
Model Based Markerless 3D Tracking applied to

Augmented Reality

João Paulo Lima, Francisco Simões, Lucas Figueiredo, Judith Kelner

Virtual Reality and Multimedia Research Group (GRVM) - Informatics Center (CIn)

Federal University of Pernambuco (UFPE)

Recife/PE, Brazil

{jpsml, fpms, lsf, jk}@cin.ufpe.br

Abstract— This paper presents the implementation of 3D

tracking techniques based on natural features for augmented

reality. The contemplated techniques are from the model based

category, comprising recursive and non-recursive methods, as

well as edge and texture based techniques. An evaluation of the

implemented 3D trackers was performed regarding performance

and accuracy under different scenarios.

markerless tracking; augmented reality; computer vision

I. INTRODUCTION

AR systems support the coexistence of real elements (that
are part of users’ world) and synthetic ones (computer
generated) in the same environment [1]. Nowadays, this kind
of user interface has obtained more attention due to the fact that
it allows users performing tasks in a more intuitive, efficient
and effective way. AR interfaces superimpose virtual
information – 2D or 3D, textual or pictorial – onto real world
scenes in real-time, registered in 3D, and allow users
interaction with real and virtual elements simultaneously. In
this kind of interface the real environment takes part of the
application context. In AR the technical challenges lie in
determining, in real-time, what should be shown where, and
how. The latter problem is especially important when the visual
appeal of the result is crucial. Then substantial effort must go
into seamlessly fitting the information into the scene, according
to the objectives of the system [2]. Ideally, AR proposes that
the user must not be able to distinguish between real and virtual
information, demanding that the virtual elements show both
geometric (correct placement, correct size, occlusions
identification) and photometric (shadowing, mutual reflections,
chromatic adaptation to scene illumination) consistency. Even
under simplified conditions these problems cannot be trivially
solved.

The problem related to correctly positioning virtual
information relative to the real environment, called registration,
is solved by tracking the environment so that the synthetic
elements can be adequately registered with the real scene.
There are diverse tracking technologies available, such as
optical sensors, movement sensors, thermal imaging,
ultrasound, magnetic sensors, GPSs, among others [3]. They
capture features from the real world, and based on this
information the AR system determines when, where and how
the virtual scene should be exhibited.

Optical tracking is often used for this purpose due to cost,
accuracy and robustness requirements. Two types of optical
tracking can be cited: marker based and markerless. Marker
based tracking is a more well established approach for
registration. It makes use of known artificial patterns placed
along the environment in order to perform camera pose
estimation. On the other hand, markerless tracking differs from
the former one by the method used to place virtual objects in
the real scene. In markerless AR any part of the real
environment may be used as a marker, since the system
exploits natural features present in the real scene to perform
tracking. Markerless AR has received more attention from
researchers in the latest years, and presents important
challenges to be overcome.

Markerless AR systems use natural features instead of
fiducial markers in order to perform tracking. Therefore, there
are no ambient intrusive markers that are not really part of the
world. Furthermore, markerless AR counts on specialized and
robust trackers. Another advantage is the possibility of
extracting from the surroundings characteristic information that
may later be used by the AR system for other purposes.

In this paper, we address an online monocular markerless
AR approach. Optical tracking presents some advantages when
compared to its counterparts, such as higher precision and less
sensibility to interference. Besides that, the use of a single
camera allows lower cost and more compact systems.
Calibration issues are also easier to be managed. Nonetheless,
it is important to mention that tracking and registration
techniques are more complex in markerless AR systems.

In several AR application scenarios, markerless tracking is
mandatory or at least desirable [4]. An example of such
application is an AR system for equipment maintenance [5].
Using markers for tracking the equipment presents many
disadvantages: tracking failures can occur due to occlusion of
markers by the user’s body and tools; the markers can hide
important parts of the equipment; the equipment pose has to be
calibrated with each marker present at the scene. Therefore, a
markerless tracking approach is strongly advised in such
scenario.

This paper details the development of some markerless 3D
tracking techniques applied to AR. The techniques addressed in
this work belong to the model based category of the markerless

2 SBC Journal on 3D Interactive Systems, volume 1, 2010

ISSN: 2236-3297

AR taxonomy. This taxonomy is further explained in
Section III. Three different markerless tracking methods were
developed: point sampling [6], interest point based [7] and
keypoint based [8]. They differ by the features of the real
objects that are exploited for tracking purposes: point sampling
uses edges, while interest point based and keypoint based use
textures. They also differ by their tracking nature: point
sampling and interest point based are recursive, which means
that they use the last calculated pose as an estimate for the
current pose; keypoint based is non-recursive, being capable of
using just the information from the current frame in order to
estimate the pose.

The main contributions of this work are: (1) Survey and
taxonomy of existing markerless tracking techniques for AR;
(2) Modifications performed in some phases of the
implemented techniques, such as using the Moving Edges
method in the point sampling technique, as well as the SURF
keypoint and the Lu algorithm in the keypoint based technique;
(3) The Edge-ID algorithm, which is a novel method for visible
edges detection; (4) Evaluation of the implemented techniques
and comparison under different configurations, which can be
used as a reference by other AR researchers and practitioners.

This paper is organized as follows. Section II describes the
main concepts of camera representation and robust pose
estimation, required for performing markerless 3D tracking for
AR, and more specifically model based tracking. Section III
explains how markerless 3D tracking methods for AR can be
categorized and its main concepts. Section IV describes the
model based techniques developed in this work. Section V
discusses the results obtained with each method. The
conclusions and future work are shown in Section VI.

II. MATHEMATICAL BACKGROUND

Camera tracking, which is a fundamental aspect in tracking
and register phases, comes from recovering information that
correctly describes a virtual camera used to position virtual
objects in the real scene and to render these objects in the
image. There are many models for projecting 3D objects onto
2D images, varying between simple pinhole (perspective)
camera models to complex lenses models that simulate human
eyes [9]. In this work, it was considered the pinhole camera
model without distortion factors (lenses), which is a well
known simple model that correctly approximates a virtual
camera in terms of geometry.

In all camera models, virtual objects are defined in a
general coordinate system, also called world coordinate
system , in a way to have a generic description that

does not depend on the camera system used . The

camera system corresponds to the world coordinate system
after applying a rotation and translation transform and, because
of that, it is necessary to get object coordinates from the world
coordinate system to the camera coordinate system before
projecting it onto the image plane (see Fig. 1). This affine
transform is described by the composition of the rotation

and translation matrices, resulting in a

 matrix.

