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Abstract: In an effort to advance Digital Agriculture, this paper provides a comparative assessment of Artificial
Neural Networks for intelligent detection of a major biotic stress factors in coffee cultivation. Through a multi-
class Computer Vision task, the superior performance of Convolutional Neural Networks, notably the ShuffleNet
architecture, was discerned, further substantiated by statistical analyses. This model’s performance, akin to state-of-
the-art solutions, was achieved with reduced training data and parameter requirements. Robustness was affirmed
through external validation using alternative datasets. This contribution directly enhances coffee plantations’ quality
and supports the development of Edge Computing devices for Agricultural loT.
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1 Introduction

Per the Food and Agriculture Organization (FAO) of the
United Nations (UN), coffee stands as a highly consumed
global beverage and one of the most traded commodities.
Its market is expanding, driven by rising consumption in
emerging economies, growing interest in specialty coffee,
and product innovations in developed nations. Additionally,
coffee plays a role in advancing Sustainable Development
Goals by fostering income generation, rural employment,
and poverty reduction [FAO, 2023]

Brazil holds the top position globally in the international
coffee production market. In 2022, Brazil produced a total
of 50,920.1 thousand sacks of coffee (each weighing 60 kg),
marking a percentage increase of 6.7 % compared to the
previous year. This production volume constitutes approx-
imately 32 % of the global market share. The coffee cultiva-
tion area in Brazil for the year 2022 encompassed 2.24 Mi ha,
with 64.78 % of the productive area dedicated to the Coffeea
arabica species and the remainder to the Coffea Canephora
variety, commonly referred to as robusta [CONAB, 2022].

Brazilian coffee production is acknowledged as one of the
most socially and environmentally conscious in the world,
with a commitment to ensuring sustainable coffee produc-
tion. The high quality and diversity of coffee crops establish
Brazil as a reliable supplier capable of meeting the demands
of the most discerning buyers in both local and international
markets [Brazil, 2022]. In the context of high-quality cof-
fee production, a complex set of factors must be carefully
considered, controlled, and monitored. Among these fac-
tors, temperature, soil density, rainfall patterns, wind expo-
sure, humidity, as well as the presence of pests and diseases
stand out. Regarding the latter two factors, the importance
of precise and early diagnosis is emphasized, with the aim
of facilitating effective and efficient decision-making that
minimizes environmental and economic impacts. The inci-
dence of fungi, bacteria, nematodes, and viruses can reduce
production up to 20 %, making timely intervention crucial
[Mesquita et al., 2016].

Taking into consideration the demands of the agricultural

sector, Digital Agriculture has been significantly gaining
ground. It is characterized by the use and development
of technological solutions within the field of Informatics,
aimed at enhancing production and achieving higher quality
and productivity [Tang et al., 2002]. In Brazil, in particu-
lar, Image Processing and Computer Vision (CV) techniques
are now explicitly recognized as integral components of the
strategic axes to be developed and implemented over the next
two decades. [Embrapa, 2014].

Recently, Machine Learning (ML), a subfield of Artificial
Intelligence that encompasses the development and utiliza-
tion of computational models and methods capable of learn-
ing from data and making inferences for previously unseen
instances [Faceli e al., 2021], has substantially advanced the
state of the art in Computer Vision (CV) problems [Khan
et al., 2018]. These results have a positive impact on the de-
velopment of solutions for Agriculture, such as pest identifi-
cation, soil type determination, plant recognition, automatic
seed inspection, fruit counting, among others [Kamilaris and
Prenafeta-Boldu, 2018]. The ML applications in this context
directly contribute to the objectives of ensuring global food
security, given the perspective of up to a 70 % increase in
food production demand by 2050 due to rapid urbanization,
population growth, reduced available planting space, among
other factors [Sharma et al., 2021].

With the aim of contributing to the body of intelligent solu-
tions for Digital Agriculture, particularly considering the role
of coffee for Brazil in this context, the objective of this paper
is to showcase the experimental results derived from the im-
plementation of two Artificial Neural Networks (ANNs) ap-
proaches addressing the problem at hand, which is conceptu-
alized as a CV task. Itis an extension of previous work on the
matter [Albuquerque and Guedes, 2023]. The analysis of the
results aligns with the current state of the art, highlighting the
superior performance of Deep Learning (DL) techniques in
comparison to the traditional approach of feature extraction
followed by classification using Feedforward Multilayer Per-
ceptron (MLP) ANNs. The main contributions of this work
are:
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1. A comparative analysis of two approaches utilizing
ANNSs for the intelligent detection of coffee plant leaf
diseases, taking into account a prevalent biotic stress
factors impacting crop health;

2. An experimental design prioritizing reproducibility
through the utilization of realistic, varied and expert-
labeled experimental data, enabling assessment of the
performance of ANNS;

3. The identification of the most suitable ANNSs for the spe-
cific task based on statistical tests, which were carried
out through repeated experiments to reduce the impact
of stochastic fluctuations;

4. The external validation of the proposed model across
three supplementary datasets to assess its generalization
and robustness.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an analysis of related works available in the
literature for the same problem at hand, specifically those
employing ANNs in the proposed solution, highlighting re-
cent advancements in the state of the art; Materials and meth-
ods employed are expounded upon in Section 3, encompass-
ing details regarding experimental data, approaches, models,
parametrization, experimental setup, model selection met-
rics, and evaluation; Section 4 presents the obtained results,
along with a comparative analysis and their correlation with
recent literature; An extension of the validation of the pro-
posed solution is conducted in Section 5, wherein three ad-
ditional datasets are considered; Lastly, concluding remarks
are presented in Section 6.

2 Related Work

The exploration of pertinent literature involved an exami-
nation of Google Scholar outcomes spanning from the year
2021 to 2023. The inclusion criteria focused on studies uti-
lizing methods and techniques rooted in Computer Vision
and/or Artificial Intelligence for the automated diagnosis of
diseases affecting coffee plant leaves. The overarching goal
was to acquire an exhaustive comprehension of the subject
matter, elucidate the current state-of-the-art methodologies,
as well as highlighting gaps and trends in addressing the prob-
lem under consideration.

