
pheromone addition to adjacent cells when they directly con-
tact the robot.
In the general case, the robot moves to the cell with the

lowest value (least pheromone ρ(xij) and sparsest vegeta-
tion class ck). However, at times, a robot may encounter two
or more cells with equal probabilities, and in such cases, one
of them is randomly selected. Another scenario involves con-
flicts where two or more robots (Rk) aim tomove to the same
cell. In this example, we have the e-Puck robot with a (R1)
blue arrow and the other (R2) with a red arrow wanting to
go to the same cell, as illustrated in the Figure 4(b). Finally,
Figure 4(c) depicts the decision-making process during con-
flicts involving multiple robots. In these instances, only one
robot (in this case, the blue one) is chosen to move, while the
others remain stationary, maintaining their positions.
By examining the neighborhood cells included in queueQ,

it’s possible to determine if the robot has visited all available
free positions. Thus, when facing an impasse, the controller
resets queue Q to eliminate duplicate positions, preventing
obstacles to the robot’s movement (Lima and Oliveira, 2017).
Once queue Q is cleared, it resumes storing positions from
the reset point. In this study, we classify 3 robots as a swarm
due to their collective emergent behavior, which enhances
task efficiency over individual robots. This collective behav-
ior enables the swarm to adapt, distribute tasks, and collab-
orate in real-time, thereby facilitating efficient environment
patrolling.
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3.2 Forest cellular automata random model

The initial model, known as the Forest Random Cellular Au-
tomata (FRCA) model, was developed to assess the robot’s
exploration behavior within the environment, particularly fo-
cusing on randomness. In this model, a robot denoted as
Rk makes probabilistic movements based on the vegetation’s
probability values within its current cell xij . Different vege-
tation types were categorized into classes (Ci, where i ≤ 6),
namely: (c1) Riparian Forest, (c2) Evergreen Forest, (c3)
Dense Cerrado, (c4) Typical Cerrado, (c5) Clean Camp, and
(c6) Rupestrian Cerrado. Each vegetation type is associated
with a specific probabilityP (xij), which determines the like-
lihood that robot Rk visits a two-dimensional CA lattice cell
(xij) within lattice L. These probabilities are defined as
P (xij) = Ck(xij). In this work we have different vegeta-
tion classes with different probabilities for robot movement
Ck(xij) = {0.0, 0.7, 0.8, 0.9, 0.95, 1.0}, k = 6 for the re-
spective vegetation types, according to Equation 4.

P (xij)t+1 = ck(xij)t (4)

For instance, in the case of Riparian Forest, the decision
was made to exclude robot visits due to its dense vegetation
and the low likelihood of fire spreading. This FCARmodel’s
purpose is to evaluate how randomness in the robot’s move-
ment influences its interactionwith different vegetation types
and the potential impact on fire spread.

3.3 Forest inverted ant cellular automata
model

However, confirming the need to improve the effectiveness
of the surveillance mission and fire detection, it was decided
to incorporate the Forest Inverted Ant Cellular Automata (FI-
ACA) model, (Lima and Oliveira, 2017; Souza and Lima,
2019; Lopes and Lima, 2022). In both vegetation models
they are represented within cells of a matrix 200×200 being
saved in these cells in the vegetation class. It also has an-
other matrix of the same dimension that contains the current
positions of the robots. However, for the model based on the
ant model, it was necessary to create another matrix to store
the pheromone.
When the robot walks through a cell during its surveil-

lance mission, it records that cell as visited and assigns an
inverted pheromone value to that location in the matrix. To
decide the next value, after some efficiency tests of the robot
Rk ∈ N (where N is the number of robots), it was decided
that the maximum pheromone value would be 5×103 . In the
first iteration, all vegetation receives the pheromone equal to
0, except in vegetation where the robot is prohibited from
monitoring, which is assigned the value 5 × 103. Further-
more, in the main cell of the pheromone matrix the value
{1 × 103, 2.5 × 103, 4 × 103} is added and in the surround-
ing cells the value 103 is added, so that it does not exceed the
maximum pheromone value.
When planning its next move, the robot considers the in-

verted pheromone levels in neighboring cells Rk ∈ ηm.
Cells with lower inverted pheromone values are considered
more attractive, as they indicate that these areas have not yet

been sufficiently inspected. Themovement calculation is car-
ried out probabilistically according to the type of vegetation
of the surrounding cells and the pheromone value of these
cells. For each cell, a visit probability is assigned to the robot
Rk ∈ xij , P (xij) using the Equation 3. After this, a cell is
drawn based on the probability of the values and then the
robot moves. Inverted pheromone levels in cells are dynam-
ically updated with each iteration. As the robot continues
its movement, the inverted pheromone values in the cells are
decreased by β = 1.0 until reaching zero again if the robot
does not pass that cell again during t iterations.

