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Abstract—This work describes the proposal of an architecture
that evolves the concept of augmented reality with geolocation to
mobile device platforms. The architecture allows the development
of applications that draw points of interest on screen, represented
by arrows and panels that directs to each point of interest’s
location. It uses OpenGL ES 1.0 library to draw the points
of interest. The applications’ user interaction can be made
by moving the device in such a way that activates compass
and accelerometer sensors. The device’s location determines
how far are the points of interest. This work also presents
development resources that allow developers to use camera,
sensors and geographic coordinates on applications inside the
devices simulators. At the end we present an application example
along with performance results running on an Android platform’s
simulator and also on a Android device.

I. INTRODUCTION

Through Augmented Reality (AR) is possible to combine
the real world with virtual objects such as images, sounds or
touch. This concept can be applied in diverse areas such as
construction [1] and games [2], bringing the concept more
and more to people’s life and to mobile technologies that they
use at a daily basis. Therefore it is necessary to study mobile
technologies that meet the needs of technical applications of
AR, such as the registration of objects and rendering in real
time.

Devices such as Head Mounted Displays (HMDs) are the
dominant technology for AR applications [3]. However, these
devices still have large optical constraints (limiting the scope
and focus of vision), technical constraints (limited resolution
and unstable images) and the human factor constraints (due
to device’s large size and weight) [3] . Since mobile devices
allow to the user greater control of space in which he will
have the augmented reality visualization for it can be moved
in any direction [3]. On the other hand one must consider the
limitations of mobile devices such as less processing, smaller
memory and battery life [4], which offer bigger challenge to
real-time immersive rendering applications.

For the record of virtual objects’ positions in real envi-
ronment, some strategies can be used, among which we can
mention the use of markings [5]. Another strategy commonly
used in devices with low processing power of images is

the geographic location, also called geolocation. In this case,
the virtual objects are registered in a particular geographical
position and by means of GPS and motion sensors applications
can measure where the virtual object should be shown [3]. This
strategy has a strong dependency on the accuracy and response
time of the sensors, which can directly impact the applications
that need to generate a response in real time. Another chal-
lenge is related to the balance between application’s response
time and high battery consumption of the device that motion
sensors generate.

In general, the platforms for mobile devices such as iOS [6]
and Android [7] have GPS support on their devices, allowing
the use of geolocation services for the registration of virtual
objects. Also motion sensors such as accelerometers and
magnetometers (compass), are available on these platforms in
order to assist the tracking of virtual objects as the device
rotates along it’s azimuth, pitch and roll axes.

On mobile devices, such axes consist of the three-
dimensional cartesian coordinate system of the physical device
and serve as reference for the measurement of rotational
movements captured by the accelerometers, as illustrated in
Figure 1.

Besides having the hardware limitations described above,
mobile devices offer a big challenge for the development of
applications with AR. For instance, the development tools
usually include a device simulator, but it does not simulate
the device’s camera features and motion sensors, making the
simulation less useful for developers of AR applications.

The present paper proposes the development of an architec-
ture for applications with AR within mobile devices, using
the device’s video camera to capture images of the actual
environment, the GPS features to record the virtual objects and
the motion sensors to track the movement of the device. This
architecture also includes tools that enable the development
of AR applications through the simulator, capturing images
from a camera connected to the developer’s computer and
simulating the movement of the sensors via the computer’s
mouse.

This paper is organized as follows: Section II presents
related work in augmented reality with geographic location.
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Fig. 1. Azimuth, pitch and roll axis.

Section III details the architecture of the application presented
in this paper, explaining the proposed solutions and the tech-
nologies involved. Section IV describes the simulation features
developed by the authors to develop mobile augmented reality
applications with the use of device simulation. Section V
focuses on demonstrating and analyzing the results from
tests done on the application architecture. Finally, Section VI
presents final conclusions on the project and directions for
future work.

II. RELATED WORK

In this research, we have not found related works that would
support the development of mobile applications with AR
utilizing device’s simulators in order to evaluate AR related
features. Thus, we have focused on works related to mobile
AR architectures with geographic location. For the selection of
related works, we have considered projects for mobile devices
that also have some kind of strategy for registering objects
through geographical coordinates and tracking objects through
sensors.