The work by Dias and Saito [2021] identified coffee leaf
anomalies using the JSEG algorithm, a non-supervised seg-
mentation method based on textures and color regions. The
experimental data came from Robusta Coffee Leaf images
dataset (RoCoLe dataset), comprising healthy and unhealthy
samples, where the latter case is divided into four levels of
rust and red mite presence [Parraga-Alava et al., 2019]. Ex-
periments carried out with 50 samples (3 % of available data)
were mainly focused on finding best parameters for JSEG us-
ing different scales. They concluded that smaller scales, such
as 9 x 9px and 17 x 17 px, are most suited for the problem
because their homogeneity favours classification. However,
that work does not show the experimental results, although
indicating that further research with MLP ANNs is encour-
aged.

Isik and Eskicioglu [2022] considered the classification of
unhealthy-only coffee leaves using CNNSs, a specialized kind
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of ANNSs for processing high-dimensional data, employing
convolutional filters to integrate spatial context, facilitating
the extraction of discriminative features [Goodfellow et al.,
2016]. The experimental dataset, comprising 542 samples
collected under controlled conditions from a Kaggle dataset,
exhibited a distribution of 47.41 % affected by rust and the
remainder by mine infestation. The authors systematically
investigated six distinct filtering processes, namely RGB
filtering, Histogram Equalization, Contrast Limited Adap-
tive Histogram Equalization, Gaussian Blur, Morphology
Close and Morphology Gradient, as pre-processing steps for
CNN input. Their rationale was grounded in the potential
of these techniques to enhance Deep Learning model per-
formance, obviating the necessity for additional procedures
like data augmentation. The experimental framework en-
compassed an 80 %/20 % holdout cross-validation strategy,
employing eight diverse CNN architectures (VGG-16, Xcep-
tion, InceptionV3, DenseNet121, DenseNet169, AlexNet,
MobileNetV2 and ResNet50). Hyper-parameter exploration
considered batch size and optimizer settings, with each
model undergoing training for 30 epochs in each run. Anal-
ysis of the results culminated in the authors’ conclusion that
the evaluated CNNs exhibited substantial success, with an av-
erage classification accuracy exceeding 95 % in the context
of coffee leaf classification.

Taking into account four major diseases that affect cof-
fee crops, Novtahaning et al. [2022] proposed an en-
semble method designed to enhance detection accuracy.
Their approach hinged on the utilization of three well-
established CNN architectures (VGG-16, EfficientNetBO,
and ResNetl152) which were pre-trained with ImageNet
dataset weights; experimental data from the literature com-
prising 1300 examples (260 for each disease and also for a
healthy class) [Esgario ef al., 2020a]; image pre-processing
and data augmentation techniques; and a a bagging-based
voting strategy. After carrying out a 80 %/20 % holdout
cross-validation strategy, their ensemble approach boasted
an accuracy rate of 97.3 % and a F';-Score of 95.1 %. Analy-
sis of performance metrics suggests that the proposed model
achieves state-of-the-art results for the addressed problem,
demonstrating significant contributions to the field. How-
ever, this effectiveness comes at the cost of a high number
of parameters, exceeding 76 Mi. A key trade-off exists in
CNNs between model complexity and computational effi-
ciency. While an increased number of parameters often cor-
relates with improved performance and accuracy, it concomi-
tantly leads to extended training and inference times, along-
side escalating energy consumption. This presents a signifi-
cant challenge for real-world applications, directly impacting
hardware requirements and deployment feasibility.

The study by Aufar et al. [2023] utilized JMuBEN and
JMuBEN?2 datasets which contains 58 550 samples from four
diseases and also from healthy leaves [Jepkoech et al., 2021].
The authors approached the problem as a multi-class clas-
sification task, partitioning the dataset into 10 subsets and
conducting a holdout cross-validation on each subset, with
80 % of the data for training, 10 % for training validation, and
10 % for testing purposes. They employed the CNN archi-
tectures ResNet50, InceptionResNetV2, MobileNetV2, and
DenseNet169. The results obtained revealed an experimen-
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tal accuracy of 100 % for the InceptionResNetV2 (55.9 Mi
parameters, 449 layers) and for DenseNet169 (14.3 Mi pa-
rameters, 338 layers). However, it is noteworthy that the
authors did not provide measures of dispersion in their ex-
perimental assessments.

In reviewing the body of literature related to the subject
matter, some observations emerge: (%) a range of publicly
available datasets exists for addressing the coffee leaf dis-
ease classification problem. However, they exhibit signifi-
cant variability in terms of the quantity of images and the
representation of diseases; (i) CNNs have emerged as the
predominant approach for coffee leaf disease classification,
consistently yielding classification accuracy rates over 95 %;
(247) a comprehensive statistical evaluation of experimental
outcomes is notably absent from the literature; and (iv) the
computational cost regarding the number of CNNs parame-
ters was not discussed as a potential drawback since it may
impose practical limitations when deploying such models on
resource-constrained platforms, such as mobile devices or
Unmanned Aerial Vehicles (UAVs). Given the growing in-
terest in Edge Computing and mobile applications for Digi-
tal Agriculture, understanding and addressing these compu-
tational constraints becomes imperative.

3 Material and Methods

The proposed solution in this work aims to address the clas-
sification of coffee leaf diseases from images as a multi-
class classification task through Supervised Learning. The
experimental data utilized, the approaches for model prepa-
ration and parameterization, the computational environment
employed for conducting experiments, as well as the selec-
tion and evaluation of models, are detailed in the following
subsections.

3.1 Experimental Data: Overview and Prepa-
ration

The experimental data utilized in this study originates from
the JMuBEN and JMuBEN?2 datasets, comprising a total of
58,550 images depicting Coffea arabica leaves collected in
the Kenyan region employing a digital camera. The labeling
of these images was performed by a qualified pathologist and
encompasses five distinct classes: (i) ‘Healthy,” representing
leaves exhibiting no discernible pathological features; (¢7)
‘Cescospora,” which denotes a fungal disease caused by Cer-
cospora coffeicola. The presence of Cescospora is identifi-
able through the observation of circular grey spots with tan or
white centers on the leaf surface; (¢i7) ‘Rust,” caused by the
fungus Hemileia vastatrix, is characterized by the manifesta-
tion of chlorotic patches on the upper leaf surface, concomi-
tant with the development of rust pustules on the underside of
the leaf; (iv) ‘Phoma,’ induced by the fungus Phoma costarri-
censis, manifests in leaves that undergo a progressive brown-
ing and withering process, starting from the leaf tip and ex-
tending towards its periphery; and finally, (v) ‘Miner,” result-
ing from the activity of larvae belonging to Leucoptera cof-
feella, is typified by the presence of distinctive yellow trails
beneath the epidermal layer of the coffee leaf [Jepkoech e al.,
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2021]. It is imperative to underscore that each class is char-
acterized by visually distinguishable attributes, as depicted
in Figure 1.