3.4 Forest tabu inverted ant cellular automata
model

The implementation of the final Forest tabu inverted ant cel-
lular automata model (FTIACA) involved the incorporation
of “Tabu Search” into the ant inverted pheromone model as
an essential element to optimize the robot’s exploration path.
One of the main features of Tabu Search in this context is the
use of a two-dimensional queue Q to store the last positions
visited by the robot. This queue acts as a short-term memory
that records the coordinates (i, j) of the CA-grid cells xij

where the robot recently passed, preventing the robot from re-
turning to areas already inspected, saving time and resources.
The operation of the two-dimensional queue is relatively

simple. When the robot moves to a new cell, the coordinates
(i, j) of that cell are added to the corresponding queue with
the value 1.0. However, the queue has a predefined maxi-
mum size. When it reaches its maximum |Q| capacity (60 po-
sitions), the first element (the oldest cell) is removed, and the
new coordinates are inserted at the end of the queue. In im-
plementing the final model, a multiple robot system was also
incorporated to further optimize the surveillance mission.

4 Methodology
In our paper, we employ a methodology rooted in the
concept of CA and bioinspired computing to develop a
novel approach for the robotics surveillance and patrolling
of the Sete Cidades National Park within the Cerrado biome,
that is possible to visualize in Figure 2. We developed
our controller using the standard C language, specifically
designed for the e-Puck robotic architecture. This con-
troller is intended for use in the Webots simulator, which
supports standard C language for development. Our work
is quantitative because it primarily relies on the collection
and analysis of numerical data to draw inferences, make
conclusions, and support the findings presented in the study.
We collected data from (Alvarado et al., 2019), and we
tested different parameters including the number of robots,
pheromone levels, robot movements, and other quantitative
metrics relevant to the surveillance task. We build upon
the foundation of CA models, which are computational
systems that consist of a CA-lattice of |L| = 200×200 cells.
Each cell evolves over time (T = 104 iterations) based on
predefined rules and interactions with robots’ neighboring
cells. In our research, we adapt CA models to simulate the
behavior and movement of robotic agents within the park,
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and we used 102 simulations to have confidence in exper-
iments. This modeling framework enables us to represent
the environment as a grid, with each cell corresponding to a
specific location within the park environment.
To make our CA model realistic and context-specific, we

integrate environmental data related to the Sete Cidades
National Park. This includes information about the park’s
geographical features, vegetation types (C = 6 vegetation
classes), and fire risk factors. The incorporation of real-
world data enhances the accuracy of our simulations and
ensures that our approach is tailored to the park’s unique
characteristics. Our methodology also incorporates princi-
ples of swarm robotics control. We design and implement
control algorithms that govern the behavior of robotic agents
(robots) within the CA model. These algorithms dictate how
robots move, make decisions, and respond to their environ-
ment. The swarm robotics approach allows multiple robots
to work collaboratively and autonomously, emulating the
behavior of natural swarms to enhance patrolling efficiency.
Specifically in our context, we do not employ more than

three robots (|R| = 3) to accomplish the surveillance task.
This constraint arises from the fact that the number of robots
is intentionally kept smaller than the number of quadrants
into which we virtually divide the Cartesian plane for
monitoring the Sete Cidades National Park. The decision to
maintain this balance is primarily influenced by the park’s
geographical layout and the intended division for efficient
monitoring.
The virtual division (Cartesian plan) of the surveillance

area into quadrants serves as an organizational strategy,
ensuring that each robot is responsible for patrolling a
specific region. When the number of robots equals or
exceeds the number of quadrants, it can lead to an overlap
of surveillance areas and inefficient resource allocation. In
addition to consuming more hardware resources (e-Puck),
which makes the approach not viable in terms of costs. This
redundancy may result in robots revisiting areas that have
already been patrolled or spending excessive time in the
same locations, thus diminishing the overall efficiency of
the surveillance mission.
By limiting the number of robots |R| to less than the

number of four-quadrants, we maintain a clear distribution
of responsibilities and prevent redundancy in coverage
(idle robots). Each robot is assigned initially in a unique
area (virtual quadrant) to monitor, minimizing the chances
of missing areas that require attention and optimizing the
utilization of available resources. This approach is tailored
to our specific surveillance task in the Sete Cidades National
Park, enhancing the overall effectiveness of the robotic
patrolling operation in Cerrado biome.
Building upon the success of bioinspired computing, we

incorporate optimization techniques inspired by biological
systems. One notable element is the use of ant colony
optimization, which draws inspiration from the foraging be-
havior of ants. We implement ant-inspired pheromone trails
to guide the robots in their patrolling tasks, helping them
identify areas of interest and potential fire risks. Throughout
our methodology, we emphasize rigorous performance
evaluation. We quantify and analyze the effectiveness of
our approach in patrolling the Sete Cidades National Park.

