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Abstract— This paper presents the implementation of 3D 

tracking techniques based on natural features for augmented 

reality. The contemplated techniques are from the model based 

category, comprising recursive and non-recursive methods, as 

well as edge and texture based techniques. An evaluation of the 

implemented 3D trackers was performed regarding performance 

and accuracy under different scenarios. 

markerless tracking; augmented reality; computer vision 

I. INTRODUCTION 

AR systems support the coexistence of real elements (that 
are part of users’ world) and synthetic ones (computer 
generated) in the same environment [1]. Nowadays, this kind 
of user interface has obtained more attention due to the fact that 
it allows users performing tasks in a more intuitive, efficient 
and effective way. AR interfaces superimpose virtual 
information – 2D or 3D, textual or pictorial – onto real world 
scenes in real-time, registered in 3D, and allow users 
interaction with real and virtual elements simultaneously. In 
this kind of interface the real environment takes part of the 
application context. In AR the technical challenges lie in 
determining, in real-time, what should be shown where, and 
how. The latter problem is especially important when the visual 
appeal of the result is crucial. Then substantial effort must go 
into seamlessly fitting the information into the scene, according 
to the objectives of the system [2]. Ideally, AR proposes that 
the user must not be able to distinguish between real and virtual 
information, demanding that the virtual elements show both 
geometric (correct placement, correct size, occlusions 
identification) and photometric (shadowing, mutual reflections, 
chromatic adaptation to scene illumination) consistency. Even 
under simplified conditions these problems cannot be trivially 
solved. 

The problem related to correctly positioning virtual 
information relative to the real environment, called registration, 
is solved by tracking the environment so that the synthetic 
elements can be adequately registered with the real scene. 
There are diverse tracking technologies available, such as 
optical sensors, movement sensors, thermal imaging, 
ultrasound, magnetic sensors, GPSs, among others [3]. They 
capture features from the real world, and based on this 
information the AR system determines when, where and how 
the virtual scene should be exhibited. 

Optical tracking is often used for this purpose due to cost, 
accuracy and robustness requirements. Two types of optical 
tracking can be cited: marker based and markerless. Marker 
based tracking is a more well established approach for 
registration. It makes use of known artificial patterns placed 
along the environment in order to perform camera pose 
estimation. On the other hand, markerless tracking differs from 
the former one by the method used to place virtual objects in 
the real scene. In markerless AR any part of the real 
environment may be used as a marker, since the system 
exploits natural features present in the real scene to perform 
tracking. Markerless AR has received more attention from 
researchers in the latest years, and presents important 
challenges to be overcome. 

Markerless AR systems use natural features instead of 
fiducial markers in order to perform tracking. Therefore, there 
are no ambient intrusive markers that are not really part of the 
world. Furthermore, markerless AR counts on specialized and 
robust trackers. Another advantage is the possibility of 
extracting from the surroundings characteristic information that 
may later be used by the AR system for other purposes.  

In this paper, we address an online monocular markerless 
AR approach. Optical tracking presents some advantages when 
compared to its counterparts, such as higher precision and less 
sensibility to interference. Besides that, the use of a single 
camera allows lower cost and more compact systems. 
Calibration issues are also easier to be managed. Nonetheless, 
it is important to mention that tracking and registration 
techniques are more complex in markerless AR systems. 

In several AR application scenarios, markerless tracking is 
mandatory or at least desirable [4]. An example of such 
application is an AR system for equipment maintenance [5]. 
Using markers for tracking the equipment presents many 
disadvantages: tracking failures can occur due to occlusion of 
markers by the user’s body and tools; the markers can hide 
important parts of the equipment; the equipment pose has to be 
calibrated with each marker present at the scene. Therefore, a 
markerless tracking approach is strongly advised in such 
scenario. 

This paper details the development of some markerless 3D 
tracking techniques applied to AR. The techniques addressed in 
this work belong to the model based category of the markerless 
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AR taxonomy. This taxonomy is further explained in 
Section III. Three different markerless tracking methods were 
developed: point sampling [6], interest point based [7] and 
keypoint based [8]. They differ by the features of the real 
objects that are exploited for tracking purposes: point sampling 
uses edges, while interest point based and keypoint based use 
textures. They also differ by their tracking nature: point 
sampling and interest point based are recursive, which means 
that they use the last calculated pose as an estimate for the 
current pose; keypoint based is non-recursive, being capable of 
using just the information from the current frame in order to 
estimate the pose. 

The main contributions of this work are: (1) Survey and 
taxonomy of existing markerless tracking techniques for AR; 
(2) Modifications performed in some phases of the 
implemented techniques, such as using the Moving Edges 
method in the point sampling technique, as well as the SURF 
keypoint and the Lu algorithm in the keypoint based technique; 
(3) The Edge-ID algorithm, which is a novel method for visible 
edges detection; (4) Evaluation of the implemented techniques 
and comparison under different configurations, which can be 
used as a reference by other AR researchers and practitioners. 

This paper is organized as follows. Section II describes the 
main concepts of camera representation and robust pose 
estimation, required for performing markerless 3D tracking for 
AR, and more specifically model based tracking. Section III 
explains how markerless 3D tracking methods for AR can be 
categorized and its main concepts. Section IV describes the 
model based techniques developed in this work. Section V 
discusses the results obtained with each method. The 
conclusions and future work are shown in Section VI. 

II. MATHEMATICAL BACKGROUND 

Camera tracking, which is a fundamental aspect in tracking 
and register phases, comes from recovering information that 
correctly describes a virtual camera used to position virtual 
objects in the real scene and to render these objects in the 
image. There are many models for projecting 3D objects onto 
2D images, varying between simple pinhole (perspective) 
camera models to complex lenses models that simulate human 
eyes [9]. In this work, it was considered the pinhole camera 
model without distortion factors (lenses), which is a well 
known simple model that correctly approximates a virtual 
camera in terms of geometry. 