When applied to the homogeneous coordinates of the 3D point,
the composed matrix leads to the same 3D point in the camera
coordinate system. This matrix is called extrinsic parameters

matrix because of its relation with the virtual camera model
movement.

Figure 1. The 3D object, its projection onto the image plane and the relation

between world and camera coordinate systems.

It is also important to observe that, for other purposes like
pose estimation, there are many ways to represent the rotation
transform. One of them is the axes-angle representation, which
corresponds to a vector representing a fixed rotation axis

, and its norm referring to a rotation angle . This

representation has an one-to-one correspondence to the R x
form by using the Rodrigues and inverse Rodrigues
formula [10].

In the pinhole camera model, a point in image

plane

 is obtained by projecting the 3D
point , written in camera coordinate system, onto the
image plane by obeying to perspective projection conditions
(see Fig. 2). By similarity of triangles,

 and

 . (1)

Figure 2. Perspective transform from 3D points to image points.

However, the image plane is divided in pixels units that
correspond in the real world to well defined areas with
dimensions written in millimeters. They are, by default, called
pixel width (

) and pixel height (

)

1
. Considering that, the

dimensions of u and v are not written in millimeters but in
pixels, and by this the equation (1) must be rewritten as

 and

 . (2)

1
 In most of real camera specifications,

 and

parameters are not given.

Instead, their relationship is provided, known as aspect ratio (),

where

 .

SBC Journal on 3D Interactive Systems, volume 1, 2010 3

ISSN: 2236-3297

By looking at the problem of projecting the 3D point again,
a first version of the k transformation matrix comes up, which
takes a 3D point in camera coordinates and returns its 2D
image representation in homogeneous coordinates:

 . (3)

If the pixels of the camera are not squared, it is added in the
equation a new parameter, also called skew factor

2
, that

correlates the angle between and dimensions with its 3D
point, turning the affine transformation (3) into:

-

 . (4)

The final matrix presented in equation (4) is called
intrinsic parameters or calibration matrix because of its
dependence on the real camera used to display the scene. By
combining the intrinsic and extrinsic parameters matrices we
have the camera projection matrix that is responsible for
getting 3D points from the world coordinate system and
projecting them onto the camera image plane

3
:

-

 .(5)

In order to estimate camera extrinsic parameters for a given
frame, some correspondences between 2D points from the
image and 3D points from the model are needed. In the
following subsections, two classes of methods for pose
estimation are described: Pespective-n-Point (PnP) and
minimization of reprojection error.

PnP is basically the problem of estimating the camera
pose given n 2D-3D correspondences. The first intuitive
approach for solving this problem is to apply the
equation to each correspondence and then solve a
linear system. This method is called Direct Linear
Transformation (DLT) [11] and can estimate all parameters
of (even if the intrinsic ones are not known). However, when
using DLT to calculate , in most cases, the number of

2
 Since is generally near to 90o, the skew factor is generally only

referenced as - and the influence of the term is discarded.
3
 In order to finish the transformation from 3D to 2D points, it is also

necessary to normalize the answer in terms of the scale factor s:

to

.

correspondences must be higher than 15, which is more than
the necessary when applying other methods and for some
techniques is not an acceptable number. Furthermore, the DLT
method minimizes an algebraic error, but for the pose
estimation problem it is preferable to minimize a geometric
error.

In many AR applications the intrinsic parameters do not
change during the frame sequence since the same camera
configuration is used the whole time. So it is preferable to
obtain them separately, reducing in a considerable way the
number of correspondences needed to estimate the current pose
and probably also the estimation error. Encouraged by this
context, the PnP problem explicitly uses the intrinsic
parameters, which must be previously obtained, and estimates
only the extrinsic parameters.

This way, when trying to solve the P3P problem, four
solutions are reached. This means that it is not possible to find
out a unique solution having only 3 correspondences. An
approach to find the correct pose is adding a correspondence
and solving the P3P problem for each subset of 3
correspondences; then, a common pose will emerge from the
results. Solving P4P and P5P problems usually reaches a
unique solution, unless the correspondences are aligned.
For n ≥ 6 the solution is almost always unique.

Several solutions have been proposed for the PnP problem
in the Computer Vision and AR communities. In general they
attempt to represent the n 3D points in camera coordinates
trying to find their depths (which is the distance between the
camera optical center and the point). In most cases this is
done using the constraints given by the triangles formed from
the 3D points and . Then is retrieved by the Euclidean
motion (that is an affine transformation whose linear part is an
orthogonal transformation) that aligns the coordinates.
Reference [12] proposed an iterative, accurate and fast solution
that minimizes an error based on collinearity in the object
space. Later, the EPnP [13] solution showed a method for
PnP if n ≥ 4. It represents all points as a weighted sum of four
virtual control points. Then the problem is reduced to estimate
these control points in the camera coordinate system.

In despite of being able to estimate the pose based solely on
the 2D-3D correspondences, PnP methods are sensitive to
noise in the measurements, resulting in loss of accuracy. In this
scenario, a more adequate approach for calculating the pose is
by minimization of the reprojection error. This consists in a
non-linear least squares minimization defined by the following
equation:

 , (6)

where: and are correspondent 3D and 2D points in
homogeneous coordinates, respectively; is the projection
function, which takes as arguments the projection matrix and
the 3D point and returns the 2D projected point; is the
Euclidean distance function between 2D points, which is called
residual; and are the extrinsic parameters to be estimated.

4 SBC Journal on 3D Interactive Systems, volume 1, 2010

ISSN: 2236-3297

Due to the fact that the function is non-linear, there is not
a closed form solution to equation (6). In this case, an
optimization method should be used, such as Gauss-Newton or
Levenberg-Marquardt [14]. These methods iteratively refine an
estimate of the pose until an optimal result is obtained. The
pose increment between consecutive iterations is calculated
using the Jacobian matrix of . This matrix can be calculated
analytically or using differentiation. A requirement for such
kind of iterative method is a good initial estimate. Since the
difference between consecutive poses is often small, the pose
calculated for the previous frame can be used as an estimate for
the current frame.

When calculating the pose, few spurious 2D-3D
correspondences (named outliers) can ruin estimation even
when there are many correct correspondences (named inliers).
There are two common methods to decrease the influence of
these outliers: RANdom SAmple Concensus (RANSAC) [15]
and M-estimators [16].

The RANSAC method is an iterative algorithm that tries to
obtain the best pose using a sequence of random small samples
of 2D-3D correspondences. The idea is that the probability of
having an outlier in a small sample is much lower than when
the entire correspondence set is considered.