This evaluation includes measures such as coverage effi-
ciency using Matlab program, more specifically coverage
Steps and Pheromone rates using heatmaps with function
contourf(L), where each CA-grid L(xij) cell represents
the mean of 102 simulations according to Equation 5.

L(xij) =
∑102

n=1
∑T

k=1 xij

102 (5)

Our methodology includes the use of statistical techniques
and tools such as box plots, means, medians, quartiles, and
other numerical representations to analyze the data, using
the BoxPlotR2. The results of our analysis provide valuable
insights into the practicality and efficiency of our proposed
approach. By combining cellular automata modeling, envi-
ronmental data integration, swarm robotics control, bioin-
spired optimization, and rigorous performance evaluation,
our methodology offers a comprehensive framework for im-
proving the surveillance and patrolling of the Sete Cidades
National Park, ultimately contributing to the protection of
this unique natural environment.

5 Results
In this section, we will delve into three essential aspects of
our research: model variation, the impact of varying the num-
ber of robots, and the influence of the maximum amount of
pheromone per cell on our experimental results.

5.1 Model variation
The box plot statistics provided for the three models, FRCA,
FIACA, and FTIACA, offer valuable insights into the dis-
tribution and central tendency of the data. Figure 5 with
these statistics help us understand the performance varia-
tion among these models for the simulated task of patrolling
Sete Cidades National Park in a Cerrado biome, considering
R = 3 robots, maximum amount of pheromone τ = 2500
(except for random model), evaporation tax β = 1, and
|Q| = 80 (only for FTIACA). At each time step, 1500 units
of pheromone are deposited into the central cell ρ(xij)max,
while in its neighboring cells, marked as ρ(xab), where a, b ∈
ηm and considering a CA-radius of r = 1, 750 units of
pheromone are deposited. The upper whisker, which repre-
sents the maximum value within 1.5 times the interquartile
range (IQR) above the third quartile, is highest for FTIACA
at 35.00, indicating some relatively higher outlier data points,
as is possible to observe on Table 1. In contrast, FRCA and
FIACA have upper whisker values of 13.00 and 20.00, re-
spectively. This implies that the FTIACA model exhibits
greater variability in its performance with some notably high
values.

The median, a measure of central tendency, offers insights
into the model’s typical or central performance. In this case,
FTIACA has the highest median of 17.50, indicating that it
tends to perform relatively well on the task. FIACA follows
with a median of 12.00, while FRCA has the lowest median

2BoxPlotR: a web-tool for generation of box plots http://shiny.
chemgrid.org/boxplotr/.

http://shiny.chemgrid.org/boxplotr/
http://shiny.chemgrid.org/boxplotr/
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Table 1. Statistics comparison of surveillance performance varying different models, robot numbers and maximum pheromone levels.

Statistics FRCA
Model

FIACA
Model

FTIACA
Model 1 Robot 2 Robots 3 Robots Pheromone

1000
Pheromone

2500
Pheromone

4000
Upper whisker 13.00 20.00 35.00 5.00 13.00 35.00 40.00 35.00 34.00
3rd quartile 10.00 16.00 26.00 2.00 7.00 26.00 29.00 26.00 24.50
Median 6.00 12.00 17.50 1.00 5.00 17.50 21.00 17.50 15.50

1st quartile 2.50 8.00 12.00 0.00 2.00 12.00 15.00 12.00 10.50
Lower whisker 1.00 3.00 7.00 0.00 0.00 7.00 7.00 7.00 7.00

Mean 6.24 12.08 18.87 1.28 5.20 18.87 21.77 18.87 17.49
Nr. of data points 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Figure 5. Boxplots for three models variations.

of 6.00, suggesting that FTIACA shows the best central per-
formance, FIACA follows, and FRCA exhibits the lowest
central performance among the three models. The mean val-
ues provide further insight, represented by (+) inside the box
plot, confirming these trends in central performance. Herein
we used the 95.0% confidence interval, represented by (■) in
box plot, which is an estimate of an interval used in statistics,
which contains a population parameter. This result is found
through a sampling model calculated from the collected data.
FTIACA’s mean of 18.87 is the highest, followed by FIACA
with 12.08, and FRCAwith the lowest mean of 6.24. Overall,
these statistics reveal that FTIACA tends to perform well on
average, but its performance exhibits more variability with
some high outliers, while FRCA generally has lower and less
variable performance, as indicated by its lower median and
mean.
To evaluate the pheromone coverage in the environment

for the FIACA and FTIACAmodels, we created a heatmap in
Matlab according to Figure 6, facilitating a qualitative analy-
sis. The temperature of each cell was calculated by the arith-
metic mean of each of the 102 simulations carried out over
T = 104 iterations. The heatmap reveals a distinct distribu-
tion of accumulated pheromone between the twomodels. No-
tably, the FTIACA model exhibits a higher accumulation of
pheromone (see Figure 6(a)) when compared to FIACA (see
Figure 6(b)), indicating a more effective and efficient cov-
erage strategy. The areas in black throughout the heatmap
result from areas of Riparian Forest, a dense and humid por-
tion with a low probability of burning, and which are con-
sidered obstacles for robots (see Figure 2). However, upon
closer inspection, we notice that the FIACA model exhibits

(a) Pheromone heatmap for FIACA model.