The Layar framework project [8] enables application de-
velopment with AR through the project’s server. It provides a
software that has to be installed on the mobile device that does
not require customization by the application developer. The
virtual objects are superimposed on images from the camera,
and are rendered in real time according to the geographic loca-
tion of the device. The mobile software also has resources for
3D virtual objects rendering, which may be accompanied by
sound effects, providing a better user interaction experience.

Magnitude [9] is an academic open source project, which
aims at providing practical services of AR by the students of
INSA Toulouse School of Engineering, creating a modular
and reusable framework for other applications of AR. Its
architecture has a mobile application for Android platform,

and also a Java Enterprise Edition (JEE) application server
that informs the most appropriate points of interest.

The Wikitude [10] mobile application presents points of
interest near the device’s location through the overlapping
information over the camera image in real time. It has com-
patibility with various mobility platforms such as Symbian,
Android and iOS. This project provides an API for developers
along with tools for creating augmented reality layers inte-
grated to mobile applications. The Wikitude application has
a mobile browsing functionality called Wikitude Drive [11],
which guides vehicle’s drivers using the concept of AR within
a mobile device.

The OMTP BONDI [12] project aims at developing of APIs
for major mobile platforms, using the resources of sensors,
GPS and camera and providing such resources through the
device browser. The strategy adopted in this project was the
independence of the mobile platforms, adopting the use of
technology inherent in the web browsers. Thus, application
developers need not to worry about which platform they are
developing, as far as they work with AJAX and browser
capabilities.

The case study of this paper is similar to the Magnitude
project because both have an application server that provides
the most suitable points of interest. The main difference
between the two projects is that Magnitude relies on Android
platform specific libraries for designing the virtual objects,
while the present work uses OpenGL ES which is available in
major mobile platforms.

III. PROPOSED ARCHITECTURE

The proposed architecture has a component-based organiza-
tion in order to abstract the hardware layer from the layer that
works with the graphical interface. Figure 2 shows it’s main
components along with their relationships.

Web Server

Geolocalization
(GPS or Web)

Graphical 
Interface

Sensors
(compass and 

accelerometers)Camera

Engine

Fig. 2. Proposed architecture.

The Engine component has the responsibility to perform all
calculations on the application, preparing the positioning of
each virtual object (or point of interest) that will be displayed
in the graphical user interface. When there is a change in
geographical location, the engine calculates the distance of
each point of interest in meters according to the WGS84
standard [13]. The National Geospatial-Intelligence Agency
(NGA) maintains the World Geodetic System (WGS) which
is the standard system used to define the irregular shape and
size of the Earth [13].
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When there is any change in compass and accelerometers
sensors, the engine gets the values of azimuth, pitch and roll
and calculates the angles of each point of interest according
to the device orientation. Figure 3 shows the life cycle of this
component through its states.

Running

Finished

Sleeping OutdatedPaused

Pause

Back to 
running state

Localization or sensor changes

Update points of interest 

Finish application Finish 

Finish 

Fig. 3. Application’s life-cycle.

The need to implement a state machine was mainly moti-
vated by the concern with battery consumption and response
time of the motion sensors and GPS. The “Running” state
indicates that the Engine has calculated the position angles
and points of interest in accordance with the latest information
from the sensors, avoiding the occurrence of recalculations
until there is some change in the sensors. Upon receiving
such changes in sensors or GPS, the engine changes to the
“Outdated” state, indicating that points of interest must be
recalculated. This condition also arises when new points of
interest (that need to calculate its position) are received.
The “Paused” state prevents the engine from receiving new
information from sensors and GPS while the application is
stopped or in background mode, thus reducing the device’s
battery consumption.

The graphical interface has three overlapped layers in order
to create the impression of Augmented Reality (Figure 4) .
The innermost layer is responsible for reproducing the images
received by the camera, the middle tier layer uses a three-
dimensional OpenGL ES space that has the points of interest
and the third layer draws the configuration tools graphical
symbols, such as radar tool graphical elements.

The outermost layer, responsible for the rendering of tools
symbols, allows users to configure the space of augmented
reality, adjusting the range of points of interest that will be
drawn. This layer has a radar tool with the four main compass
points (north, south, east and west), showing the direction and
distance of points of interest that are within a radius of greater
range.

The outermost layer has translucent background and the
tools interface elements were placed near the screens corners
in order to enhance the user experience.