The algorithm receives basically 4 inputs:

 A set of 2D-3D correspondences;

 A sample size , which is a small value (e.g. 6);

 A threshold , used to classify the correspondences as
inliers or outliers. It consists in the maximum value
allowed to the return of the function from
equation (6). A commonly used value for t is . .

 A probability of finding a set that generates a good
pose. This probability is utilized for calculating the
iteration count of the algorithm. This value is usually
set to or .

RANSAC works in the following way: initially, it is
determined a number of iterations to be executed by the
algorithm, e.g. 500. The number of iterations can be decreased
during algorithm execution, depending on how good is the pose
by that time.

After this, algorithm execution begins. From the set
provided, correspondences are randomly chosen. From this
sample, a pose is calculated using any of the methods
previously presented. Next, the other correspondences that
were not included in the sample are utilized to verify how good
the found pose is. In order to do this, the function from
equation (6) is applied to the correspondence. If the distance is
lower than the threshold, the correspondence is an inlier.
Otherwise, it is an outlier. After all the correspondences are
tested, it is verified the percentage w of the correspondences
in that were tagged as inliers. If the current value of is
bigger than any previously obtained percentage, the calculated
pose is stored, since it is the most refined by that time.

When a refined pose is found, the algorithm tries to
decrease the number of iterations m needed. The idea behind

this calculation is very straightforward. Since the
correspondences are sampled independently, the probability
that all correspondences are inliers is . Then, the

probability that there is any outlier correspondence is - . The

probability that all the samples contain an outlier is -

and this should be equal to - , resulting in:

 - -

. (7)

After taking the logarithm of both sides, the following
equation can be obtained:

 -

 -
. (8)

M-estimators are often used together with minimization of
reprojection error in order to decrease the influence of outliers.
M-estimators apply a function to the residuals that has a
Gaussian behavior for small values and a linear or flat behavior
for higher values. This way, only the residuals that are lower
than a threshold have an impact on the minimization. A
modified version of equation (6) is then used:

 , (9)

where is the M-estimator function. Two of the most used M-
estimators are Huber and Tukey [16]. The Huber M-estimator
is defined by:

 -

 , (10)

where is a threshold that depends on the standard deviation of
the estimation error.

The Tukey M-estimator can be computed using the
following function:

 - -

 . (11)

The graphics of the Huber and Tukey M-estimator
functions, which can be seen in Fig. 3, highlight how the
residuals are weighted according to their magnitude.

Figure 3. Huber M-estimator function with (left) and Tukey M-

estimator with (right).

SBC Journal on 3D Interactive Systems, volume 1, 2010 5

ISSN: 2236-3297

III. MARKERLESS AUGMENTED REALITY

Markerless AR systems integrate virtual objects into a 3D
real environment in real-time, enhancing user’s perception of,
and interaction with, the real world. Its basic difference from
marker based AR systems is the method used to place virtual
objects in the user’s view. The markerless approach is not
based on the use of traditional artificial markers, which are
placed in the real world to support position and orientation
tracking by the system. In markerless AR, any part of the real
environment may be used as a marker that can be tracked in
order to place virtual objects. Therefore, there are no ambient
intrusive markers that are not really part of the world. Another
advantage is the possibility of extracting from the surroundings
characteristic information that may later be used by the
markerless AR system for other purposes. Nonetheless,
tracking and registration techniques are more complex in
markerless AR systems. Another disadvantage emerges in
online markerless AR applications since it presents more
restrictions.

Techniques developed for online monocular markerless AR
can be classified in two major types: model based and Structure
from Motion (SfM) based, as described in [17]. With model
based techniques, knowledge about the real world is obtained
before tracking occurs and is stored in a 3D model that is used
for estimating camera pose. In SfM based approaches, camera
movement throughout the frames is estimated without any
previous knowledge about the scene, being acquired during
tracking [18].

Considering their tracking nature, model based techniques
can be classified in two categories (Fig. 4): recursive tracking,
where the previous pose is utilized as an estimate to calculate
the current pose [6][7][19][20]; and tracking by detection,
where it is possible to calculate the pose without any previous
estimate, allowing automatic initialization and recovery from
failures [8][21].

Figure 4. Model based online monocular markerless AR taxonomy.

By taking into account the type of feature used for tracking,
model based techniques can also be classified in three other
categories: edge based, where camera pose is estimated by
matching a wireframe 3D model of an object with the real
world image edge information [6][21]; optical flow based,
which exploits temporal information extracted from the relative
movement of the object projection onto the image in order to

track it [19]; and texture based, which takes into account
texture information presented in images for tracking [7][8][20].

The edge based recursive tracking category comprises point
sampling methods, which sample some control points along the
edges of the wireframe 3D model and compare their
projections with strong gradients present in the image [6].
Texture based recursive techniques are also classified in two
subcategories: template matching, which applies a distortion
model to a reference image to recover rigid object
movement [20]; and interest point based, which takes into
account localized features in the camera pose estimation [7].

Edge based tracking by detection techniques are called
view based, since the current frame is matched with 2D views
of the target object previously obtained from different positions
and orientations [21]. Texture based tracking by detection
methods are named keypoint based [8]. Keypoints are features
invariant to scale, viewpoint and illumination changes. They
are extracted from the object image at every frame, providing
2D-3D correspondences needed for pose estimation.

The presented approaches for model based markerless AR
can be analyzed taking into account some relevant metrics. One
of the most important metrics is the presence of automatic
detection, where user interaction is not required to determine
the initial camera pose. When evaluating an AR application,
the processing load needed to perform tracking has to be
quantified. If the time slice used to estimate camera pose is
short, the remaining processing time can be dedicated to other
tasks. Accuracy and robustness are the last two metrics
considered in the methods analysis. While accuracy is related
to the correctness of pose estimation throughout the frames,
robustness is about how resistant is the tracker to noise sources.
Table 1 compares the model based markerless AR methods
introduced in this section, according to the presented criteria.
The comparison considers the features that are common to
most of the techniques of a given category.

Model based markerless AR approaches may be also
analyzed according to their applicability to a specific scenario.
Edge based methods are more suitable when tracked objects
are polygonal or have strong contours. If objects are textured,
optical flow based techniques should be used (in case of
constant lighting and not very large camera displacement). If
optical flow is not a good option, texture based methods may
be the best solution. If the textured object is planar, template
matching presents good results with low CPU load; if not,
interest point based methods should be used. Tracking by
detection techniques suffer from jitter when they estimate each
pose based only on current frame information. Taking temporal
information into account reduces this problem, but tracking by
detection tends to be less accurate than recursive tracking, due
to lack of precision on matching. View based techniques are
highly accurate, but can cover only a restricted range of
rotations and scales of the target object with low detection
rates.