(b) Pheromone heatmap for FTIACA model.

Figure 6. Mean of Pheromone Heatmaps for FIACA and FTIACAModels.

a higher prevalence of non-recently visited points, evident
by the darker regions on the heatmap. This suggests that in
FIACA, there was a challenge in achieving an optimal distri-
bution of robots to uniformly cover the environment.
We then generated a heatmap illustrating the average num-

ber of steps taken per cell by each robot over 102 simula-
tions with a duration of T = 104. The analysis of these
heatmaps reveals important insights into the characteristics
of the three models used in our research, according to Figure
7. The FRCA model, characterized by its randomness, re-
lies primarily on differing probabilities associated with nav-
igating through various types of vegetation within the Sete
Cidades National Park. This probabilistic approach reflects
a less structured strategy, see Figure 7(a). The FIACAmodel
introduces a level of indirect communication among robots
by considering the probabilities of robot movement through
each vegetation type and utilizing the inverted pheromone
left as a trail along their paths. This allows for a more coor-
dinated and intelligent patrolling strategy, see Figure 7(b).
The FTIACA model, being the most advanced, considers

movement probability in relation to vegetation, pheromone
levels, and queue usage, leading to heightened vigilance,
especially in fire-prone areas, see Figure 7(c). These per-
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(a) Steps heatmap for FRCA model.

(b) Steps heatmap for FIACA model.

(c) Steps heatmap for FTIACA model.

Figure 7. Mean of Steps Heatmaps for FRCA, FIACA and FTIACA Mod-
els.

formance differences emphasize the value of sophisticated
strategies in swarm robotics for patrolling and environmen-
tal surveillance, enhancing robot distribution for improved
environmental protection.

5.2 Number of robots variation

For the experiments in this section, it is important to con-
sider that in the central cell, the amount of pheromone is
ρ(xij)max = 1500, while in its neighboring cells, the
amount is ρ(xab) = 750 units, where a, b ∈ ηm, taking
into account a CA-radius of r = 1 and |Q| = 80. The box
plot statistics for the number of robots variation, with 1, 2,
and 3 robots patrolling the Sete Cidades National Park in the
Cerrado biome, offer significant insights into the impact of
the number of robots on task performance, as is possible to
observe in Figure 8. These statistics inform the impact of
varying robot numbers on data tendencies and distributions,
serving as a foundation for informed discussion.
The upper whisker demonstrates a consistent increase in

maximum performance with rising robot numbers. With 1
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Figure 8. Boxplots for robots number variations.

robot, it’s at 5.00, rising to 13.00 with 2 robots, and signifi-
cantly increasing to 35.00 with 3 robots. This indicates that
adding more robots enhances performance potential, espe-
cially in extreme cases. The median follows a similar trend,
with values of 1.00 for 1 robot, 5.00 for 2 robots, and 17.50
for 3 robots, signifying improved patrolling performance on
average with more robots. The mean performance, which is
1.28 with 1 robot, increases to 5.20 with 2 robots and further
to 18.87 with 3 robots.
The Figure 9 presents pheromone heatmaps for different

numbers of robots in the FTIACA model, providing valu-
able insights into the impact of robot quantity on pheromone
coverage. As we evaluate the patterns depicted in these
heatmaps, several significant trends and implications emerge.
First, as we transition from one to two robots, the pheromone
heatmap (Figures 9(a) and 9(b)) indicates that the presence of
additional robots substantially increases pheromone accumu-
lation in the environment. The collective effort of two robots
improves pheromone distribution, especially near their posi-
tions. Higher pheromone concentration aids in better envi-
ronmental surveillance for fire detection and prevention.
When we further scale up to three robots (Figure 9(c)),

the trend of increased pheromone accumulation continues.
The coverage becomes evenmore extensive, reaching deeper
into the environment. These observations highlight that a
higher number of robots offers substantial advantages for
pheromone-based patrolling strategies. This results in a
broader scope of surveillance across the entirety of Sete
Cidades National Park, thereby enhancing the overall effec-
tiveness and efficiency of the FTIACA model.
Figure 10 illustrates steps heatmaps in the FTIACAmodel

with varying robot numbers. These heatmaps provide in-
sights into how the number of robots affects movement dis-
tribution in the surveillance environment. The heatmap for
one robot (Figure 10(a)) shows limited environmental cov-
erage. The heatmap shows limited steps taken by a single
robot to traverse the entire area, reflecting the challenge of
a single robot effectively patrolling a large and complex en-
vironment. While there is coverage in various regions, there
are significant gaps that could lead to a decreased ability to
detect and prevent potential fires.
As we introduce a second robot (Figure 10(b)), the

heatmap illustrates a substantial improvement in terms of
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(a) Pheromone heatmap for 1 robot.