In all camera models, virtual objects are defined in a 
general coordinate system, also called world coordinate 
system           , in a way to have a generic description that 

does not depend on the camera system used           . The 

camera system corresponds to the world coordinate system 
after applying a rotation and translation transform and, because 
of that, it is necessary to get object coordinates from the world 
coordinate system to the camera coordinate system before 
projecting it onto the image plane (see Fig. 1). This affine 
transform is described by the composition of the rotation       

and translation       matrices, resulting in a     
 
 
   

 matrix. 

When applied to the homogeneous coordinates of the 3D point, 
the composed matrix leads to the same 3D point in the camera 
coordinate system. This matrix is called extrinsic parameters 

matrix because of its relation with the virtual camera model 
movement. 

 

Figure 1.  The 3D object, its projection onto the image plane and the relation 

between world            and camera            coordinate systems. 

It is also important to observe that, for other purposes like 
pose estimation, there are many ways to represent the rotation 
transform. One of them is the axes-angle representation, which 
corresponds to a vector representing a fixed rotation axis 

          
 
, and its norm referring to a rotation angle  . This 

representation has an one-to-one correspondence to the R x  
form by using the Rodrigues and inverse Rodrigues 
formula [10]. 

In the pinhole camera model, a point in image 

plane          
 

 is obtained by projecting the 3D 
point           , written in camera coordinate system, onto the 
image plane by obeying to perspective projection conditions 
(see Fig. 2). By similarity of triangles, 

   
 

 
     and   

 

 
    . (1) 

 

Figure 2.  Perspective transform from 3D points to image points. 

However, the image plane is divided in pixels units that 
correspond in the real world to well defined areas with 
dimensions written in millimeters. They are, by default, called 
pixel width ( 

 
) and pixel height ( 

 
)

1
. Considering that, the 

dimensions of u  and v  are not written in millimeters but in 
pixels, and by this the equation (1) must be rewritten as 

   
 

 

 

  
    and   

 

 

 

  
   . (2) 

                                                           
1
 In most of real camera specifications,  

 
 and  

 
parameters are not given. 

Instead, their relationship is provided, known as aspect ratio (   ), 

where    
 
 
 
 

 . 
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By looking at the problem of projecting the 3D point again, 
a first version of the k transformation matrix comes up, which 
takes a 3D point in camera coordinates and returns its 2D 
image representation in homogeneous coordinates: 

  
 

 

 
  

 
 
 
 
 
 
 

    

 
 
 
 

   

    
 
 
 

 

 
  

 
  

 

 . (3) 

If the pixels of the camera are not squared, it is added in the 
equation a new parameter, also called skew factor

2
, that 

correlates the   angle between   and   dimensions with its 3D 
point, turning the affine transformation (3) into: 

  
 

 

 
  

 
 
 
 
 
   

 
 

-       
 
 

   

 
          

 
 

   

    
 
 
 
 
 

 

 
  

 
  

 

 . (4) 

The final   matrix presented in equation (4) is called 
intrinsic parameters or calibration matrix because of its 
dependence on the real camera used to display the scene. By 
combining the intrinsic and extrinsic parameters matrices we 
have the camera projection matrix   that is responsible for 
getting 3D points from the world coordinate system and 
projecting them onto the camera image plane

3
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In order to estimate camera extrinsic parameters for a given 
frame, some correspondences between 2D points from the 
image and 3D points from the model are needed. In the 
following subsections, two classes of methods for pose 
estimation are described: Pespective-n-Point (PnP) and 
minimization of reprojection error. 

PnP is basically the problem of estimating the camera 
pose       given n 2D-3D correspondences. The first intuitive 
approach for solving this problem is to apply the 
equation         to each correspondence   and then solve a 
linear system. This method is called Direct Linear 
Transformation (DLT) [11] and can estimate all parameters 
of   (even if the intrinsic ones are not known). However, when 
using DLT to calculate  , in most cases, the number of 

                                                           
2
 Since   is generally near to 90o, the skew factor    is generally only 

referenced as -        and the influence of the          term is discarded. 
3
 In order to finish the transformation from 3D to 2D points, it is also 

necessary to normalize the answer in terms of the scale factor s:          
 
 

to        
 
. 

correspondences must be higher than 15, which is more than 
the necessary when applying other methods and for some 
techniques is not an acceptable number. Furthermore, the DLT 
method minimizes an algebraic error, but for the pose 
estimation problem it is preferable to minimize a geometric 
error. 

In many AR applications the intrinsic parameters do not 
change during the frame sequence since the same camera 
configuration is used the whole time. So it is preferable to 
obtain them separately, reducing in a considerable way the 
number of correspondences needed to estimate the current pose 
and probably also the estimation error. Encouraged by this 
context, the PnP problem explicitly uses the intrinsic 
parameters, which must be previously obtained, and estimates 
only the extrinsic parameters. 

This way, when trying to solve the P3P problem, four 
solutions are reached. This means that it is not possible to find 
out a unique solution having only 3 correspondences. An 
approach to find the correct pose is adding a correspondence 
and solving the P3P problem for each subset of 3 
correspondences; then, a common pose will emerge from the 
results. Solving P4P and P5P problems usually reaches a 
unique solution, unless the correspondences are aligned. 
For n ≥ 6 the solution is almost always unique. 

Several solutions have been proposed for the PnP problem 
in the Computer Vision and AR communities. In general they 
attempt to represent the n 3D points in camera coordinates 
trying to find their depths (which is the distance between the 
camera optical center   and the point   ). In most cases this is 
done using the constraints given by the triangles formed from 
the 3D points and  . Then       is retrieved by the Euclidean 
motion (that is an affine transformation whose linear part is an 
orthogonal transformation) that aligns the coordinates. 
Reference [12] proposed an iterative, accurate and fast solution 
that minimizes an error based on collinearity in the object 
space. Later, the EPnP [13] solution showed a      method for 
PnP if n ≥ 4. It represents all points as a weighted sum of four 
virtual control points. Then the problem is reduced to estimate 
these control points in the camera coordinate system. 