IV. MODEL BASED TECHNIQUES

In the following subsections, the model based tracking
techniques implemented in this work are detailed.

6 SBC Journal on 3D Interactive Systems, volume 1, 2010

ISSN: 2236-3297

TABLE I. MODEL BASED METHODS ANALYSIS

Category Method Detection Processing Accuracy Robustness

Recursive

tracking

Edge based No Low Jitter

Sensible to:

 Fast camera movement

 Cluttered background

Optical flow based No Low Cumulative errors

Sensible to:

 Fast camera movement

 Lighting changes

Template matching No Low Highly accurate

Sensible to:

 Fast camera movement

 Lighting changes

 Occlusion

Interest point based No High Accurate
Sensible to:

 Fast camera movement

Tracking by

detection

View based Yes High Accurate Restricted range of poses

Keypoint based Yes High Jitter and drift No restrictions

Three techniques were contemplated, two of them
belonging to the recursive tracking category (point sampling
and interest point based) and one of them belonging to the
tracking by detection category (keypoint based). Two of the
methods are texture based (interest point based and keypoint
based), while one is edge based (point sampling). The choice of
these techniques for implementation and evaluation in this
work is due to the desire of allowing the development of
markerless AR systems for different application scenarios.
Regarding texture based recursive techniques, the interest point
based method was preferred over template matching because
the former is capable of tracking fully three dimensional
objects, while the later is more suitable for planar objects.
Concerning tracking by detection, keypoint based was chosen
due to the restriction on the pose range presented by the view
based technique.

A. Point Sampling

The point sampling (PS) edge based technique described in
this paper is based on Wuest et al. [6]. It consists in a recursive
technique that uses points sampled from model edges to
estimate camera’s pose.

This technique starts with an initial pose estimate that will
be used in several phases of the algorithm. After that, points are
sampled in a balanced way from edges and only visible edges
remain to be used in the pipeline. In sequence, sampled visible
points are matched with strong gradient image points and this
information is used to estimate camera’s pose. The pipeline of
the PS technique is depicted in Fig. 5.

As an edge based technique, PS is used for polygonal
objects tracking but, because of its point sampling aspect, it can
also be used for curved objects tracking with small changes. It
is also robust to illumination changes, partial occlusion and
self-occlusion problems. The following subsections detail each
phase of the PS algorithm.

Figure 5. PS technique workflow diagram.

1) Control points sampling: As sampling is a key point of

this algorithm, it is important to use a sampling coefficient

applied to the projected edges in a way to balance the

sampling process. This factor is responsible for allowing

sampling from edges while maintaining a fixed amount of

points per length unit of projected edges, according to the

equation:

 . (12)

Held this way, sampling points appears uniform, balancing
edge’s influence according to its projected size. Thus, it is
considered the real importance of the points in the projected
image and not just the virtual 3D model (see Fig. 6).

Control Points

Sampling

Control Points

Matching

Pose

Calculation

Visible Edges

Detection

SBC Journal on 3D Interactive Systems, volume 1, 2010 7

ISSN: 2236-3297

Figure 6. Sampled points distance (x, y) in edges varies to maintain number

of points proportional to edges size (size, SIZE).

2) Visible edges detection: Self-occlusion, which occurs

when parts of the object occlude parts of itself, is an important

aspect in tracking quality. Since some sampled points do not

have correspondents in the image because of self-occlusion,

they become outliers that will negatively influence the pose

estimation.
In order to eliminate outliers originated by self-occlusion, a

visibility test can be done in many ways. The approach adopted
in [6] for determining the visible parts of the edges at a given
frame makes use of an OpenGL extension which is not
available at some platforms. Reading from the depth buffer,
which could be used with the same purpose, is also not allowed
in all platforms. Due to this, an alternative method was
developed to perform visibility testing. Inspired by the Facet-
ID method described in [7], its goal is to identify edges, and is
called the Edge-ID method. In Facet-ID, the index of each
polygon is encoded in its color value, and after the model is
rendered, it is possible to discover the facet that generated a
given pixel when projected. Edge-ID exploits the same idea for
edges, but for a different purpose: while Facet-ID is used for
finding the 3D back-projection of a pixel and its normal at the
model, Edge-ID aims to determine if a control point sampled
from an edge is visible or not. Another difference between the
methods is that in Facet-ID the model is drawn with filled
faces, while in Edge-ID a wireframe model with hidden line
removal is rendered. This way, only the visible model edges
will have a color value different from the background color. It
is then possible to find out if a control point is visible
by comparing the index of its edge with the index decoded
from the color stored at the position in the color buffer.
The use of unique IDs for each edge is justified by the fact that
points from different edges can be projected to the same
position in image space. If no ID checking is performed, a
hidden control point could be considered visible. Fig. 7
illustrates the proposed visibility testing approach.

Figure 7. Edge-ID method.

In summary, the outline of the Edge-ID method is as
follows:

 Map the color value of each model edge to its index

 Render the model edges with hidden line removal

 For each model edge

o Sample the edge, obtaining control points

o For each sampled point

 If , then the point is
visible

The default coding scheme adopted for mapping the IDs to
RGB color components was rather simple. The color
black (R=0, G=0, B=0) is reserved for representing the
background. Then, each edge index is incremented by one and,
considering its 24-bit binary representation, the most
significant byte is stored at the red channel, the next byte is
stored at the green channel and the least significant byte is
stored at the blue channel. The inverse process is done for
decoding. With this representation, the maximum number of
model edges is . The average edge
count of the models commonly used for tracking does not even
approach this value.

3) Control points matching: Correlation between object

image’s points and virtual points is made with the Moving

Edges (ME) algorithm [22]. This algorithm makes a search

adopting the pipeline described below.
Initially, the edge is projected onto the scene using the

previously estimated pose and control points are sampled.
After that, the ME algorithm performs a search in the line that
passes through the sampled point and is perpendicular to the
projected edge in order to find points of strong gradient as
matching points (see Fig. 8).

Figure 8. The edge is projected and ME looks for strong gradient points

(orange) in a line perpendicular to the edge that passes through the sampled
point (blue).

There are two possible ways to compute the point matching
result: single hypotheses (SH) model, where the algorithm
determines the point of strongest gradient close to the edge as
the match to be used in the process of estimating the pose; and
multiple hypotheses (MH) model, where a fixed number of
strong gradient points is stored to be used as a possible match.