(b) Pheromone heatmap for 2 robots.

(c) Pheromone heatmap for 3 robots.

Figure 9. Mean of Pheromone Heatmaps for FTIACA varying robots num-
ber.

coverage. There is a significant reduction in untraversed ar-
eas, and the robots collectively patrol the environment more
thoroughly. The movement patterns overlap, resulting in bet-
ter surveillance, which contributes to the early detection of
potential fire hazards. Expanding to three robots (Figure
10(c)), the heatmap demonstrates further improvements in
coverage. Increased robot numbers lead to more efficient pa-
trolling, reflected in higher median and mean values. While
a wider upper whisker hints at potential exceptional perfor-
mance in certain cases, it also introduces greater variabil-
ity. Deploying additional robots improves patrolling in Sete
Cidades National Park, lowering the risk of overlooking criti-
cal areas and boosting overall fire prevention efficiency. The
FTIACAmodel showcases superior environmental coverage,
as seen in the pheromone and step heatmaps.

5.3 Amount of pheromone variation

The Forest Tabu Inverted Ant Cellular Automata (FTIACA)
model, which incorporates the concept of pheromone trails
inspired by the behavior of ants, plays a critical role in the

(a) Steps heatmap for 1 robot.

(b) Steps heatmap for 2 robots.

(c) Steps heatmap for 3 robots.

Figure 10. Mean of Steps Heatmaps for FTIACA varying robots number.

context of robotic surveillance within the Sete Cidades Na-
tional Park. This model introduces the notion of a maxi-
mum virtual amount of pheromone that robotic agents can
deposit and utilize during their patrolling tasks. The ex-
amination of box plot statistics for three different scenar-
ios with varying maximum pheromone levels τ = 1000
(where ρ(xij) = 600, ρ(xab) = 300), τ = 2500 (where
ρ(xij) = 1500, ρ(xab) = 750), and τ = 4000 (where
ρ(xij) = 2500, ρ(xab) = 1500) provides valuable insights
into the performance and efficiency of the IACAmodel, con-
sidering |Q| = 80.
The box plot statistics clearly reveal how different maxi-

mum pheromone levels impact the performance of the FTI-
ACA model in the surveillance of Sete Cidades National
Park, as is shown in Figure 11. As the maximum pheromone
level increases from 1000 to 2500 and 4000, several trends
emerge. Notably, upper whisker, third quartile, and me-
dian values consistently decrease, suggesting a narrower data
range and more controlled patrolling. The FTIACA model
demonstrates adaptability and effectiveness in a dynamic en-
vironment, with a higher maximum pheromone level enhanc-
ing task efficiency. Constant lower whisker values at 7.00
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Figure 11. Boxplots for maximum amount of pheromone variation.

reveal the minimum pheromone level required for a func-
tional system. Mean values show a decreasing trend at higher
pheromone levels but remain close to mid-range data values.
The Figure 12 reveals how variations in the maximum

amount of pheromone per cell influence the distribution and
accumulation of pheromone in the FTIACAmodel, shedding
light on the model’s performance under different pheromone
conditions. Figure 13 shows the average number of steps
based on the variation in themaximum amount of pheromone
that can be deposited per cell. In the scenario with the low-
est maximum pheromone per cell (1000 units), as shown in
Figure 12(a), the heatmap displays notable pheromone ac-
cumulation, averaging 180 units per cell. Figure 13(a) il-
lustrates the step count per cell, indicating effective envi-
ronmental coverage, although some accumulation points are
visible. Even with limited pheromone supply, robots effi-
ciently deposit pheromone, contributing to substantial cover-
age. More robots in the area lead to denser pheromone depo-
sition. In the scenario with a moderate maximum pheromone
per cell (2500 units), depicted in Figure 12(b), the heatmap
shows a significant increase in pheromone accumulation, av-
eraging 1100 units per cell. Figure 13(b) displays step cov-
erage, which is less efficient than the scenario with lower
pheromone usage, demonstrating a less effective pheromone
distribution, albeit with enhanced surveillance capabilities.
Additional pheromone availability does not improve pa-

trolling effectiveness. In the scenario with the highest max-
imum pheromone per cell (4000 units), shown in Figure
12(c), the heatmap displays substantial pheromone accumu-
lation, averaging 2000 units per cell. However, Figure 13(c)
indicates suboptimal step coverage, with robot clusters on
the bottom right side. This scenario results in the poorest
pheromone coverage, indicating that increasing the maxi-
mum pheromone per cell did not enhance environmental cov-
erage or task completion rates.