In despite of being able to estimate the pose based solely on 
the 2D-3D correspondences, PnP methods are sensitive to 
noise in the measurements, resulting in loss of accuracy. In this 
scenario, a more adequate approach for calculating the pose is 
by minimization of the reprojection error. This consists in a 
non-linear least squares minimization defined by the following 
equation: 

       
      

     
     

 
            

 
   , (6) 

where:    and    are correspondent 3D and 2D points in 
homogeneous coordinates, respectively;   is the projection 
function, which takes as arguments the projection matrix   and 
the 3D point    and returns the 2D projected point;      is the 
Euclidean distance function between 2D points, which is called 
residual; and       are the extrinsic parameters to be estimated. 
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Due to the fact that the   function is non-linear, there is not 
a closed form solution to equation (6). In this case, an 
optimization method should be used, such as Gauss-Newton or 
Levenberg-Marquardt [14]. These methods iteratively refine an 
estimate of the pose until an optimal result is obtained. The 
pose increment between consecutive iterations is calculated 
using the Jacobian matrix of  . This matrix can be calculated 
analytically or using differentiation. A requirement for such 
kind of iterative method is a good initial estimate. Since the 
difference between consecutive poses is often small, the pose 
calculated for the previous frame can be used as an estimate for 
the current frame. 

When calculating the pose, few spurious 2D-3D 
correspondences (named outliers) can ruin estimation even 
when there are many correct correspondences (named inliers). 
There are two common methods to decrease the influence of 
these outliers: RANdom SAmple Concensus (RANSAC) [15] 
and M-estimators [16]. 

The RANSAC method is an iterative algorithm that tries to 
obtain the best pose using a sequence of random small samples 
of 2D-3D correspondences. The idea is that the probability of 
having an outlier in a small sample is much lower than when 
the entire correspondence set is considered. 

The algorithm receives basically 4 inputs: 

 A set   of 2D-3D correspondences; 

 A sample size  , which is a small value (e.g. 6); 

 A threshold  , used to classify the correspondences as 
inliers or outliers. It consists in the maximum value 
allowed to the return of the      function from 
equation (6). A commonly used value for t is  . . 

 A probability   of finding a set that generates a good 
pose. This probability is utilized for calculating the 
iteration count of the algorithm. This value is usually 
set to     or    . 

RANSAC works in the following way: initially, it is 
determined a number   of iterations to be executed by the 
algorithm, e.g. 500. The number of iterations can be decreased 
during algorithm execution, depending on how good is the pose 
by that time. 

After this, algorithm execution begins. From the   set 
provided,   correspondences are randomly chosen. From this 
sample, a pose is calculated using any of the methods 
previously presented. Next, the other correspondences that 
were not included in the sample are utilized to verify how good 
the found pose is. In order to do this, the      function from 
equation (6) is applied to the correspondence. If the distance is 
lower than the   threshold, the correspondence is an inlier. 
Otherwise, it is an outlier. After all the correspondences are 
tested, it is verified the percentage w of the correspondences 
in   that were tagged as inliers. If the current value of   is 
bigger than any previously obtained percentage, the calculated 
pose is stored, since it is the most refined by that time. 

When a refined pose is found, the algorithm tries to 
decrease the number of iterations m needed. The idea behind 

this calculation is very straightforward. Since the   
correspondences are sampled independently, the probability 
that all   correspondences are inliers is   . Then, the 

probability that there is any outlier correspondence is  -  . The 

probability that all the   samples contain an outlier is   -   
 

 

and this should be equal to  - , resulting in: 

  -    -   
 

. (7) 

After taking the logarithm of both sides, the following 
equation can be obtained: 

   
     -  

     -   
. (8) 

M-estimators are often used together with minimization of 
reprojection error in order to decrease the influence of outliers. 
M-estimators apply a function to the residuals that has a 
Gaussian behavior for small values and a linear or flat behavior 
for higher values. This way, only the residuals that are lower 
than a   threshold have an impact on the minimization. A 
modified version of equation (6) is then used: 

       
      

     
                    

 
   , (9) 

where   is the M-estimator function. Two of the most used M-
estimators are Huber and Tukey [16]. The Huber M-estimator 
is defined by: 

  
   

     

  

 
        

     -
 

 
         

 , (10) 

where   is a threshold that depends on the standard deviation of 
the estimation error. 

The Tukey M-estimator can be computed using the 
following function: 

  
   
     

  

 
  -   -  

 

 
 
 

 
 

         

  

 
        

 . (11) 

The graphics of the Huber and Tukey M-estimator 
functions, which can be seen in Fig. 3, highlight how the 
residuals are weighted according to their magnitude. 

 

Figure 3.  Huber M-estimator function with     (left) and Tukey M-

estimator with     (right). 

SBC Journal on 3D Interactive Systems, volume 1, 2010 5

ISSN: 2236-3297



III. MARKERLESS AUGMENTED REALITY 

Markerless AR systems integrate virtual objects into a 3D 
real environment in real-time, enhancing user’s perception of, 
and interaction with, the real world. Its basic difference from 
marker based AR systems is the method used to place virtual 
objects in the user’s view. The markerless approach is not 
based on the use of traditional artificial markers, which are 
placed in the real world to support position and orientation 
tracking by the system. In markerless AR, any part of the real 
environment may be used as a marker that can be tracked in 
order to place virtual objects. Therefore, there are no ambient 
intrusive markers that are not really part of the world. Another 
advantage is the possibility of extracting from the surroundings 
characteristic information that may later be used by the 
markerless AR system for other purposes. Nonetheless, 
tracking and registration techniques are more complex in 
markerless AR systems. Another disadvantage emerges in 
online markerless AR applications since it presents more 
restrictions. 

Techniques developed for online monocular markerless AR 
can be classified in two major types: model based and Structure 
from Motion (SfM) based, as described in [17]. With model 
based techniques, knowledge about the real world is obtained 
before tracking occurs and is stored in a 3D model that is used 
for estimating camera pose. In SfM based approaches, camera 
movement throughout the frames is estimated without any 
previous knowledge about the scene, being acquired during 
tracking [18]. 

Considering their tracking nature, model based techniques 
can be classified in two categories (Fig. 4): recursive tracking, 
where the previous pose is utilized as an estimate to calculate 
the current pose [6][7][19][20]; and tracking by detection, 
where it is possible to calculate the pose without any previous 
estimate, allowing automatic initialization and recovery from 
failures [8][21]. 