4) Pose calculation: Considering matches found by the

ME it is possible to estimate camera’s pose by using the LM

algorithm with two possible approaches: SH and MH.
In the SH model, reprojection error is minimized by using

the control point found in the matching step. MH uses a more

8 SBC Journal on 3D Interactive Systems, volume 1, 2010

ISSN: 2236-3297

balanced approach that employs, at each iteration of LM, the
strong gradient point that has minimal distance to the projected
virtual point, as can be seen in (13). This addresses the problem
of objects with strong gradient contours near the tracked object,
minimizing their influence:

 , (13)

where: j strong gradient points are the return from the ME
algorithm and mindist chooses the point that is closer to the
projected virtual point at each iteration.

B. Interest Point Based

The interest point based (IPB) technique described in this
paper is based on the work of Vacchetti et al. [7]. It makes use
of keyframes in order to perform drift reduction, which are
generated prior to the tracking procedure in an offline manner.
They are created from images of the target object that have a
known camera pose, as illustrated in Fig. 9. In the online
tracking phase, local features are extracted from the current
frame and matched against the keyframe with a pose that is
closer to the current frame. Based on the obtained matches, the
current pose can be calculated. The workflow of the online
phase of the IPB method is illustrated in Fig. 10. IPB
procedures are detailed next.

Figure 9. Keyframes generated from three different camera poses.

Figure 10. IPB technique workflow diagram.

1) Keyframe generation: Each generated keyframe stores

the following information: the image of the object; the

corresponding 3D pose for this image; a collection of 2D

interest points extracted from the image; the 3D points on the

model that correspond to the extracted 2D features; and the

normals at the object surface for each 3D point.
The first step in order to generate the keyframe consists in

obtaining a frame containing the target object with a known
pose. After this, 2D interest points are extracted from the frame
using an approach that will be described later. These 2D
features are then backprojected in order to obtain the
corresponding 3D points and normals in the model. It is
possible to discover the facet that generated a given pixel when
projected by using the Facet-ID method [7]. Given an interest

point

, the corresponding 3D point can be

obtained by calculating the intersection between the projector
line and the generating triangle. The projector line is
represented by a ray with origin at the camera optical
center and that passes through the interest point in the

projection plane. Ray origin and direction are computed

as follows:

 - , (14)

 - . (15)

2) Keyframe choice: In the IPB pipeline, it is necessary to

discover which keyframe is closer to the current frame. In this

work, it was implemented two different approaches to

keyframe choice: one using Mahalanobis distance between

keyframes poses and current pose; and another using

histograms from keyframes and current frame.
In the Mahalanobis approach, it is calculated the distance

between all keyframes poses and the last frame pose, since it is
a good approximation to the current pose, and the keyframe
that has the minimal Mahalanobis distance to the last frame
pose is chosen. The Mahalanobis distance between the last
frame pose

 and the keyframe pose

 is calculated as

follows:

 -

 -

-

 , (16)

where is the covariance matrix of the keyframes poses,
which is given by:

 -

-

-

 , (17)

where

 is the average pose of the keyframes.

In the histogram approach, the concept of using the last
pose as an approximation of the current pose is also exploited.
All keyframes poses and the last calculated pose are used to
backproject the model using the Facet-ID algorithm. After that,
histograms are generated from each of these images and the
closest keyframe is the one whose histogram has the least
difference relative to the histogram of the current frame.

Keyframe

Choice

Interest Point Extraction

and Matching

Pose

Calculation

Intermediate Image

Generation

SBC Journal on 3D Interactive Systems, volume 1, 2010 9

ISSN: 2236-3297

3) Intermediate image generation: The poses of the

chosen keyframe and the current frame may be not close

enough to allow the matching of their interest points. Due to

this, an intermediate synthetic image is generated from the

keyframe image with a pose near to the one of the current

frame, as can be seen in Fig. 11. In order to perform this, a

patch around each interest point of the keyframe image is

transferred to the intermediate image by applying a

homography. Given an estimation of the current projection

matrix , a keyframe with projection

matrix and a plane approximated by the patch

in the object surface with normal and distance to the origin

 , the homography is obtained by:

 -

 - , (18)

 where
 , (19)

 -
 , (20)

 (21)

 and

 -

 . (22)

A point in the keyframe image is then transferred to a

point in the intermediate image by . A patch size of
10x10 pixels was empirically chosen.

Figure 11. Intermediate image (right) generated from a keyframe (left).

4) Interest point extraction and matching: The Harris

corner detector [23] was applied to extract interest points from

the images. Next, the interest points from the current frame are

matched against the ones from the intermediate image using

the method proposed by Zhang et al. [24]. In this method, the

similarity level between an interest point from

image and an interest point from image is

determined by their normalized cross correlation, which is

given by:

 -

 -

 -

 -

. (23)

According to our experiments, a value of 7 for the window
size n was found to be sufficient. For each interest point
of , it is calculated the similarity level with the nearby interest
points of . A neighborhood size of 50x50 was used. The
interest point from with the highest similarity level (

) is

kept as a match candidate for . The procedure is then
repeated with the roles of and inversed. After this, the
interest points that are mutually pointed out as match
candidates are retained as matches.

5) Pose calculation: Once matching points between

intermediate image and current frame were found,

correspondences between D keyframe’s points and D

image’s points are transitively obtained. The system is then

allowed to estimate camera pose correctly by using these

correspondences together with the LM algorithm, as discussed

in Section II. In order to minimize outliers influence, it is also

used the Tukey M-estimator.

C. Keypoint Based

The keypoint based (KB) technique described in this paper
is based on the work of Skrypnyk et al. [8]. As IPB, an offline
training phase is needed in order to acquire knowledge about
the object to be tracked. A set of 2D object features that are
invariant to scale, illumination and viewpoint are obtained,
together with their corresponding 3D position in the object
model. At runtime, invariant features are extracted from the
current frame and matched with the acquired knowledge base,
resulting in 2D-3D correspondences that enable the
computation of the current pose without any previous estimate.
The pipeline of the online phase of the KB technique is shown
in Fig. 12. Each step involved in the KB technique is described
next.

Figure 12. KB technique workflow diagram.

1) Keypoint extraction: Some points on objects textures

can have a number of associated characteristics that make

them, in some way, unique. These special points are called

keypoints and for each keypoint these associated

characteristics are stored into a high dimensional descriptor

(e.g. the Scale-Invariant Feature Transform (SIFT) [8]

keypoint descriptor has a length of 128).