The image data underwent a series of pre-processing steps
conducted by the dataset providers, encompassing: (7) the ap-
plication of noise filtering and contrast stretching techniques,
strategically employed to enhance overall image quality; (i%)
a cropping operation, performed to isolate the central square
portion of each image, with the explicit objective of accentu-
ating the region of interest within the leaf specimen; and (7i%)
the implementation of data augmentation methodologies, in-
cluding rotations (180° counterclockwise) and flipping (hor-
izontal and vertical) [Jepkoech ef al., 2021]. Notably, with
respect to data augmentation, the authors did not disclose ei-
ther the initial quantity of images preceding the application
of these techniques or any specific filename conventions em-
ployed to distinguish between original and artificially gener-
ated images. Upon examining the distribution of instances
across classes, as delineated in the histogram presented in
Figure 2, it is important to draw attention to the inherent class
imbalance within the dataset. This observation has prompted
the utilization of performance metrics tailored to accommo-
date this specific data imbalance scenario.

The experimental data described was used in experiments
with no further data augmentation than that already provided
by authors and all images were resized to 128 x 128 px.

3.2 Approaches, Models and Parametrization

ANNSs served as the primary Machine Learning model of
focus in this work. This choice was predicated upon their
massively parallel distributed architecture, their capacity for
learning and therefore generalization, as well as their capa-
bilities in handling nonlinearity, adaptivity, and fault toler-
ance [Haykin, 2008]. Within the framework of this model,
we have explored two distinct approaches: a traditional ap-
proach rooted in Computer Vision feature extraction meth-
ods, and a contemporary approach following the recent ad-
vancements in DL.

3.2.1 Traditional Approach

This study was grounded in the pipeline of Computer Vision
methods, wherein the initial step involves the extraction of
image features, which are subsequently employed to train
ML algorithms [Prince, 2012].

Drawing from pertinent work within the realm of classi-
fication in Agriculture [Santos ef al., 2019; VijayaLakshmi
and Mohan, 2016; Rehman ef al., 2021; Xian and Ngadiran,
2021], the first step was performed with Haralick Textural
Features which is defined as a set of statistical measures used
to characterize the texture or spatial patterns within an im-
age [Haralick et al., 1973]. Such features are computed by
analyzing the Gray-Level Co-occurrence Matrix (GLCM) of
an image, a two-dimensional matrix in which each element
P(i,7) represents the frequency of occurrence of a pair of
pixels (where 7 and j are the gray levels) in a spatial relation
separated by distance ¢ and angle . Let G be an image tex-
ture with the size of M x N. Each element can be calculated
by counting the number of relationships with the following
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(a) Healthy (b) Cescospora

(¢) Rust

(d) Miner (e) Phoma

Figure 1. Randomly drawn examples from each class from JMuBEN and JMuBEN?2 datasets.
Source: [Jepkoech ez al., 2021].
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Figure 2. Distribution of instances per class in the JMuBEN and JMuBEN?2 datasets.

equation:

P(i,j) ={G(m,n) =i,G(m + d,n+ 6) = j} foreacha,

)]
where m = 0,1,...M — 1, n = 0,1,...,.N — 1
and o = 0°,...,360°. Consider the following notation as
hereby established:

* p(i,7): (i,7)-th entry in a normalized gray-tone spatial-
dependence matrix, i.e., P(i,7)/ >_; >, P(i, j);

* p.(4): i-th entry in the marginal-probability matrix ob-
tained by summing the rows of p(i, j), i.e., >, P(i, j);

* N4: Number of distinct gray levels in the quantized im-
age;

* py(J) =22 p(i, j);

* px+y(k) = Zz Zji-{—j:k:p(i’j)’ k = 2) 33 ey 2Ng
This term represents the joint probability of occurrence
of pixel intensity values x and y at a certain spatial rela-
tionship within an image.;

¢ Daylk) =2, Ej|i—j|=kp(i’j)’ k=0,1,...,Ny—1.
It aims to characterize the joint probability of encoun-
tering pixel pairs with a particular intensity difference
(x — y) within a given spatial relationship.;

* iz, [by, O € Oy are the means and standard deviation of
P and py;

From the GLCM, various statistical measurements, rooted in
Information Theory, are derived to describe the texture prop-
erties of the image. In the scope of this work, the following
Haralick features were used. Some intuition behind them is
provided:

1. Energy (Angular Second Moment). Measures the
local homogeneity or uniformity of the image texture.

Higher values indicate smoother textures.

fr=222 w6 Y ©)

%

2. Contrast. Measures the local variation in pixel inten-
sities. Higher values indicate greater contrast between
neighboring pixels.

Ny—1
fo= > 02> > pig) ¢ 3)
n=0 i J
li—jl=n

3. Correlation. Describes the linear dependency between
pixel pairs. It can be an indicator of how repetitive or
periodic a texture is.

b= 22 25 (0)pij — Ha My; @

040y

4. Variance. Provides information about the degree of
variation in pixel pair values within a particular spatial
relationship in the image.

fi= Z Z(i — w)?p(i, §); )

5. Inverse Difference Moment. Measures the local ho-
mogeneity or closeness of pixel intensities in the spec-
ified spatial relationship. It is an indicator of how uni-
form or regular the texture appears in the image.

=% ﬁpu,j); (©)
g
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10.

11.

12.

Sum Average. Characterizes the average sum of the
gray-level values of the pixel pairs in the GLCM, of-
fering insights into the overall brightness or intensity
characteristics of the texture.