 

Figure 4.  Model based online monocular markerless AR taxonomy. 

By taking into account the type of feature used for tracking, 
model based techniques can also be classified in three other 
categories: edge based, where camera pose is estimated by 
matching a wireframe 3D model of an object with the real 
world image edge information [6][21]; optical flow based, 
which exploits temporal information extracted from the relative 
movement of the object projection onto the image in order to 

track it [19]; and texture based, which takes into account 
texture information presented in images for tracking [7][8][20]. 

The edge based recursive tracking category comprises point 
sampling methods, which sample some control points along the 
edges of the wireframe 3D model and compare their 
projections with strong gradients present in the image [6]. 
Texture based recursive techniques are also classified in two 
subcategories: template matching, which applies a distortion 
model to a reference image to recover rigid object 
movement [20]; and interest point based, which takes into 
account localized features in the camera pose estimation [7]. 

Edge based tracking by detection techniques are called 
view based, since the current frame is matched with 2D views 
of the target object previously obtained from different positions 
and orientations [21]. Texture based tracking by detection 
methods are named keypoint based [8]. Keypoints are features 
invariant to scale, viewpoint and illumination changes. They 
are extracted from the object image at every frame, providing 
2D-3D correspondences needed for pose estimation. 

The presented approaches for model based markerless AR 
can be analyzed taking into account some relevant metrics. One 
of the most important metrics is the presence of automatic 
detection, where user interaction is not required to determine 
the initial camera pose. When evaluating an AR application, 
the processing load needed to perform tracking has to be 
quantified. If the time slice used to estimate camera pose is 
short, the remaining processing time can be dedicated to other 
tasks. Accuracy and robustness are the last two metrics 
considered in the methods analysis. While accuracy is related 
to the correctness of pose estimation throughout the frames, 
robustness is about how resistant is the tracker to noise sources. 
Table 1 compares the model based markerless AR methods 
introduced in this section, according to the presented criteria. 
The comparison considers the features that are common to 
most of the techniques of a given category. 

Model based markerless AR approaches may be also 
analyzed according to their applicability to a specific scenario. 
Edge based methods are more suitable when tracked objects 
are polygonal or have strong contours. If objects are textured, 
optical flow based techniques should be used (in case of 
constant lighting and not very large camera displacement). If 
optical flow is not a good option, texture based methods may 
be the best solution. If the textured object is planar, template 
matching presents good results with low CPU load; if not, 
interest point based methods should be used. Tracking by 
detection techniques suffer from jitter when they estimate each 
pose based only on current frame information. Taking temporal 
information into account reduces this problem, but tracking by 
detection tends to be less accurate than recursive tracking, due 
to lack of precision on matching. View based techniques are 
highly accurate, but can cover only a restricted range of 
rotations and scales of the target object with low detection 
rates. 

IV. MODEL BASED TECHNIQUES 

In the following subsections, the model based tracking 
techniques implemented in this work are detailed. 
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TABLE I.  MODEL BASED METHODS ANALYSIS 

Category Method Detection Processing Accuracy Robustness 

Recursive 

tracking 

Edge based No Low Jitter 

Sensible to: 

 Fast camera movement 

 Cluttered background 

Optical flow based No Low Cumulative errors 

Sensible to: 

 Fast camera movement 

 Lighting changes 

Template matching No Low Highly accurate 

Sensible to: 

 Fast camera movement 

 Lighting changes 

 Occlusion 

Interest point based No High Accurate 
Sensible to: 

 Fast camera movement 

Tracking by 

detection 

View based Yes High Accurate Restricted range of poses 

Keypoint based Yes High Jitter and drift No restrictions 

 

Three techniques were contemplated, two of them 
belonging to the recursive tracking category (point sampling 
and interest point based) and one of them belonging to the 
tracking by detection category (keypoint based). Two of the 
methods are texture based (interest point based and keypoint 
based), while one is edge based (point sampling). The choice of 
these techniques for implementation and evaluation in this 
work is due to the desire of allowing the development of 
markerless AR systems for different application scenarios. 
Regarding texture based recursive techniques, the interest point 
based method was preferred over template matching because 
the former is capable of tracking fully three dimensional 
objects, while the later is more suitable for planar objects. 
Concerning tracking by detection, keypoint based was chosen 
due to the restriction on the pose range presented by the view 
based technique. 

A. Point Sampling 

The point sampling (PS) edge based technique described in 
this paper is based on Wuest et al. [6]. It consists in a recursive 
technique that uses points sampled from model edges to 
estimate camera’s pose.  

This technique starts with an initial pose estimate that will 
be used in several phases of the algorithm. After that, points are 
sampled in a balanced way from edges and only visible edges 
remain to be used in the pipeline. In sequence, sampled visible 
points are matched with strong gradient image points and this 
information is used to estimate camera’s pose. The pipeline of 
the PS technique is depicted in Fig. 5. 

As an edge based technique, PS is used for polygonal 
objects tracking but, because of its point sampling aspect, it can 
also be used for curved objects tracking with small changes. It 
is also robust to illumination changes, partial occlusion and 
self-occlusion problems. The following subsections detail each 
phase of the PS algorithm. 

 

 

Figure 5.  PS technique workflow diagram. 

1) Control points sampling: As sampling is a key point of 

this algorithm, it is important to use a sampling coefficient 

applied to the projected edges in a way to balance the 

sampling process. This factor is responsible for allowing 

sampling from edges while maintaining a fixed amount of 

points per length unit of projected edges, according to the 

equation: 

                              . (12) 

Held this way, sampling points appears uniform, balancing 
edge’s influence according to its projected size. Thus, it is 
considered the real importance of the points in the projected 
image and not just the virtual 3D model (see Fig. 6). 

Control Points 

Sampling 

Control Points 

Matching 

Pose 

Calculation 

Visible Edges 

Detection 
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Figure 6.  Sampled points distance (x, y) in edges varies to maintain number 

of points proportional to edges size (size, SIZE). 