Keypoint

Extraction

Keypoint

Matching

Pose

Calculation

10 SBC Journal on 3D Interactive Systems, volume 1, 2010

ISSN: 2236-3297

There are some algorithms for extracting keypoints from an
image. Two of them have been used in this work: in a first
moment SIFT was utilized and as a second approach Speeded
Up Robust Features (SURF) [25] was used attempting to obtain
better results.

2) Offline training phase: First of all, it is needed some

information about the object to be tracked. This offline phase

may be basically summarized in the following steps:

 Various keyframes of the model are obtained from a
synthetic scene. These frames must show each face of
the object; if a face is not represented by a keyframe,
this face cannot be recognized in the tracking phase.

 For each keyframe, a camera pose is associated. As the
keyframes have been obtained from a synthetic scene,
it is easy to obtain the camera pose and there is no
doubt about its correctness.

 In each keyframe, keypoints are extracted using one of
the algorithms cited above. A relation between
keypoint and keyframe pose is stored to be used in
future initializations.

 For each keypoint, its 3D correspondence in the model
is found using the camera pose and the Facet-ID
algorithm previously described.

 A kd-tree of keypoints is constructed using their
descriptors [8]. This tree will reduce a lot the searching
time of keypoints matches.

At the end of this pipeline a set of keypoints with their 3D
correspondences are arranged into a kd-tree and now the new
keypoints obtained in the tracking phase can be matched with
the offline data.

3) Keypoint matching: Starting the online tracking

pipeline, the first step is to extract keypoints from the current

frame. This extraction must use the same method chosen in the

offline phase (e.g. SIFT).
Then, for each extracted keypoint, it is executed a Best Bin

First search [8] in the kd-tree to find its match (if it has one).
This search returns the two nearest neighbours of the keypoint.

By verifying the Euclidian distance between the neighbours
and the extracted feature descriptors it can be checked if there
is an error in the search. The closer are the distances the more
probable is that it is an error case, because given the cardinality
of the descriptors it is very improbable that they are similar.
Then, a ratio threshold is used to discard these cases. If the
distances ratio is lower than the threshold, the nearest
neighbour and the extracted keypoint are considered as a match
case and establish a 3D correspondence to the new keypoint.
The ratio threshold used was 0.5. Fig. 13 shows the current
frame keypoints matched with some keypoints of a keyframe.

After analyzing all extracted keypoints there will be a given
number of matches, but if this number is lower than a
predefined threshold, it is considered that a tracking failure has
occurred. It has been empirically verified that when the number
of matches falls below 5 the results showed to be not
acceptable, so 5 has been used as the threshold that detects the
failures.

Figure 13. Keypoint matching.

4) Pose calculation: Once the set of matches has been

obtained, the next step is to estimate a camera pose for the

current frame. For this it was utilized RANSAC together with

two methods for pose hypothesis generation: minimization of

reprojection error using LM and the Lu PnP algorithm (see

Section II).
The reprojection is done using equation (6), with the

addition of a confidence factor that is inversely proportional to
the keypoint scale. When using LM, an initial estimation is
needed that will be converted into a new pose. During the
tracking, the last pose obtained is used to solve this, but if the
current frame is the first one there is no previous pose to be
used. The same occurs when there is a tracking failure, because
the last pose obtained may not be reliable. In these cases, the
initial estimation used is the pose of the keyframe that
contributes with the most number of matches of the current
frame.

V. RESULTS

The implemented model based techniques have been
evaluated taking into account frame rate and accuracy metrics.
As explained in Section III, the implemented techniques differ
by the type of object that is more suitable of being tracked
using them. Due to this, different objects and scene sequences
were used in the evaluation of each method. As the techniques
have different purposes, a direct comparison between them is
not always possible or desirable.

The desktop computer used to perform the tests has an
AMD Athlon 64 3200+ processor, 1 GB of RAM, a NVIDIA
GeForce 8800 GTX graphics board with 768 MB of memory
and a screen resolution of 1280 x 1024 pixels. The A4Tech
ViewCam PK-635 camera was used, with a resolution of
320x240 pixels and a frame rate of 30 fps. The operating
system is Microsoft Windows XP Professional SP3. The
development tool utilized was Microsoft Visual Studio .NET
2005 Professional Edition. The VXL [26] library provided
most of the math and computer vision support required. The
ViSP library [27] was also used, since it contains an
implementation of the ME algorithm, which had to be modified
to support MH. Feature extraction for KB was done using SIFT
GPU [28] and the official SURF implementation [25].
Keypoint matching was done using Rob Hess’ implementation
[29]. It was also used the implementation of the Lu PnP
technique available on the ARToolKitPlus library [30].
OpenGL was utilized for 3D graphics rendering. All the images
used in the test sequences have QVGA resolution (320 x 240
pixels).

SBC Journal on 3D Interactive Systems, volume 1, 2010 11

ISSN: 2236-3297

A. Point Sampling

The PS technique was evaluated using SH and MH
approaches with real (cube) and synthetic (building) sequences.
Fig. 14 shows examples of real and synthetic sequences
tracking using a wireframe model to illustrate the correctness
of this technique.

Figure 14. PS tracking of synthetic (top) and real (bottom) sequences.

Fig. 15 illustrates tracking instability generated from high
gradient object’s approximation in the SH approach against
MH stability using 5 hypotheses in the pose calculation step.

Figure 15. SH instability (top) and MH stability (bottom).

Table 2 and Fig. 16 present a performance evaluation using
both synthetic and real sequences with SH and MH approaches.
The table presents timing for all computational relevant steps
of the tracking algorithm and the figure shows the total
computational time against average times for all tests. As
expected, MH has presented more stability than SH in despite
of a worse average speed of 133.1 ms and 30.19 ms (MH)
against 61.44 ms and 18.57 ms (SH). The obtained frame rates
are suitable to AR applications. The performance difference
between synthetic and real data sequences is basically because
of the complexity of the tracked objects, greater in the synthetic
sequence (703 faces) than in the real one (6 faces). The
bottleneck was the pose calculation step.