2N,
fo=3 ipasy (i); %)
=2

Sum Variance. Characterizes the variance or spread
in the product of the row and column indices of pixel
pairs within the specified spatial relationship in the im-
age. It provides information about the variability of the
products of gray levels, taking into account their spatial
distribution. A higher value indicates that the products
of gray levels in the texture tend to vary more widely or
are more dispersed.

2Ny

fr=> (1= f3)*Pasy(i); ®)

=2

Sum Entropy. Measures the randomness or disorder in
the distribution of the sums of gray levels of pixel pairs
within the specified spatial relationship in the image. It
provides information about the complexity or irregular-
ity of the texture pattern.

2N,

fs == pary(i)log{pery(D)}; ©)

i=2
Entropy. Quantifies the randomness or disorder of tex-
ture. Higher entropy values suggest more complex or
irregular textures.

fo=— Z Zp(i,j) log(p(i,5));  (10)

Difference Variance. Measures how much the gray-
level differences between neighboring pixels vary
within the image. A higher value indicates that these
differences are more variable or dispersed, suggesting a
more complex or heterogeneous texture.

f10 = variance of p;_;

(11)

Difference Entropy. Measures how unpredictable or
irregular the differences between neighboring pixel in-
tensities are in the image. A higher value indicates that
these intensity differences are more random or diverse,
suggesting a more complex or irregular texture.

N,—1
fir= > pay(log{pay(i)}  (12)
=0

Information Measures of Correlation. It measures
the similarity of the joint probability distribution of
pixel pairs to a product of their marginal distributions.
High values indicate stronger correlation between pixel
pairs in the GLCM.

fo— HXY1
Jo— A2 1
max(HX,HY)’ (13)

(1 —exp[-2(HXY2 — fy)]2), (14)

fiz =
fis =
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where H X is the entropy of p,, HY is the entropy of
py, HXY = —37,57.p(i,j)log(p(i, j)), HXY1 =
=22 2;p(i,§) log{(px(i)py(j)) and HXY2 =
— 2 2 P (1)py (j) log{pa (i)py (j) {Hung et al,
2019; Mirjalili and Hardeberg, 2022; Haralick et al.,
1973, Appendix Al].

Haralick features, a cornerstone in texture analysis, draw
heavily upon principles established by Information Theory
which studies the transmission, processing, extraction, and
utilization of information [Cover and Thomas, 2006]. The
effectiveness of Information Theory in solving various CV
and pattern recognition problems, including image matching,
clustering, segmentation, saliency detection, and feature se-
lection, is well-documented. The connection between Haral-
ick features and Information Theory, emphasizes how quan-
titative measures derived from the GLCM offer valuable in-
sights into the spatial distribution and relationships of pixel
intensities within an image. These insights pave the way for
effectively characterizing and analyzing the intricate texture
patterns inherent in digital images [Escolano ef al., 2009].

Following the extraction of Haralick features, each input
image was represented by 13 numerical attributes, subse-
quently employed for training MLP ANNs. The choice of
this ML model stemmed from its aptitude for generalization
within the Supervised Learning Paradigm, its effectiveness
in handling non-linear separable problems, and its inherent
resilience to data noise [Haykin, 2008].

The task of identifying the optimal MLP architecture for
a specific scenario remains a prominent unsolved challenge
in the field of Machine Learning. Recognizing this open
problem, we chose to employ the Geometric Pyramid rule-
of-thumb, a well-established heuristic documented in the lit-
erature, that offers a practical alternative to the computation-
ally expensive and time-consuming process of exhaustive ar-
chitecture search [Palit and Popovic, 2005]. Taking into ac-
count that V; = 13 is the number of input nodes, N, = 5
is the number of output nodes, corresponding to the number
of classes of the classification task, the goal is to obtain /Nj,,
the number of hidden neurons, according to the following
assignment:

Nh:a[MJ:a[MJ = 8a.

Let 0.5 < o < 2 and [-| denote the closest integer function,
then:

(15)

4 < Ny < 16. (16)

We began by evaluating single-hidden-layer MLPs, where
(7) represents an architecture with ¢ hidden neurons. Based
on the obtained values for N}, , we selected 12 configura-
tions ranging from 4 to 16 hidden neurons for further analysis.
Acknowledging the limitations of single-hidden-layer MLPs,
we also explored double hidden-layer architectures. Here,
(4, j) denotes an MLP with ¢ neurons in the first hidden layer
and j neurons in the second. Utilizing a random sampling
approach, we selected 4 different values for IV}, within the
previously investigated range to create these double-hidden-
layer configurations. This resulted in a total of 49 MLP archi-
tectures. For all of them, we employed the ReLU (Rectified



Colffee Plant Leaf Disease Detection for Digital Agriculture

Linear Unit) activation function and trained them using the
Adam optimizer [Kingma and Ba, 2015] for 300 epochs.

3.2.2 Contemporary Approach

This approach was grounded in recent advancements in DL
wherein multidimensional images serve as input to CNNs.
These networks autonomously perform large-scale hierarchi-
cal learning of feature extractor parameters, enabling them
to proficiently classify intricate patterns within the input data
[Goodfellow et al., 2016]. Noteworthy advantages of this ap-
proach encompass the elimination of human intervention in
the feature extraction or selection process and the availabil-
ity of multiple canonical CNN architectures tailored to the
realm of CV [Khan et al., 2018].

For the following considered CNN architectures listed be-
low, the images were resized to 128 x 128 pixels, and the
values of the three color channels were normalized.