The layer that draws the points of interest utilizes the
OpenGL API for Embedded Systems 1.0 [14] library. This
library is used by major mobile platforms for 3D rendering

Camera

Tools

OpenGL ES

Fig. 4. Interface layers.

capabilities. The configuration used in the OpenGL ES layer
has a three-dimensional space to draw the points of interest in
depth through the resources of rotation, translation and scale.
Through the Engine calculations that the information of angle
and position of each point of interest are available for this
layer.

Among the available features for drawing objects in
OpenGL ES, the orthographic projection vertex data drawing
was chosen for this work. Although this approach uses the
device’s main memory, it is supported by all devices that have
OpenGL ES. Another feature available in OpenGL ES is the
Vertex Buffer Object (VBO) drawing, which makes use of
vertex buffers in the graphics processing unit (GPU). This
strategy is not supported by all devices because it does not
use the device’s main memory.

The choice of using OpenGL ES for this layer was char-
acterized by two main factors, the first is portability among
various mobile platforms and the second is the performance
obtained by OpenGL ES in relation to other available design
strategies.

Because it is portable on major mobile platforms, OpenGL
ES has some limitations comparing to OpenGL, originally
used in desktop computers. The biggest difference between
OpenGL and OpenGL ES is in the immediate mode with
glBegin and glEnd calls, which are not implemented in the ES
version. Therefore it is only possible to draw primitives using
vertex arrays. The second major difference is that OpenGL ES
do not support floating-point numeric type. It uses fixed-point
numeric type for vertex coordinates and attributes in order to
provide better support for embedded systems.

Among the limitations in OpenGL ES, the most important
concerning the implementation of augmented reality is the
lack of support for text drawing, either in 2D or 3D spaces.
This feature, in the present work, could be used to determine
the name of the points of interest and also the distance from
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the user to a point of interest. Consequently, investigation of
existing strategies to meet this need was necessary.

One strategy is the Springtext API found in [15]. It was
necessary to adapt the Springtext implementation in order
to draw text in a dynamic way, since the points of interest
coordinates could change as the device moves. The strategy,
common to OpenGL applications, consists in drawing the
characters from the ASCII table in an array, creating a texture
for each character. To compose a word, the letters textures are
combined to create the texture of the entire word.

The architecture also includes the functionality of virtual
objects selection through touch events on the device’s display.
To this end, the Ray Picking algorithm was employed [16].
The algorithm transforms the two-dimensional display touch
point in a straight line in the OpenGL ES three-dimensional
space, allowing the calculation of collision of touch gesture
with any object in the virtual three-dimensional space.

As a way of representing each point of interest, the graphical
interface draws two flat objects in a three dimensional space:
an arrow and a panel. The arrow indicates the direction and
distance of a point of interest relative to the current device
location.The arrow becomes visible when the device’s camera
is pointed towards the ground, as depicted in Figure 5.

Fig. 5. Device’s camera pointing downwards.

The panels are displayed when the camera is directed
forward, in an horizontal orientation and the device is being
held at shoulder height (Figure 6). Each panel shows the name
of it’s corresponding point of interest.

Fig. 6. Device’s camera pointing horizontally.

The Web Server component was created to provide points
of interest closest to the device’s current geographic location.

This server implements a JEE Servlet [17] that receives HTTP
“get” requests in CSV format and returns the more appropriate
points of interest. The Web Server component selects the
points of interest on a database that contains information
of each point, such as latitude, longitude and name. When
communicating with the Web Server component, the device
sends its geographical location and also the maximum range
radious in meters, so the Web Server can fetch the most
appropriate points. The application running on the mobile
device connects to the Web Server via the cellular data network
or wireless network configured on the device.

IV. DEVELOPMENT TOOLS

The platforms for mobile devices such as iOS, Android and
Blackberry have tools to assist the development of applications
so the developer generally does not need to purchase a
device to test the application being developed. Nevertheless the
device simulators have limited resources on the simulation of
some hardware resources, such as cameras and sensors. When
developing applications with AR, the use of such resources is
crucial, making the simulator an incomplete tool for testing
this kind of application.

Since the architecture proposed in this paper works inde-
pendently of the used mobile platform, not having the need to
purchase one device for each of the major mobile platforms
has become essential for the development process. Thus, the
use of simulators with simulation features of the camera,
sensors and geographical location became even more relevant.