TABLE II. COMPARISON TABLE OF TIMES AND # OF MATCHES FOR THE

PS TRACKING ALGORITHM

 Synth

SH

Synth

MH

Real

SH

Real

MH

Time

(ms)

Visibility test 17.72 18.73 10.71 11.01

ME 21.07 22.68 5.70 7.75

Pose calculation 22.65 91.69 2.16 11.43

of matches 1537 6964 268 1077

Fig. 17 shows tracking precision by comparing camera’s
centers calculated by PS using SH and MH with ground truth
camera’s centers obtained in the synthetic sequence generation.
The MH approach had an average error of ~2 mm while SH

showed an error of ~3 mm, evidencing quality and robustness
improvement due to the addition of MH. Compared to the
object length and distance to camera (~70 mm both), SH and
MH errors were small and acceptable according to AR
techniques needs.

Figure 16. PS computation times using synthetic/real sequences and SH/MH.

Figure 17. PS tracking precision for the synthetic sequence using SH and MH.

B. Interest Point Based

The IPB technique was evaluated using synthetic and real
data. Fig. 18 shows some pose estimation results for the “cube”
synthetic sequence and the “coffee box” real sequence. In the
cube sequence, 11 keyframes were used, while 8 keyframes
were used in the coffee box sequence. In both cases, the objects
were augmented with their wireframe model, in order to show
if the tracking results are visually acceptable.

Figure 18. IPB tracking results for a synthetic sequence (top) and a real

sequence (bottom).

Table 3 presents the average time required by each step of
the tracking algorithm using both sequences mentioned above
as input. The Mahalanobis keyframe choice method was faster
than the histogram one. Considering the worst case for
keyframe choice (histogram), the average total times spent for
tracking a frame were 50 ms for the cube sequence (resulting in

12 SBC Journal on 3D Interactive Systems, volume 1, 2010

ISSN: 2236-3297

a 20 fps rate) and 90 ms for the coffee box sequence (resulting
in a 11 fps rate). Figure 19 shows the total times spent for
tracking each of the first 250 frames of both sequences. The
obtained frame rate is adequate to AR applications.
Nevertheless, some optimization can still be done, especially
regarding the feature extraction and matching phase, which has
shown to be the bottleneck of the technique.

TABLE III. COMPARISON TABLE OF TIMES AND # OF MATCHES FOR THE

IPB TRACKING ALGORITHM

Cube

Coffee

box

Time

(ms)

Keyframe choice
Mahalanobis 0.46 0.46

Histogram 2.11 1.66

Intermediate image generation 2.60 4.46

Feature extraction and matching 43.18 79.54

Pose calculation 2.20 3.45

of matches 52 96

Figure 19. IPB total computation times for each of the first 250 frames of the

sequences.

The tracking error for the cube synthetic sequence is
presented in Fig. 20. The distance between the tracked object
and the camera ranged between 200 and 600 mm. The side
length of the cube was 100 mm. Different keyframe choice
methods were used. The average errors were 2.80 mm when
using Mahalanobis and 3.44 mm when using histogram. The
histogram tracking error presented some peaks that influenced
the total average error, but showed to be more stable than
Mahalanobis during most of the sequence.

Figure 20. IPB estimation accuracy for the cube synthetic sequence.

Fig. 21 shows tracking accuracy results for the coffee box
real sequence considering both keyframe choice methods. The
camera positions calculated by the tracking algorithm in the
axis are compared with ground truth values provided by the

keyframes. When using the histogram method, poses calculated
by the tracker followed the keyframes throughout the sequence,
while using the Mahalanobis method resulted in a tracking
failure around frame 70.

Figure 21. IPB tracking results of the camera axis for the coffee box real

sequence.

C. Keypoint Based

KB has been tested using a book (planar) and a box (non-
planar) as target objects. In Fig. 22, some successfully
recovered poses are presented for both, planar and non-planar
objects. For most of the cases the result showed to be
acceptable.

The subsequent results are related to the box object. In the
offline training phase, 14 keyframes have been taken from
distinct angles covering all box faces. It was obtained 2,026
SIFT keypoints resulted from these 14 images. Using the same
keyframes, 1,393 SURF keypoints were extracted. The test was
done with both a synthetic and a real scene. The synthetic
scene was a sequence of 250 images of the box in various
angles and distances. The real sequence had 1 minute of
duration and also covers all box faces.

Figure 22. KB results using SIFT and LM with planar (top) and non-planar

(bottom) objects.

Using SIFT there was less than 1% of tracking failures in
both sequences. With SURF (and LM), in 48% of the real and
22% of the synthetic sequence frames tracking failures
occurred. This can be easily understood by looking at Table 4
and seeing the average number of matches obtained with
SURF.

The real sequence showed similar results, however some
behaviors that were not present in the synthetic scene emerged
in this case. For example, it was observed that when the
specular component was predominant, a tracking failure
occurred. This happened due to the fact that not enough
keypoints could be extracted from the scene, since the surface
of the box looses a lot of its texture characteristics.

SBC Journal on 3D Interactive Systems, volume 1, 2010 13

ISSN: 2236-3297

TABLE IV. COMPARISON TABLE OF TIMES AND # OF MATCHES FOR THE

KB ALGORITHM

 Synthetic Real

SURF SIFT SURF SIFT

Time

(ms)

Extraction 39 39 77 51

Matching 12 39 26 105

Lu 6 10 7 8

LM 122 106 113 127

of matches 13 71 7 76

On the other hand, as an advantage SURF showed to be

faster than SIFT (by analyzing extraction plus matching

times). The same occurs with Lu in relation to LM. Indeed, the

fastest fps rate obtained was 17 in the synthetic scene and 9 in

the real one using SURF and Lu together.
The precision of the pose recovered by LM was better than

with Lu. This occurred, in part, due to the fact that when only
one face of the object detained the greatest part of the matched
keypoints, the Lu method inverted the shown face (Fig. 23).
LM however did not fall in this problem since the new pose
results strongly depended of an initial estimation, so the real
pose was always more probable to be obtained than the
inverted one.

Figure 23. Lu method recovering an inverted pose.

The Lu error is reflected in Fig. 24: when the pose is
inverted, the distance between the correct camera center and
the recovered one is much higher than usual. SIFT average
error with LM was 4.6 mm and with Lu was 27.6 mm, while
using SURF combined with LM was 22.4 mm and with Lu was
82.8 mm.

Figure 24. Accuracy of Lu and LM methods with SIFT (top) and SURF

(bottom) keypoints.

VI. CONCLUSIONS AND FUTURE WORK

In this work, three model based tracking techniques have
been implemented, allowing the development of markerless
AR systems for different application scenarios. Analyzing the
results, it was possible to confirm the features listed in Section
III regarding the markerless tracking techniques surveyed in
this work. Although the performance and accuracy results
obtained were satisfactory in many of the tests, some
improvements can still be done. Even though QVGA images
were used in the evaluation of the implemented methods, it has
been shown that computer vision algorithms can handle high
definition images by using massively parallel approaches, such
as GPGPU [31]. Direct comparisons between the results
obtained in this work and those presented in related works were
not done due to the fact that the implementations and datasets
used by such works are not available for free access.