1. MobileNetV2. It is regarded as a lightweight CNN,
designed for deployment on mobile and embedded de-
vices. Its simplified architecture employs depthwise
separable convolutions in the initial layers to reduce
computational overhead [Howard et al., 2018];

2. ShuffleNet. Also designed specifically for mobile de-
vices with limited computational power, it employs
group convolutions, where each of the multiple con-
volutions covers a portion of the input channels, and
channel shuffling, randomly mixing the output chan-
nels of group convolutions. This strategy significantly
reduces computational cost without sacrificing perfor-
mance [Zhang et al., 2018];

3. VGG-16. One of the most popular CNN models due
to its simplicity and performance in large-scale object
classification tasks in Computer Vision. It consists of
16 layers in depth, employs 3 x 3 convolutional filters
for feature extraction, incorporates max-pooling layers
for dimensionality reduction, and includes fully con-
nected final layers for classification. The use of smaller
filters results in fewer parameters and facilitates paral-
lelization for hardware acceleration during training [Si-
monyan and Zisserman, 2014];

4. InceptionV3. With the convolutional layers processed
in parallel, this architecture enables information pro-
cessing along the depth dimension of the input. The
considered version employs convolution factorization
to reduce the number of parameters without compromis-
ing efficiency in Computer Vision tasks [Szegedy et al.,
2015];

5. EfficientNetV2S. With a parameter count similar to
InceptionV3, it represents a contemporary architecture
that strikes a balance between depth and the number of
parameters, simultaneously optimizing training speed
and classification efficiency [Tan and Le, 2019];

For all selected CNN architectures, the hyperparameters
were employed based on the following criteria: (z) weights
were initialized randomly, without transfer learning or lever-
aging weights from another task; (i7) training considered a
maximum of 300 epochs; (¢i7) the Early Stopping technique
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was adopted with a patience of 30 epochs to prevent overfit-
ting, monitoring metrics on the validation set; (iv) the Model
Checkpoint technique was used to monitor accuracy on the
validation set and save to disk the weight set that provided
the best generalization; (v) the initial learning rate was set
to 10~%; (vi) the ReLU activation function was used; (vii)
the Adam optimizer was employed [Kingma and Ba, 2015];
and (vi7) the choice of the batch size hyperparameter was
determined empirically for each architecture, balancing the
number of parameters and the utilization of available compu-
tational resources, including main memory. The dense and
final layers of all mentioned architectures were resized to ac-
commodate a number of neurons compatible with the prob-
lem’s classes.

3.3 Experimental Setup

Python, in conjunction with the Keras, TensorFlow, and
Sci-Kit Learn frameworks, served as the primary tools for
training and evaluating the proposed models [Van Rossum
and Drake, 2009; Chollet et al., 2015; Abadi et al., 2015;
Pedregosa et al., 2011]. The Mahotas framework, specifi-
cally, was employed to perform the Haralick features extrac-
tion [Coelho, 2013]. Implementations were executed on a
computational system equipped with an Intel® Core™ i5-
7400 CPU running at a clock speed of 3 GHz, supported by
24 GB of primary memory, 2 TB of secondary memory and
2 NVIDIA GTX 1650 GPUs with 4 GB VRAM each to pro-
mote hardware speedup when training CNNs.

3.4 Model Selection and Evaluation

To assess the selected models’ performance, three distinct
repetitions of holdout cross-validation were employed. In
each repetition, 60 % of the available data were allocated for
training, 10 % for validation, and 30 % for testing, with the
latter partition used for performance evaluation. The mean
values of the following performance metrics across the three
repetitions summarized this assessment, where C' represents
the set of classes in the problem.

Accuracy = ﬁ ; (TPC n ;51}:: IEII\)ICC TFP. )17)
Precision = ﬁ Cez; (TPCTJI}FPC) (18)

Recall = ﬁ ; (TPT}}FN> (19)
o 2ttty

In Egs. (17)-(20), the acronyms denote the four potential
outcomes of a binary classification task, namely: TP (True
Positive) represents the count of correct classifications for
the positive class; TN (True Negative) corresponds to the cor-
rect classifications for the negative class; FP (False Positive)
signifies Type I Errors; and FN (False Negative) indicates
Type 1I Errors.
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Neural network training exhibits inherent stochasticity due
to factors like weight initialization and batch composition,
necessitating multiple experimental repetitions to mitigate
expected fluctuations. Balancing statistical rigor with com-
putational feasibility, we conducted 3 repetitions in our ex-
periments. While this may not entirely eliminate stochastic
effects, it acknowledges their presence and incorporates their
potential influence into the results. Consequently, the met-
rics presented in Egs. (17)-(20) will be reported in terms of
both average and standard deviation. Moreover, as depicted
in Figure 3, this Venn diagram elucidates the extent of sam-
ple overlap observed across the experimental repetitions. No-
tably, it underscores the diverse conditions in which these
experiments were executed, revealing that approximately
13.95% of the samples consistently resided within the test
partition across all experiments.

7027

3508

7057

Figure 3. Venn diagram for samples in experimental repetitions.

In the traditional approach, MLPs were ranked based on
their average F'-Score, and the top 5 architectures will be
presented and discussed. The number of selected models
matches the quantity of CNNs evaluated in the contemporary
approach.

For the best performing models, regardless of their
approach, statistical tests will be conducted to ascertain
whether the samples comes from the same distribution, i.e.,
the models would be deemed equivalent for the proposed
classification task under the F-Score. In the absence of en-
suring that the data followed a normal distribution, we re-
sorted to the use of the non-parametric Kruskal-Wallis H test,
with a confidence level of 95 % (a = 0.05), to test the null
hypothesis (Hj) that these models are equivalent against the
alternative hypothesis (H 4) suggesting otherwise [Walpole
etal., 2012].

In addition to evaluating task performance, data on the
number of parameters, training time and epochs of all mod-
els on the experiments were gathered. For the CNNs, mea-
surement of the maximum Giga Floating-Point Operations
Per Second (GFLOPS) over the repetitions was conducted.
These metrics were examined with the aim of quantifying
the computational processing power necessary for these mod-
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els, enabling further evaluations related to emergent research
fields, such as Green Al [Schwartz ef al., 2020] and Edge
Computing [Cao et al., 2020].

4 Results and Discussion

The computational experiments were conducted following
the proposed methodology, and the summary of the results
is presented in Tables 1 and 2. These tables represent the
performance of the top 5 MLPs and CNNs in terms of the
average and standard deviation across 3 repetitions.

By listing the F;-Score as the reference performance met-
ric, it is noteworthy that the traditional approach falls short
of the contemporary approach, as depicted in Figure 4. This
observation holds particular practical significance, as the for-
mer heavily relies on human intervention and expertise for
feature extraction and architecture design. When examin-
ing the results obtained with the contemporary approach, it
is first noteworthy to highlight the performance degradation
of MobileNetV2 when compared to the results reported in
the work by Aufar et al. [2023]. These results are indica-
tive of underfitting for this model with respect to the learn-
ing task. This observation suggests that the model’s effec-
tiveness is heavily influenced by the availability of exten-
sive training data and might call for targeted fine-tuning ef-
forts to ensure consistent performance in dealing with spe-
cific tasks. These considerations may pose challenges when
applying the model to broader tasks within the Digital Agri-
culture domain.