2) Visible edges detection: Self-occlusion, which occurs 

when parts of the object occlude parts of itself, is an important 

aspect in tracking quality. Since some sampled points do not 

have correspondents in the image because of self-occlusion, 

they become outliers that will negatively influence the pose 

estimation. 
In order to eliminate outliers originated by self-occlusion, a 

visibility test can be done in many ways. The approach adopted 
in [6] for determining the visible parts of the edges at a given 
frame makes use of an OpenGL extension which is not 
available at some platforms. Reading from the depth buffer, 
which could be used with the same purpose, is also not allowed 
in all platforms. Due to this, an alternative method was 
developed to perform visibility testing. Inspired by the Facet-
ID method described in [7], its goal is to identify edges, and is 
called the Edge-ID method. In Facet-ID, the index of each 
polygon is encoded in its color value, and after the model is 
rendered, it is possible to discover the facet that generated a 
given pixel when projected. Edge-ID exploits the same idea for 
edges, but for a different purpose: while Facet-ID is used for 
finding the 3D back-projection of a pixel and its normal at the 
model, Edge-ID aims to determine if a control point sampled 
from an edge is visible or not. Another difference between the 
methods is that in Facet-ID the model is drawn with filled 
faces, while in Edge-ID a wireframe model with hidden line 
removal is rendered. This way, only the visible model edges 
will have a color value different from the background color. It 
is then possible to find out if a control point        is visible 
by comparing the index of its edge with the index decoded 
from the color stored at the position       in the color buffer. 
The use of unique IDs for each edge is justified by the fact that 
points from different edges can be projected to the same 
position in image space. If no ID checking is performed, a 
hidden control point could be considered visible. Fig. 7 
illustrates the proposed visibility testing approach. 

 

Figure 7.  Edge-ID method. 

In summary, the outline of the Edge-ID method is as 
follows: 

 Map the color value of each model edge to its index 

 Render the model edges with hidden line removal 

 For each model edge   

o Sample the edge, obtaining control points 

o For each sampled point        

 If            , then the point is 
visible 

The default coding scheme adopted for mapping the IDs to 
RGB color components was rather simple. The color 
black (R=0, G=0, B=0) is reserved for representing the 
background. Then, each edge index is incremented by one and, 
considering its 24-bit binary representation, the most 
significant byte is stored at the red channel, the next byte is 
stored at the green channel and the least significant byte is 
stored at the blue channel. The inverse process is done for 
decoding. With this representation, the maximum number of 
model edges is                        . The average edge 
count of the models commonly used for tracking does not even 
approach this value. 

3) Control points matching: Correlation between object 

image’s points and virtual points is made with the Moving 

Edges (ME) algorithm [22]. This algorithm makes a search 

adopting the pipeline described below. 
Initially, the edge is projected onto the scene using the 

previously estimated pose and control points are sampled. 
After that, the ME algorithm performs a search in the line that 
passes through the sampled point and is perpendicular to the 
projected edge in order to find points of strong gradient as 
matching points (see Fig. 8). 

 

Figure 8.  The edge is projected and ME looks for strong gradient points 

(orange) in a line perpendicular to the edge that passes through the sampled 
point (blue). 

There are two possible ways to compute the point matching 
result: single hypotheses (SH) model, where the algorithm 
determines the point of strongest gradient close to the edge as 
the match to be used in the process of estimating the pose; and 
multiple hypotheses (MH) model, where a fixed number of 
strong gradient points is stored to be used as a possible match. 

4) Pose calculation: Considering matches found by the 

ME it is possible to estimate camera’s pose by using the LM 

algorithm with two possible approaches: SH and MH. 
In the SH model, reprojection error is minimized by using 

the control point found in the matching step. MH uses a more 
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balanced approach that employs, at each iteration of LM, the 
strong gradient point that has minimal distance to the projected 
virtual point, as can be seen in (13). This addresses the problem 
of objects with strong gradient contours near the tracked object, 
minimizing their influence: 

       
      
     

             
             

 
     

   
 
   , (13) 

where: j strong gradient points are the return from the ME 
algorithm and mindist chooses the point that is closer to the 
projected virtual point at each iteration. 

B. Interest Point Based 

The interest point based (IPB) technique described in this 
paper is based on the work of Vacchetti et al. [7]. It makes use 
of keyframes in order to perform drift reduction, which are 
generated prior to the tracking procedure in an offline manner. 
They are created from images of the target object that have a 
known camera pose, as illustrated in Fig. 9. In the online 
tracking phase, local features are extracted from the current 
frame and matched against the keyframe with a pose that is 
closer to the current frame. Based on the obtained matches, the 
current pose can be calculated. The workflow of the online 
phase of the IPB method is illustrated in Fig. 10. IPB 
procedures are detailed next. 

 

Figure 9.  Keyframes generated from three different camera poses. 

 

Figure 10.  IPB technique workflow diagram. 

1) Keyframe generation: Each generated keyframe stores 

the following information: the image of the object; the 

corresponding 3D pose for this image; a collection of 2D 

interest points extracted from the image; the 3D points on the 

model that correspond to the extracted 2D features; and the 

normals at the object surface for each 3D point. 
The first step in order to generate the keyframe consists in 

obtaining a frame containing the target object with a known 
pose. After this, 2D interest points are extracted from the frame 
using an approach that will be described later. These 2D 
features are then backprojected in order to obtain the 
corresponding 3D points and normals in the model. It is 
possible to discover the facet that generated a given pixel when 
projected by using the Facet-ID method [7]. Given an interest 

point            
 
, the corresponding 3D point   can be 

obtained by calculating the intersection between the projector 
line and the generating triangle. The projector line is 
represented by a ray with origin at the camera optical 
center      and that passes through the interest point   in the 

projection plane. Ray origin      and direction    are computed 

as follows: 

      -   , (14) 

        -  . (15) 

2) Keyframe choice: In the IPB pipeline, it is necessary to 

discover which keyframe is closer to the current frame. In this 

work, it was implemented two different approaches to 

keyframe choice: one using Mahalanobis distance between 

keyframes poses and current pose; and another using 

histograms from keyframes and current frame. 
In the Mahalanobis approach, it is calculated the distance 

between all keyframes poses and the last frame pose, since it is 
a good approximation to the current pose, and the keyframe 
that has the minimal Mahalanobis distance to the last frame 
pose is chosen. The Mahalanobis distance    between the last 
frame pose  

 
 and the keyframe pose  

 
 is calculated as 

follows:  

              -   
 

 -   
 
- 

 
 , (16) 

where   is the covariance matrix of the keyframes poses, 
which is given by: 

   
 

 - 
   

  
- 

 
    

  
- 

 
  

 
 
   , (17) 

where  
 
  is the average pose of the keyframes. 