6 Discussion
The FTIACA model, incorporating the Queue and Tabu
mechanism, optimizes robot distribution to enhance
pheromone coverage and overall surveillance efficiency,
thereby improving environmental protection. Furthermore,

(a) Pheromone heatmap at 1000 units per cell.

(b) Pheromone heatmap at 2500 units per cell.

(c) Pheromone heatmap at 4000 units per cell.

Figure 12. Mean of Pheromone Heatmaps for FTIACA considering varia-
tions for maximum amount of pheromone per cell.

the pheromone heatmaps vividly demonstrate the direct
link between robot quantity and pheromone coverage.
Increased robots result in superior pheromone distribution,
underscoring the necessity of optimizing robot numbers in
the FTIACA model for enhanced environmental protection,
echoing findings from previous studies Lima et al. (2016);
Lopes and Lima (2022). Increasing robot numbers in
FTIACA significantly enhances surveillance efficiency,
reducing unpatrolled areas and improving fire detection and
prevention in Sete Cidades National Park. These heatmaps
also demonstrate the impact of maximum pheromone levels
on FTIACA’s performance. Unlike previous studies Souza
and Lima (2019); Lima and Oliveira (2017); Lopes and
Lima (2021), we integrate Sete Cidades National Park’s
vegetation classes, influencing swarm robotics movement.
Higher pheromone availability enhances environmental
coverage, underscoring the importance of optimizing
pheromone resources for effective patrolling in real-world
scenarios.
We chose Matlab and the e-Puck environment for their

suitability to our research goals and available features.
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(a) Steps heatmap for maximum amount of pheromone per cell equals to
1000.

(b) Steps heatmap for maximum amount of pheromone per cell equals to
2500.

(c) Steps heatmap for maximum amount of pheromone per cell equals to
4000.

Figure 13. Mean of Pheromone Heatmaps for FTIACA considering varia-
tions for maximum amount of pheromone per cell.

While we recognize the benefits of open-source alternatives,
none fully met our requirements or offered comparable
functionalities. An inherent limitation of our study is the
cost of the e-Puck, along with its small and delicate nature,
which may pose challenges considering the specified task.

7 Conclusions

The preservation of the Cerrado’s ecosystem is vital for
Brazil and swarm robotics patrols protect this biome by mon-
itoring, detecting threats like wildfires, The preservation of
the Cerrado’s unique ecosystem is vital for Brazil. The re-
sults unequivocally showcase the Forest Tabu Inverted Ant
Cellular Automata (FTIACA) as the top-performing model,
achieving an impressive average of 21.77 complete patrol
cycles, with a high 95% confidence level. This remark-
able performance was realized through the orchestration of
three robots, a Tabu queue set at |Q| = 80, and the utiliza-

tion of a maximum pheromone amount per cell set to ρ =
1000. These parameter configurations highlight the model’s
remarkable ability to optimize patrol cycles and resource uti-
lization, particularly in the crucial context of fire prevention
in Sete Cidades National Park. In summary, the fusion of cel-
lular automata and bioinspired computing presents a promis-
ing path for advancing robotics and its diverse applications.
In future research, we aim to analyze Sete Cidades Na-

tional Park further, utilizing drones to capture imagery of
its upper regions. Additionally, we plan to use e-Pucks to
acquire images for Virtual and Augmented Reality applica-
tions, as discussed by (Sanches et al., 2019). Furthermore,
the work may involve the optimization analysis of model hy-
perparameters using genetic algorithms.

Acknowledgements
The authors thank Fundação deAmparo à Pesquisa do Estado deMi-
nas Gerais (FAPEMIG) for funding author HCB’s scholarship, and
author DAL thanks the National Council for Scientific and Tech-
nological Development (CNPq) for the CNPq/MCTIC/FNDCT
18/2021 - 423105/2021-3 Cerrado Resilient Project.

References
Alencar, J., Cordeiro, W. P. F. d. S., Staples, G., and Buril,
M. T. (2019). Convolvulaceae no parque nacional de sete
cidades, estado do piauí, brasil. Hoehnea, 46:e992018.
DOI: https://doi.org/10.1590/2236-8906-99/2018.

Alexan, W., ElBeltagy, M., and Aboshousha, A. (2022).
Rgb image encryption through cellular automata, s-box
and the lorenz system. Symmetry, 14(3):443. DOI:
https://doi.org/10.3390/sym14030443.