Aside from the MobileNetV2, the other architectures in
the contemporary approach achieved an average Fj-Score
exceeding 99.8 %. All of them made use of early stopping
technique during training, requiring fewer than 300 epochs
to achieve convergence, as shown in Table 3. Given the
remarkably similar performance exhibited by all the CNNss
within the contemporary approach during the experiments,
a non-parametric Kruskal-Wallis H test was carried out fol-
lowing the conditions outlined in Section 3.4. The outcome
of this analysis yielded a p-value of 0.1012, which does not
fall below the significance threshold of & = 0.05 (p £ «),
indicating that rejecting the null hypothesis is not feasible.
Hence, all the CNNs assessed, with the exception of Mo-
bileNetV2, demonstrate comparable performance in this spe-
cific task. In comparison to the results obtained by Aufar
et al. [2023], equivalent performance was achieved, but with
smaller architectures. The InceptionV3 and ShuffleNet mod-
els, for example, have 57.24 % and 97.54 % fewer param-
eters, respectively, than InceptionResNetV2. While Incep-
tionV3 has more parameters than DenseNet169, it has lower
depth, which may impact training time. ShuffleNet, in par-
ticular, is smaller than DenseNet169 in both dimensions. In
comparison to this related work, all CNNs were trained with
a notably reduced amount of data, resulting in a data reduc-
tion of approximately 33.50 %.

In the endeavor to distinguish among the examined CNNss,
ShuffleNet proved to be the most fitting choice for serving
as the reference solution for the problem investigated in this
study. The confusion matrices for the three rounds of testing
are depicted in Fig 5. This decision was driven by its lower
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Table 1. Experimental results for the traditional approach.
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Architectures Precision Recall F1-Score Accuracy
3 0.6686 £ 0.1056  0.7223 £0.0619 0.6672 4+ 0.0966 0.7223 £ 0.0619
14) 0.7127 £0.0757 0.7329 £0.0235 0.6823 +0.0270 0.7329 % 0.0235
as) 0.6927 £0.0421 0.7280 £0.0258 0.6984 4+ 0.0367 0.7280 £ 0.0258
(16) 0.6828 £0.0370 0.7236 +0.0142 0.6589 £ 0.0197 0.7236 £ 0.0142
7,8 0.6758 £0.0793 0.7168 £ 0.0407 0.6700 4+ 0.0435 0.7168 £ 0.0407
Table 2. Experimental results for the contemporary approach.
Architectures Precision Recall F1-Score Accuracy
MobileNetV2 0.0486 + 0.0400  0.2030 £ 0.0857 0.0766 4+ 0.0581  0.2030 % 0.0857
ShuffleNet 0.9995 £ 0.0003  0.9995 £ 0.0003 0.9995 4+ 0.0003  0.9995 %+ 0.0003
InceptionV3 0.9990 £ 0.0005  0.9990 £ 0.0005 0.9990 £+ 0.0005  0.9990 % 0.0005
VGG-16 0.9987 £ 0.0009  0.9987 £0.0009 0.9987 £+ 0.0009  0.9987 + 0.0009
EfficientNetV2S 0.9988 +0.0009 0.9988 4+ 0.0009 0.9988 + 0.0009  0.9988 + 0.0009
| o - . - a
0.7856 A n
0.6785 - ‘ f ‘ t 3

0.5713

F1 Score

0.4641 -

0.3570 4

0.2498

0.1427 4

0.0355 4

A

A

(8) (14) (15) (16) (7.8)

MobileNetv2 shuffleNet Inceptionv3 VGG-16 EfficientNetv2s

Figure 4. F1-Score for each test repetition per model.

parameter count and diminished parameters when compared
to all other CNNs analyzed. Furthermore, this preference is
reinforced by the computational processing metrics, which
are detailed in Table 3, collected during the experiments.

ShuffleNet is a CNN explicitly tailored for devices with
constrained computational resources typically ranging from
10 to 150 MFLOPs [Zhang ef al., 2018]. Its compact nature,
characterized by a reduced number of parameters and layers,
implies a diminished computational cost during both training
and inference. Consequently, ShuffleNet is well-suited for
integration within solutions adhering to the Agricultural In-
ternet of Things (IoT) paradigm which seeks to enable intel-
ligent identification, positioning, tracking, monitoring, and
management of agricultural entities and processes [Quy et al.,
2022].

Within this context, the proposed CNN can find practical
application, particularly in technologies like UAVs, which
play a crucial role in the remote surveillance of coffee plan-
tations with respect to the targeted pathologies. Such utiliza-
tion aligns with the principles of Edge Computing, an ap-
proach that extends cloud computing capabilities to the pe-
riphery of a network, encompassing IoT devices. Edge Com-
puting is renowned for its advantageous features, including
low latency, efficient data management, reduced bandwidth

consumption, and scalability [Hassan et al., 2018].

Furthermore, ShuffleNet has demonstrated its utility in ad-
dressing various Computer Vision (CV) problems relevant to
the Digital Agriculture domain, including the classification
of weeds in agricultural fields [Carvalho et al., 2019], real-
time navigation and detection in the context of apple-picking
robots [Ji et al.,2022], and the formulation of a methodology
for estimating maize nitrogen grading [Sun et al., 2023].

Although the experimental results obtained on a diverse
and realistic dataset labeled by experts have exhibited
promising metrics that endorse the adoption of CNNs for
the detection of coffee leaf diseases, it is imperative to ac-
knowledge potential threats to the validity of these find-
ings. A comparative analysis between the proposed solu-
tion, utilizing ShuffleNet and having experimental accuracy
0199.93+0.03 %, and the work of Aufar et al. [2023], which
reports a experimental accuracy of 100 % using Inception-
ResNetV2, reveals a compelling performance by both ap-
proaches in addressing a real-world Computer Vision task. A
visual inspection of dataset samples, as depicted in Figures
6-8, provides preliminary insights into this matter.