In the histogram approach, the concept of using the last 
pose as an approximation of the current pose is also exploited. 
All keyframes poses and the last calculated pose are used to 
backproject the model using the Facet-ID algorithm. After that, 
histograms are generated from each of these images and the 
closest keyframe is the one whose histogram has the least 
difference relative to the histogram of the current frame. 

Keyframe 

Choice 

Interest Point Extraction 

and Matching 

Pose 

Calculation 

Intermediate Image 

Generation 
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3) Intermediate image generation: The poses of the 

chosen keyframe and the current frame may be not close 

enough to allow the matching of their interest points. Due to 

this, an intermediate synthetic image is generated from the 

keyframe image with a pose near to the one of the current 

frame, as can be seen in Fig. 11. In order to perform this, a 

patch around each interest point of the keyframe image is 

transferred to the intermediate image by applying a 

homography. Given an estimation of the current projection 

matrix         , a keyframe with projection 

matrix             and a plane   approximated by the patch 

in the object surface with normal     and distance to the origin 

 , the homography   is obtained by: 

       -       
 
     - , (18) 

 where       
 , (19) 

    -   
     , (20) 

    
 
        (21)

 and  
 
  -  

         . (22) 

A point   in the keyframe image is then transferred to a 

point    in the intermediate image by      . A patch size of 
10x10 pixels was empirically chosen. 

 

Figure 11.  Intermediate image (right) generated from a keyframe (left). 

4) Interest point extraction and matching: The Harris 

corner detector [23] was applied to extract interest points from 

the images. Next, the interest points from the current frame are 

matched against the ones from the intermediate image using 

the method proposed by Zhang et al. [24]. In this method, the 

similarity level between an interest point           from 

image    and an interest point           from image    is 

determined by their normalized cross correlation, which is 

given by: 

          
                             

 
  - 

 
  - 

                                
 
  - 

 
  - 

. (23)

According to our experiments, a value of 7 for the window 
size n was found to be sufficient. For each interest point    
of   , it is calculated the similarity level with the nearby interest 
points of   . A neighborhood size of 50x50 was used. The 
interest point from    with the highest similarity level (  

   ) is 

kept as a match candidate for   . The procedure is then 
repeated with the roles of    and    inversed. After this, the 
interest points that are mutually pointed out as match 
candidates are retained as matches. 

5) Pose calculation: Once matching points between 

intermediate image and current frame were found, 

correspondences between  D keyframe’s points and  D 

image’s points are transitively obtained. The system is then 

allowed to estimate camera pose correctly by using these 

correspondences together with the LM algorithm, as discussed 

in Section II. In order to minimize outliers influence, it is also 

used the Tukey M-estimator. 

C. Keypoint Based 

The keypoint based (KB) technique described in this paper 
is based on the work of Skrypnyk et al. [8]. As IPB, an offline 
training phase is needed in order to acquire knowledge about 
the object to be tracked. A set of 2D object features that are 
invariant to scale, illumination and viewpoint are obtained, 
together with their corresponding 3D position in the object 
model. At runtime, invariant features are extracted from the 
current frame and matched with the acquired knowledge base, 
resulting in 2D-3D correspondences that enable the 
computation of the current pose without any previous estimate. 
The pipeline of the online phase of the KB technique is shown 
in Fig. 12. Each step involved in the KB technique is described 
next. 

 

Figure 12.  KB technique workflow diagram.  

1) Keypoint extraction: Some points on objects textures 

can have a number of associated characteristics that make 

them, in some way, unique. These special points are called 

keypoints and for each keypoint these associated 

characteristics are stored into a high dimensional descriptor 

(e.g. the Scale-Invariant Feature Transform (SIFT) [8] 

keypoint descriptor has a length of 128). 
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There are some algorithms for extracting keypoints from an 
image. Two of them have been used in this work: in a first 
moment SIFT was utilized and as a second approach Speeded 
Up Robust Features (SURF) [25] was used attempting to obtain 
better results. 

2) Offline training phase: First of all, it is needed some 

information about the object to be tracked. This offline phase 

may be basically summarized in the following steps: 

 Various keyframes of the model are obtained from a 
synthetic scene. These frames must show each face of 
the object; if a face is not represented by a keyframe, 
this face cannot be recognized in the tracking phase. 

 For each keyframe, a camera pose is associated. As the 
keyframes have been obtained from a synthetic scene, 
it is easy to obtain the camera pose and there is no 
doubt about its correctness. 

 In each keyframe, keypoints are extracted using one of 
the algorithms cited above. A relation between 
keypoint and keyframe pose is stored to be used in 
future initializations. 

 For each keypoint, its 3D correspondence in the model 
is found using the camera pose and the Facet-ID 
algorithm previously described. 

 A kd-tree of keypoints is constructed using their 
descriptors [8]. This tree will reduce a lot the searching 
time of keypoints matches. 

At the end of this pipeline a set of keypoints with their 3D 
correspondences are arranged into a kd-tree and now the new 
keypoints obtained in the tracking phase can be matched with 
the offline data. 

3) Keypoint matching: Starting the online tracking 

pipeline, the first step is to extract keypoints from the current 

frame. This extraction must use the same method chosen in the 

offline phase (e.g. SIFT). 
Then, for each extracted keypoint, it is executed a Best Bin 

First search [8] in the kd-tree to find its match (if it has one). 
This search returns the two nearest neighbours of the keypoint.  