As a way to improve precision, the history of temporal
information accumulated during tracking can be exploited in
order to avoid jittering [7]. Another topic of future
investigation resides in combining different techniques as a
way to improve precision and robustness [32].

ACKNOWLEDGMENT

The authors would like to thank LCCV UFAL for kindly
providing the building model for the tests.

REFERENCES

[1] M. Haller, M. Billinghurst, and T. Bruce, Emerging Technologies of
Augmented Reality: Interfaces and Design, 1st ed., Hershey: Idea Group
Publishing, 2007.

[2] J. Ferwerda “Three varieties of realism in computer graphics,” Proc.
SPIE Human Vision and Electronics Imaging, pp. 290-297, 2003.

[3] R. Azuma “A survey of augmented reality,” Presence: Teleoperators and
Virtual Environ., vol. 6, n. 4, pp. 355-385, 1997.

[4] J. Lima, S. Gomes Neto, M. Bueno, V. Teichrieb, J. Kelner, and I.
Santos, “Applications in engineering using augmented reality
technology,” Proc. CILAMCE, 13 p., 2008.

[5] J. Platonov, H. Heibel, P. Meier, and B. Grollmann, “A mobile
markerless AR system for maintenance and repair,” Proc. ISMAR, pp.
105-108, 2006.

[6] H.Wuest, F. Vial, and D. Stricker, “Adaptive line tracking with multiple
hypotheses for augmented reality,” Proc. ISMAR, pp. 62-69, 2005.

[7] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3D tracking using
online and offline information,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, n. 10, pp. 1385-1391, 2004.

[8] I. Skrypnyk, and D. Lowe, “Scene modelling, recognition and tracking
with invariant image features,” Proc. ISMAR, pp. 110-119, 2004.

[9] D. Forsyth, and J. Ponce, Computer Vision - A Modern Approach, 1st
ed., New Jersey: Prentice-Hall, 2002.

[10] R. Brockett, “Robotic manipulators and the product of exponentials
formula,” Proc. MTNS, pp. 120-127, 1984.

[11] O. Faugeras, Three-Dimensional Computer Vision: A Geometric
Viewpoint, Cambridge: MIT Press, 1993.

[12] C. Lu, G. Hager, and E. Mjolsness, “Fast and globally convergent pose
estimation from video images,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 22, n. 6, pp. 610-622, 2000.

[13] F. Moreno-Noguer, V. Lepetit, and P. Fua, “Accurate non-iterative O(n)
solution to the PnP problem,” Proc. ICCV, 8 p., 2007.

[14] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
Adjustment – A Modern Synthesis,” in Vision Algorithms: Theory and
Practice, B. Triggs, A. Zisserman and R. Szeliski, Eds. Berlim: Springer,
2000, pp. 298-372.

14 SBC Journal on 3D Interactive Systems, volume 1, 2010

ISSN: 2236-3297

[15] M. Fischler, and R. Bolles, “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography,” Commun. ACM, vol. 24, n. 6, pp. 381-395, 1981.

[16] V. Lepetit, and P. Fua, “Monocular model-based 3D tracking of rigid
objects: a survey,” Found. Trends Comput. Graph. Vis., vol. 1, n. 1, pp.
1-89, 2004.

[17] V. Teichrieb, J. Lima. E. Apolinário, T. Farias, M. Bueno, J. Kelner, and
I. Santos, “A survey of online monocular markerless augmented reality,”
Int. J. Model. Simul. Pet. Ind., vol. 1, n. 1, pp. 1-7, 2007.

[18] S. Gomes Neto, M. Bueno, T. Farias, J. Lima, V. Teichrieb, J. Kelner,
and I. Santos, “Experiences on the implementation of a 3D
reconstruction pipeline,” Int. J. Model. Simul. Pet. Ind., vol. 2, n. 1, pp.
7-15, 2008.

[19] S. Basu, I. Essa, and A. Pentland, “Motion regularization for model-
based head tracking,” Proc. ICPR, pp. 611-616, 1996.

[20] F. Jurie, and M. Dhome, “A simple and efficient template matching
algorithm,” Proc. ICCV, pp. 544-549, 2001.

[21] C. Wiedemann, M. Ulrich, and C. Steger, “Recognition and tracking of
3D objects,” Lect. Notes Comput. Sci., vol. 5096, pp. 132-141, 2008.

[22] P. Bouthemy, “A maximum likelihood framework for determining
moving edges,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, n. 5,
pp. 499-511, 1989.

[23] C. Harris, and M. Stephens, “A combined corner and edge detector,”
Proc. AVC, pp. 147-151, 1988.

[24] Z. Zhang, R. Deriche, O. Faugeras, and Q. Luong, “A robust technique
for matching two uncalibrated images through the recovery of the
unknown epipolar geometry,” Artif. Intell., vol. 78, n. 1, pp. 87-119,
1995.

[25] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up
Robust Features,” Comput. Vis. Image Underst., vol. 110, n. 3, pp. 346-
359, 2008.

[26] VXL - C++ libraries for computer vision, http://vxl.sourceforge.net,
2009.

[27] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robot. Autom. Mag., vol. 12, n. 4, pp. 40-52, 2005.

[28] S. Sinha, J.-M. Frahm, M. Pollefeys and Y. Genc, “GPU-based video
feature tracking and matching,” Proc. EDGE, 2 p, 2006.

[29] SIFT Feature Detector – RobHess,
http://web.engr.oregonstate.edu/~hess, 2009.

[30] D. Wagner, and D. Schmalstieg, “ARToolKitPlus for pose tracking on
mobile devices”, Proc. Comput. Vis. Winter Workshop, 8 p, 2007.

[31] T. Farias, J. Teixeira, G. Almeida, P. Leite, V. Teichrieb, and J. Kelner,
“A CUDA-enabled KLT tracker for high definition images”, Proc.
Symp. Virtual Augment. Real., 9 p, 2009.

[32] L. Vacchetti, V. Lepetit, and P. Fua, “Combining edge and texture
information for real-time accurate 3d camera tracking,” Proc. ISMAR,
pp. 48-57, 2004.

SBC Journal on 3D Interactive Systems, volume 1, 2010 15

ISSN: 2236-3297