The dataset providers have reported the utilization of data
augmentation techniques. Data augmentation is considered
as a preprocessing step applied exclusively to the training
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Figure 5. Confusion matrices for ShuffleNet on the testing data of each experimental repetition.

Table 3. Computing processing metrics for the contemporary approach.

Architectures Training Time Parameters GFLOPS Epochs
MobileNetV2 209 + 185 2.91 Mi 0.237248 36 £ 02
ShuffleNet 314+ 37s 1.37Mi 0.238612 69 £ 08
InceptionV3 512 £ 80s 22.85Mi 0.261484 70+£11
VGG-16 1364 £97s 67.15Mi 0.328626 92+ 06
EfficientNetV2S 544+ 71s 22.85Mi 0.351497 74409

(c) 4 (1006).jpg

(a) 4 (1003).jpg (b) 4 (1004).jpg

(d) 4 (1021).jpg (e) 4 (1044).jpg

Figure 6. Samples from Cescospora class. Source: [Jepkoech et al., 2021].

(a) 1 (12771).jpg

(b) 1 (12773).jpg
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(d) 1 (12780).jpg

(e) 1 (12783).jpg

Figure 7. Samples from Miner class. Source: [Jepkoech ef al., 2021].

set, primarily to encourage model regularization [Goodfel-
low et al., 2016]. Regrettably, the authors of the dataset have
not provided explicit instructions or information regarding
how the dataset should be partitioned to prevent augmented
data from inadvertently infiltrating the test set. This situation,
despite the incorporation of countermeasures against overfit-
ting, such as early stopping, has the potential to impede the
model’s generalization capacity significantly. In the event
that the issue is not attributed to data augmentation, a visual
examination suggests that the data collection process may not

have adequately encompassed sample diversity as typically
encountered in real-world scenarios. This apparent lack of
diversity substantially reduces the complexity of the learn-
ing task for CNNs, given their inherent capacity for handling
features that are invariant under translation, rotation, scale,
illumination and color [Goodfellow ef al., 2016].

Consequently, a more comprehensive investigation is war-
ranted to substantiate the observed high performance. In this
context, the subsequent section will present the results of an
extended validation encompassing three distinct datasets, all
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centered on the task of coffee plant leaf disease detection.

5 External Validation

According to Ho et al. [2020], external validation is criti-
cal for establishing ML model quality. It involves the use
of independently derived datasets (hence, external), to vali-
date the performance of a model that was trained on initial
input data. The reason this method is useful is because a
well-trained model, that’s good at capturing important infor-
mation, is robust and will continue to exhibit good results
even when repeatedly challenged with new data.

In this section, an examination is undertaken to explore
a divergent external validation approach, the primary aim of
which is to determine the extent of generalizability within the
feature set. This assessment was pursued by using three dis-
tinct coffee leaf diseases datasets based on the criterion that
they had been utilized in at least one prior study involving
DL methods. The performance of ShuffleNet was analyzed
under two conditions: one adhering to the identical experi-
mental parametrization detailed in previous sections (named
A), and the other without the application of Early Stopping
regularization (named B). This choice was motivated by the
consideration that these datasets offer a smaller volume of
training data compared to JMUBEN and JMUBEN?2 datasets.
Subsequent subsections provide a comprehensive presenta-
tion of these datasets and the results derived from the gener-
alization evaluation.

5.1 BRACOL Dataset

The Brazilian Arabica Coffee Leaf (BRACOL) dataset was
created to assess Deep Learning algorithms for identifying
coffee tree biotic stresses and healthy samples [Krohling,
2019]. Smartphone-captured images of coffee leaves’ abax-
ial (lower) sides were collected throughout the year and
expert-labeled, then partitioned into training, validation, and
test sets. The Symptom dataset, comprising 2209 images,
was generated by isolating single stress conditions from orig-
inal images. Illustrative samples from the BRACOL Symp-
tom dataset are presented in Figure 9.

As it can be seen, BRACOL Symptoms datasets comprise
the same classes as IMUBEN and JMUBEN?2 datasets, but
the main difference relies on the number of samples which
is 185.45 % smaller than the latter. Moreover, there are also
differences on the distribution of samples per class, as shown
in Figure 10.

(©) 1(122).jpg (@) 1 (123).jpg
Figure 8. Samples from Phoma class. Source: [Jepkoech ef al., 2021].
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(a) Healthy

(b) Cescospora (¢) Rust

(d) Miner (e) Phoma
Figure 9. Randomly drawn examples from each class from BRACOL

Symptom dataset
Source: [Krohling, 2019].

261 323 621 540 464

Health Cercospora Em Rust mm Miner B Phoma

Figure 10. Samples per class on BRACOL Symptom dataset. Source:
[Krohling, 2019].

The proponents of BRACOL Symptoms dataset already
provided a stratified partition of samples to carry out a hold-
out cross-validation: 70 % for train, 15 % for train valida-
tion and 15 % for test. Prior work on literature evaluated
different CNN architectures on such multi-classification Su-
pervised Learning CV task, where best results were observed
for ResNet50 (25 Mi parameters, 50 layers) trained for 80
epochs using the SGD optimizer, data augmentation and
pre-trained weights from ImageNet dataset [Esgario ef al.,
2020b].

The results obtained on evaluating the ShuffleNet on the
BRACOL Symptom dataset are shown in Table 4 in contrast
with the related work from literature. Upon examining the
external validation results, it is evident that the model pro-
posed in this study exhibits commendable generalization ca-
pabilities, despite being trained on a notably smaller dataset
in comparison to the original experiments. On contrasting
the results with related work, ShuffleNet falls short in com-
parison with ResNet50, an F}-Score reduction of 11.21 %,
probably due to the smaller number of parameters (94.52 %
less parameters), weights initialization strategy and data aug-
mentation procedures.
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Table 4. Experimental results on BRACOL Symptom dataset.