By verifying the Euclidian distance between the neighbours 
and the extracted feature descriptors it can be checked if there 
is an error in the search. The closer are the distances the more 
probable is that it is an error case, because given the cardinality 
of the descriptors it is very improbable that they are similar. 
Then, a ratio threshold is used to discard these cases. If the 
distances ratio is lower than the threshold, the nearest 
neighbour and the extracted keypoint are considered as a match 
case and establish a 3D correspondence to the new keypoint. 
The ratio threshold used was 0.5. Fig. 13 shows the current 
frame keypoints matched with some keypoints of a keyframe. 

After analyzing all extracted keypoints there will be a given 
number of matches, but if this number is lower than a 
predefined threshold, it is considered that a tracking failure has 
occurred. It has been empirically verified that when the number 
of matches falls below 5 the results showed to be not 
acceptable, so 5 has been used as the threshold that detects the 
failures. 

 

Figure 13.  Keypoint matching. 

4) Pose calculation: Once the set of matches has been 

obtained, the next step is to estimate a camera pose for the 

current frame. For this it was utilized RANSAC together with 

two methods for pose hypothesis generation: minimization of 

reprojection error using LM and the Lu PnP algorithm (see 

Section II). 
The reprojection is done using equation (6), with the 

addition of a confidence factor that is inversely proportional to 
the keypoint scale. When using LM, an initial estimation is 
needed that will be converted into a new pose. During the 
tracking, the last pose obtained is used to solve this, but if the 
current frame is the first one there is no previous pose to be 
used. The same occurs when there is a tracking failure, because 
the last pose obtained may not be reliable. In these cases, the 
initial estimation used is the pose of the keyframe that 
contributes with the most number of matches of the current 
frame. 

V. RESULTS 

The implemented model based techniques have been 
evaluated taking into account frame rate and accuracy metrics. 
As explained in Section III, the implemented techniques differ 
by the type of object that is more suitable of being tracked 
using them. Due to this, different objects and scene sequences 
were used in the evaluation of each method. As the techniques 
have different purposes, a direct comparison between them is 
not always possible or desirable. 

The desktop computer used to perform the tests has an 
AMD Athlon 64 3200+ processor, 1 GB of RAM, a NVIDIA 
GeForce 8800 GTX graphics board with 768 MB of memory 
and a screen resolution of 1280 x 1024 pixels. The A4Tech 
ViewCam PK-635 camera was used, with a resolution of 
320x240 pixels and a frame rate of 30 fps. The operating 
system is Microsoft Windows XP Professional SP3. The 
development tool utilized was Microsoft Visual Studio .NET 
2005 Professional Edition. The VXL [26] library provided 
most of the math and computer vision support required. The 
ViSP library [27] was also used, since it contains an 
implementation of the ME algorithm, which had to be modified 
to support MH. Feature extraction for KB was done using SIFT 
GPU [28] and the official SURF implementation [25]. 
Keypoint matching was done using Rob Hess’ implementation 
[29]. It was also used the implementation of the Lu PnP 
technique available on the ARToolKitPlus library [30]. 
OpenGL was utilized for 3D graphics rendering. All the images 
used in the test sequences have QVGA resolution (320 x 240 
pixels). 
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A. Point Sampling 

The PS technique was evaluated using SH and MH 
approaches with real (cube) and synthetic (building) sequences. 
Fig. 14 shows examples of real and synthetic sequences 
tracking using a wireframe model to illustrate the correctness 
of this technique. 

 

Figure 14.  PS tracking of synthetic (top) and real (bottom) sequences. 

Fig. 15 illustrates tracking instability generated from high 
gradient object’s approximation in the SH approach against 
MH stability using 5 hypotheses in the pose calculation step. 

 

Figure 15.  SH instability (top) and MH stability (bottom). 

Table 2 and Fig. 16 present a performance evaluation using 
both synthetic and real sequences with SH and MH approaches. 
The table presents timing for all computational relevant steps 
of the tracking algorithm and the figure shows the total 
computational time against average times for all tests. As 
expected, MH has presented more stability than SH in despite 
of a worse average speed of 133.1 ms and 30.19 ms (MH) 
against 61.44 ms and 18.57 ms (SH). The obtained frame rates 
are suitable to AR applications. The performance difference 
between synthetic and real data sequences is basically because 
of the complexity of the tracked objects, greater in the synthetic 
sequence (703 faces) than in the real one (6 faces). The 
bottleneck was the pose calculation step. 

TABLE II.  COMPARISON TABLE OF TIMES AND # OF MATCHES FOR THE 

PS TRACKING ALGORITHM 

 Synth 

SH 

Synth 

MH 

Real 

SH 

Real 

MH 

Time 

(ms) 

Visibility test 17.72 18.73 10.71 11.01 

ME 21.07 22.68 5.70 7.75 

Pose calculation 22.65 91.69 2.16 11.43 

# of matches 1537 6964 268 1077 

 

Fig. 17 shows tracking precision by comparing camera’s 
centers calculated by PS using SH and MH with ground truth 
camera’s centers obtained in the synthetic sequence generation. 
The MH approach had an average error of ~2 mm while SH 

showed an error of ~3 mm, evidencing quality and robustness 
improvement due to the addition of MH. Compared to the 
object length and distance to camera (~70 mm both), SH and 
MH errors were small and acceptable according to AR 
techniques needs. 

 

Figure 16.  PS computation times using synthetic/real sequences and SH/MH. 

 

Figure 17.  PS tracking precision for the synthetic sequence using SH and MH. 

B. Interest Point Based 

The IPB technique was evaluated using synthetic and real 
data. Fig. 18 shows some pose estimation results for the “cube” 
synthetic sequence and the “coffee box” real sequence. In the 
cube sequence, 11 keyframes were used, while 8 keyframes 
were used in the coffee box sequence. In both cases, the objects 
were augmented with their wireframe model, in order to show 
if the tracking results are visually acceptable. 

   

   
Figure 18.  IPB tracking results for a synthetic sequence (top) and a real 

sequence (bottom). 