Alvarado, S., Carvalho, I., Ferraz, T., and Silva, T.
(2019). Effects of fire suppression policies on fire
regimes in protected areas in the cerrado. Biodi-
versidade Brasileira-BioBrasil, (1). DOI: https://
doi.org/10.37002/biodiversidadebrasileira.v9i1.1143.

Brasiel, H. C. and Lima, D. A. (2023). Exploring
the influence of wind, vegetation and water sources
on the spread of forest fires in the brazilian cerrado
biome using cellular automata. In Anais do XIV Work-
shop de Computação Aplicada à Gestão do Meio Am-
biente e Recursos Naturais, pages 61–70. SBC. DOI:
https://doi.org/10.5753/wcama.2023.230476.

Calvo, R., de Oliveira, J. R., Figueiredo, M., and Romero,
R. A. (2014). Parametric investigation of a distributed
strategy for multiple agents systems applied to coopera-
tive tasks. In Proceedings of the 29th Annual ACM Sympo-
sium on Applied Computing, pages 207–212. ACM. DOI:
https://doi.org/10.1145/2554850.2554977.

Castello, E., Yamamoto, T., Dalla Libera, F., Liu, W., Win-
field, A. F., Nakamura, Y., and Ishiguro, H. (2016). Adap-
tive foraging for simulated and real robotic swarms: the
dynamical response threshold approach. Swarm Intelli-
gence, pages 1–31. DOI: https://doi.org/10.1007/s11721-
015-0117-7.

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant
colony optimization. IEEE computational intelli-



Swarm Robotics surveillance control with Ant Cellular Automata model in the Cerrado biome for preserving biodiversity Brasiel & Lima, 2024

gence magazine, 1(4):28–39. DOI: https://doi.org/
10.1109/MCI.2006.329691.

Ferreira, M. E. A., Lima, D. A., Martins, L. G., and
Oliveira, G. M. (2022a). Refining a parameter set-
ting evolutionary approach for fire spreading models
based on cellular automata. In 2022 International
Conference on Computational Science and Computa-
tional Intelligence (CSCI), pages 480–486. IEEE. DOI:
https://doi.org/10.1109/CSCI58124.2022.00091.

Ferreira, M. E. A., Quinta, A. L., Lima, D. A., Martins, L. G.,
and Oliveira, G. (2022b). Automatic evolutionary adjust-
ment of cellular automata model for forest fire propaga-
tion. In International Conference on Cellular Automata
for Research and Industry, pages 235–245. Springer. DOI:
https://doi.org/10.1007/978-3-031-14926-9_21.

Gaia, J. A. S., Souza, B. I. d., Lucena, R. F. P. d., Souza, R. S.,
and Gaia, C. L. B. (2022). Modelagem e distribuição po-
tencial de espécies arbóreas relevantes para a dinâmica so-
ciocultural e ecológica do parque nacional de sete cidades,
piauí, brasil. Sociedade & Natureza, 32:784–798. DOI:
https://doi.org/10.14393/SN-v32-2020-51103.

Gharaibeh, A., Shaamala, A., Obeidat, R., and Al-
Kofahi, S. (2020). Improving land-use change
modeling by integrating ann with cellular automata-
markov chain model. Heliyon, 6(9). DOI:
https://doi.org/10.1016/j.heliyon.2020.e05092.

Glover, F. (1989). Tabu search part i. ORSA
Journal on computing, 1(3):190–206. DOI:
https://doi.org/10.1287/ijoc.1.3.190.

Glover, F. (1990). Tabu search part ii. ORSA Journal on com-
puting, 2(1):4–32. DOI: https://doi.org/10.1287/ijoc.2.1.4.

Horibe, K., Walker, K., and Risi, S. (2021). Regenerat-
ing soft robots through neural cellular automata. In Ge-
netic Programming: 24th European Conference, EuroGP
2021, Held as Part of EvoStar 2021, Virtual Event, April
7–9, 2021, Proceedings 24, pages 36–50. Springer. DOI:
https://doi.org/10.1007/978-3-030-72812-0_3.

Ioannidis, K., Sirakoulis, G. C., and Andreadis,
I. (2011). A path planning method based on
cellular automata for cooperative robots. Ap-
plied Artificial Intelligence, 25(8):721–745. DOI:
https://doi.org/10.1080/08839514.2011.606767.

Lima, D. A. and Oliveira, G. M. (2017). A cellular au-
tomata ant memory model of foraging in a swarm of
robots. Applied Mathematical Modelling, 47:551–572.
DOI: https://doi.org/10.1016/j.apm.2017.03.021.