Architectures  Precision Recall F1-Score  Accuracy

ShuffleNet A 0.8309 0.8268 0.8244 0.8268

ShuffleNet B 0.8635 0.8626 0.8605 0.8626
ResNet50 0.9685 0.9699 0.9692 0.9707

5.2 RoCoLe Dataset

The RoCoLe dataset contains imagery of upper and back side
of coffee leaves collected from Coffea canephora species,
also known as robusta coffee, showing healthy samples and
also examples affected by Rust (Hemileia vastatrix) and Red
Spider Mite (Tetranychus urticae), as shown in Fig. 11.
The dataset contains 1560 images collected from a crop in
Ecuador with 390 coffee plants [Parraga-Alava et al., 2019].
The number of samples per class for this dataset are depicted
in Fig. 12.

R P

(a) Healthy (b) Rust (¢) Red Spider Mite
Figure 11. Randomly drawn examples from each class from RoCoLe
dataset.
Source: [Parraga-Alava et al., 2019].
602 791 167

Emm Healthy EEm Rust Red Spider Mite

Figure 12. Samples per class on RoCoLe dataset. Source: [Parraga-Alava
etal.,2019].

It can be noticed that the images in the RoCoLe dataset
were captured under particularly demanding conditions for
automated detection, as they exhibit variations in back-
ground, leaf positioning, illumination, and other factors. In
order to compare with related work, it was performed a
80 %/20 % holdout cross-validation strategy, but with 10 %
of overall data for training reserved for validation.

Based on the results presented in Table 5, it is evident that
ShuffleNet consistently delivered equiparable performance
in the external validation process for this dataset, as observed
in both experiments A and B. Nevertheless, the outcomes
did not surpass the results obtained in the study by Isik and
Eskicioglu [2022]. The aforementioned authors explored
eight different CNN architectures, and five of them achieved
an experimental accuracy of 100 % on the RoCoLe dataset.
MobileNetV2 was selected as their reference architecture
due to its smaller size, although it is important to note that pre-
processing the images incurred computational costs in their
work. This disparity in results may be attributed to variations
in coffee species, data availability, image capture conditions,
and the specific pathologies considered.
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Table 5. Experimental results on RoCoLe dataset.

Architectures  Precision Recall F1-Score  Accuracy
ShuffleNet A 0.5469 0.5841 0.5488 0.5841
ShuffleNet B 0.5777 0.5873 0.5801 0.5873
MobileNetV2 1.000 1.000 1.000 1.0000

5.3 Rust and Miner in Coffee Dataset

The third dataset considered in this external validation con-
tains examples of unhealthy-only arabica coffee leaves af-
fected by rust and miner [Brito Silva et al., 2020], as shown
in Fig. 13. It comprises 257 images affected by miner and
258 images affected by rust. Samples were randomly strat-
ified partitioned into training (70 %), validation (10 %) and
test (20 %), according to the same strategy used in the previ-
ous external validation scenarios.

(a) Miner

(b) Rust
Figure 13. Randomly drawn examples from each class.
Source: [Brito Silva et al., 2020].

Results on ShuffleNet for Rust and Miner in Coffee
Dataset are shown in Table 6. Related work on the same
dataset considered a CV detection task [Carneiro et al., 2021]
and, thus, cannot be directly compared.

Table 6. Experimental results on Rust and Miner in Coffee dataset.

Architecture  Precision Recall F1-Score  Accuracy
ShuffleNet A 0.2730 0.5225 0.3586 0.5225
ShuffleNet B 0.9371 0.9369 0.9369 0.9369

The third external validation scenario provides insights
into the differences between the training strategies A and
B and their impact on the final performance results. It un-
derscores the resilience of ShuffleNet in addressing the val-
idation task, even when faced with a scarcity of training
data. However, it suggests that enhanced generalization out-
comes might be achievable with additional refinements in
fine-tuning. An alternative approach that could potentially
enhance performance during external validation involves uti-
lizing pre-trained weights from the initial task.

6 Conclusion and Future Work

The aim of this work was to compare the performance of two
approaches using ANNSs in the context of the CV multi-class
classification problem of coffee leaf diseases. To achieve
this, a realistic dataset and an experimental scenario with
cross-validation and repetitions were considered. The re-
sults obtained, supported by statistical tests, demonstrated
that CNNs proved to be more suitable for this task. The
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ShuffleNet architecture, listed as the reference solution, was
trained with less data and has significantly fewer parameters
than other related works in the literature. This was corrobo-
rated by processing cost metrics collected during the exper-
iments. In order to provide a more stringent assessment of
the reference solution, a divergent external validation was
conducted, using three other datasets for the same problem.
The experimental results obtained favorably corroborated the
robustness of the ShuffleNet architecture for this task, even
when considering a different coffee species.

This article contributes to the body of solutions for Digi-
tal Agriculture, specifically focusing on coffee farming, aim-
ing to address the challenges associated with the detection of
a major biotic stress factors affecting this cultivation. The
proposed solution leverages emerging Deep Learning tech-
niques, while also considering the computational cost in-
volved, which may facilitate efforts for its in sifu adoption
within the context of Edge Computing for Agricultural IoT.

The proposed solution has limitations that need to be ad-
dressed. First, the primary databases used, JMuBEN and
JMuBEN2, are from Kenya. In Brazil and other regions,
the considered pathologies may manifest differently due to
distinct environmental conditions. Additionally, there may
be other pathologies not included in these databases. There-
fore, a more in-depth analysis, particularly involving experts
in the field, is necessary to fully utilize the proposed solu-
tion. This may lead to adaptations such as retraining or trans-
fer learning. Another limitation arises from the nature of
plant foliar disease image databases. The examples in these
databases, which are essential for the development of Ma-
chine and Deep Learning models, only consider situations
where the disease characteristics are already sufficiently de-
veloped. This prevents early interventions that could min-
imize damage. This latter aspect, in particular, should be
considered when proposing new databases for this domain,
favoring the development and applications of Digital Agri-
culture.

Future work will involve deploying the proposed solution
on a low-cost, single-board computer (e.g., Raspberry Pi or
Jetson Nano) for real-world field testing on coffee crops in
collaboration with an agricultural specialist. This deploy-
ment aims to assess the solution’s performance under prac-
tical conditions. Furthermore, we emphasize the need for fu-
ture research to evaluate the processing power requirements
of these CNNs for achieving energy-sustainable solutions.
Such evaluations will pave the way for advancements in
Green Al and Edge Computing, fostering the development
of resource-efficient models suited to resource-constrained
environments.
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