Table 3 presents the average time required by each step of 
the tracking algorithm using both sequences mentioned above 
as input. The Mahalanobis keyframe choice method was faster 
than the histogram one. Considering the worst case for 
keyframe choice (histogram), the average total times spent for 
tracking a frame were 50 ms for the cube sequence (resulting in 
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a 20 fps rate) and 90 ms for the coffee box sequence (resulting 
in a 11 fps rate). Figure 19 shows the total times spent for 
tracking each of the first 250 frames of both sequences. The 
obtained frame rate is adequate to AR applications. 
Nevertheless, some optimization can still be done, especially 
regarding the feature extraction and matching phase, which has 
shown to be the bottleneck of the technique. 

TABLE III.  COMPARISON TABLE OF TIMES AND # OF MATCHES FOR THE 

IPB TRACKING ALGORITHM 

 
Cube 

Coffee 

box 

Time 

(ms) 

Keyframe choice 
Mahalanobis 0.46 0.46 

Histogram 2.11 1.66 

Intermediate image generation 2.60 4.46 

Feature extraction and matching 43.18 79.54 

Pose calculation 2.20 3.45 

# of matches 52 96 

 

Figure 19.  IPB total computation times for each of the first 250 frames of the 

sequences. 

The tracking error for the cube synthetic sequence is 
presented in Fig. 20. The distance between the tracked object 
and the camera ranged between 200 and 600 mm. The side 
length of the cube was 100 mm. Different keyframe choice 
methods were used. The average errors were 2.80 mm when 
using Mahalanobis and 3.44 mm when using histogram. The 
histogram tracking error presented some peaks that influenced 
the total average error, but showed to be more stable than 
Mahalanobis during most of the sequence. 

 

Figure 20.  IPB estimation accuracy for the cube synthetic sequence. 

Fig. 21 shows tracking accuracy results for the coffee box 
real sequence considering both keyframe choice methods. The 
camera positions calculated by the tracking algorithm in the   
axis are compared with ground truth values provided by the 

keyframes. When using the histogram method, poses calculated 
by the tracker followed the keyframes throughout the sequence, 
while using the Mahalanobis method resulted in a tracking 
failure around frame 70. 

 

Figure 21.  IPB tracking results of the camera   axis for the coffee box real 

sequence. 

C. Keypoint Based 

KB has been tested using a book (planar) and a box (non-
planar) as target objects. In Fig. 22, some successfully 
recovered poses are presented for both, planar and non-planar 
objects. For most of the cases the result showed to be 
acceptable. 

The subsequent results are related to the box object. In the 
offline training phase, 14 keyframes have been taken from 
distinct angles covering all box faces. It was obtained 2,026 
SIFT keypoints resulted from these 14 images. Using the same 
keyframes, 1,393 SURF keypoints were extracted. The test was 
done with both a synthetic and a real scene. The synthetic 
scene was a sequence of 250 images of the box in various 
angles and distances. The real sequence had 1 minute of 
duration and also covers all box faces. 

   

 
Figure 22.  KB results using SIFT and LM with planar (top) and non-planar 

(bottom) objects. 

Using SIFT there was less than 1% of tracking failures in 
both sequences. With SURF (and LM), in 48% of the real and 
22% of the synthetic sequence frames tracking failures 
occurred. This can be easily understood by looking at Table 4 
and seeing the average number of matches obtained with 
SURF. 

The real sequence showed similar results, however some 
behaviors that were not present in the synthetic scene emerged 
in this case. For example, it was observed that when the 
specular component was predominant, a tracking failure 
occurred. This happened due to the fact that not enough 
keypoints could be extracted from the scene, since the surface 
of the box looses a lot of its texture characteristics. 
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TABLE IV.  COMPARISON TABLE OF TIMES AND # OF MATCHES FOR THE 

KB ALGORITHM 

 Synthetic Real 

SURF SIFT SURF SIFT 

Time 

(ms) 

Extraction 39 39 77 51 

Matching 12 39 26 105 

Lu 6 10 7 8 

LM 122 106 113 127 

# of matches 13 71 7 76 

 

On the other hand, as an advantage SURF showed to be 

faster than SIFT (by analyzing extraction plus matching 

times). The same occurs with Lu in relation to LM. Indeed, the 

fastest fps rate obtained was 17 in the synthetic scene and 9 in 

the real one using SURF and Lu together. 
The precision of the pose recovered by LM was better than 

with Lu. This occurred, in part, due to the fact that when only 
one face of the object detained the greatest part of the matched 
keypoints, the Lu method inverted the shown face (Fig. 23). 
LM however did not fall in this problem since the new pose 
results strongly depended of an initial estimation, so the real 
pose was always more probable to be obtained than the 
inverted one. 

 

Figure 23.  Lu method recovering an inverted pose. 

The Lu error is reflected in Fig. 24: when the pose is 
inverted, the distance between the correct camera center and 
the recovered one is much higher than usual. SIFT average 
error with LM was 4.6 mm and with Lu was 27.6 mm, while 
using SURF combined with LM was 22.4 mm and with Lu was 
82.8 mm. 

 

Figure 24.  Accuracy of Lu and LM methods with SIFT (top) and SURF 

(bottom) keypoints. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, three model based tracking techniques have 
been implemented, allowing the development of markerless 
AR systems for different application scenarios. Analyzing the 
results, it was possible to confirm the features listed in Section 
III regarding the markerless tracking techniques surveyed in 
this work. Although the performance and accuracy results 
obtained were satisfactory in many of the tests, some 
improvements can still be done. Even though QVGA images 
were used in the evaluation of the implemented methods, it has 
been shown that computer vision algorithms can handle high 
definition images by using massively parallel approaches, such 
as GPGPU [31]. Direct comparisons between the results 
obtained in this work and those presented in related works were 
not done due to the fact that the implementations and datasets 
used by such works are not available for free access. 

As a way to improve precision, the history of temporal 
information accumulated during tracking can be exploited in 
order to avoid jittering [7]. Another topic of future 
investigation resides in combining different techniques as a 
way to improve precision and robustness [32]. 
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