Lima, D. A., Tinoco, C. R., and Oliveira, G. M. B. (2016).
A cellular automata model with repulsive pheromone for
swarm robotics in surveillance. In Cellular Automata -
International Conference on Cellular Automata for Re-
search and Industry, ACRI. Proceedings, pages 312–322.
DOI: https://doi.org/10.1007/978-3-319-44365-2_31.

Lima, H. A. and Lima, D. A. (2014). Autômatos celulares es-
tocásticos bidimensionais aplicados a simulação de propa-
gação de incêndios em florestas homogêneas. In Anais do
V Workshop de Computação Aplicada a Gestão do Meio
Ambiente e Recursos Naturais, pages 15–24. SBC. DOI:
https://doi.org/10.13140/RG.2.1.4578.8564.

Lopes, H. J. and Lima, D. A. (2021). Evolutionary

tabu inverted ant cellular automata with elitist inertia
for swarm robotics as surrogate method in surveil-
lance task using e-puck architecture. Robotics
and Autonomous Systems, page 103840. DOI:
https://doi.org/10.1016/j.robot.2021.103840.

Lopes, H. J. and Lima, D. A. (2022). Surveillance task
optimized by evolutionary shared tabu inverted ant cel-
lular automata model for swarm robotics navigation con-
trol. Results in Control and Optimization, 8:100141. DOI:
https://doi.org/10.1016/j.rico.2022.100141.

Matos, M. d. Q. and Felfili, J. M. (2010). Florística, fitosso-
ciologia e diversidade da vegetação arbórea nas matas
de galeria do parque nacional de sete cidades (pnsc), pi-
auí, brasil. Acta botânica brasílica, 24:483–496. DOI:
https://doi.org/10.1590/S0102-33062010000200019.

Monteiro, L., Fanti, V., and Tessaro, A. (2020).
On the spread of sars-cov-2 under quarantine:
A study based on probabilistic cellular automa-
ton. Ecological Complexity, 44:100879. DOI:
https://doi.org/10.1016/j.ecocom.2020.100879.

Mordvintsev, A., Randazzo, E., Niklasson, E., and Levin,
M. (2020). Growing neural cellular automata. Distill,
5(2):e23. DOI: https://doi.org/10.23915/distill.00023.

Oliveira, M. E. A., Martins, F. R., Castro, A., and Santos, J. d.
(2007). Classes de cobertura vegetal do parque nacional
de sete cidades (transição campo-floresta) utilizando ima-
gens tm/landsat, ne do brasil. XIII Simpósio Brasileiro de
Sensoriamento Remoto, 13.

Rodrigues, L. G. S., Dias, D. R. C., de Paiva Guimarães,
M., Brandão, A. F., Rocha, L. C., Iope, R. L., and
Brega, J. R. F. (2022). Supervised classification of motor-
rehabilitation body movements with rgb cameras and pose
tracking data. Journal on Interactive Systems, 13(1):221–
231. DOI: https://doi.org/10.5753/jis.2022.2409.

Sanches, S. R., Oizumi, M. A., Oliveira, C., Sementille,
A. C., and Corrêa, C. G. (2019). The influence of
the device on user performance in handheld augmented
reality. Journal on Interactive Systems, 10(1). DOI:
https://doi.org/10.5753/jis.2019.718.

Souza, N. L. B. and Lima, D. A. (2019). Tabu search
for the surveillance task optimization of a robot
controlled by two-dimensional stochastic cellular
automata ants model. In Latin American Robotics
Symposium, Brazilian Symposium on Robotics and
Workshop on Robotics in Education, pages 299–
304. IEEE. DOI: https://doi.org/10.1109/LARS-SBR-
WRE48964.2019.00059.

Tinoco, C. R., Lima, D. A., and Oliveira, G. M. (2017).
An improved model for swarm robotics in surveillance
based on cellular automata and repulsive pheromone with
discrete diffusion. International Journal of Parallel,
Emergent and Distributed Systems, 34(1):53–77. DOI:
https://doi.org/10.1080/17445760.2017.1334886.

Zeng, J., Qian, Y., Yin, F., Zhu, L., and Xu, D. (2022). A
multi-value cellular automata model for multi-lane traf-
fic flow under lagrange coordinate. Computational and
Mathematical Organization Theory, pages 1–15. DOI:
https://doi.org/10.1007/s10588-021-09345-w.


	Introduction
	Theoretical foundation
	Cellular automata
	Related works

	Proposal
	General model description
	Environment description
	Computational structures description
	Robot individual behavior
	Swarm Global behavior

	Forest cellular automata random model
	Forest inverted ant cellular automata model
	Forest tabu inverted ant cellular automata model

	Methodology
	Results
	Model variation
	Number of robots variation
	Amount of pheromone variation

	Discussion
	Conclusions