In the architecture described here, the camera components,
sensors and geographical location abstracts all interaction
with hardware devices, so that other components need not
determine which device is running the application or if it
is running in a device simulator. This verification is done
at runtime, it identifies whether the application is running in
the simulator, thus carrying APIs simulation, or whether it’s
running on a device, thus carrying the APIs that interact with
the mobile device’s hardware.

For camera simulation we developed a socket server that
must be executed on the developer’s computer. This server
gets a connection with the cameras that are connected to the
computer through the JMS architecture [18] and allows the
developer to choose which camera the images for simulation
will be obtained. The images are then made available through
a socket port. The camera component within the application’s
architecture get the images at a configurable refresh rate and
provides the camera layer to the simulator screen.

For the simulation of sensors it was used the SensorSim-
ulator software [19]. It has a graphical interface that allows
the change of sensor values via mouse and provide such
values in a socket server. This server provides the values
of the sensor’s motion in a socket port through a specific
communication protocol. The Sensor component within the
proposed architecture obtains the sensor values and triggers
change events in the Engine component, therefore calculating
the new positions of points of interest.
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The simulation of geographical location was developed
directly in the client application and a screen for configuration
of latitude and longitude is provided to the user (developer). It
is also possible to simulate a walk through using the computer
keyboard arrow keys.

V. TEST RESULTS

In order to evaluate the proposed architecture for mobile AR
applications, development and testing were done in Android
platform, one of the leading emerging platforms for mobile
devices. The tests considered the response times of both the
engine and the graphical interface, because an AR application
should calculate and render points of interest quickly to create
the immersion for the user. We also tested the processing
power of the simulator compared to an Android device.
Tests were performed involving different amounts of points
of interest to be calculated and drawn on the screen. The
quantities were 2, 4, 8, 16, 32 and 64 points of interest. For
each point of interest where drawn two objects in OpenGL ES
layer: the arrow and the panel.

TABLE I
SIMULATOR FPS

Number of Engine’s Graphical interface’s
Points of Interest average FPS average FPS

2 502.65 22.78
4 283.74 13.03
8 91.51 4.50
16 15.69 3.75
32 5.48 2.43
64 2.61 1.11

All tests were performed in the same way using both the
simulator and the Android device. The HTC Desire device was
used. It consists of a smartphone with all the features needed
for testing, such as accelerometers, GPS, video camera, among
others [20]. The application has different codes for hardware
interaction (camera, sensors and geographic coordinates) when
running on the device and in the simulator. Therefore this
interaction is not measured in the tests and should not influence
the following analysis of results. The first set of tests was
performed on the simulator, generating data in frames per
second (FPS) that is available in Table I. One must observe
that the value of the FPS in the graphical interface is way
below the ideal.

TABLE II
DEVICE FPS

Number of Engine’s Graphical interface’s
Points of Interest average FPS average FPS

2 4,273.17 106.25
4 1,897.56 58.22
8 1.498,11 49,44
16 979.24 27.96
32 792.00 17.08
64 286.22 12.32

The second set of tests was run on the HTC Desire device
and not only presented an improvement in the performance

of the engine as there was a considerable improvement in the
performance of the GUI. It can also be seen in Table II that
the number of objects has a direct impact on the performance
testing application.

Based on two measurements of the engine data it was
possible to generate the graph in Figure 7 which represents
the performance obtained by measuring the FPS data in the
vertical axis and the number of points of interest in the
horizontal axis. It became very noticeable the difference in
application performance between the simulator and the HTC
Desire device.
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Fig. 7. Engine’s FPS

It was also possible to generate a graph showing the
performance of the graphical interface (Figure 8) measured
in the tests.
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Fig. 8. Graphical interface’s FPS

The results obtained by performance tests in the Android
simulator are below the results of the HTC Desire, both in
the execution of the engine and the rendering of the graphical
interface. For the Engine processing, the architecture showed
a high performance even with 64 points of interest. Moreover,
the design of points of interest in the graphic interface had
an acceptable performance up to 8 points of interest, demon-
strating that the strategy of drawing the OpenGL ES still
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needs optimization. We can also conclude from the tests that
when is necessary to evaluate the performance of applications
developed for the Android platform with existing development
tools, the measurement should not be based solely on the
results of the simulator tests.

After analyzing the test results it was necessary to in-
vestigate why the graphical interface, more specifically the
OpenGL ES layer, showed poor performance.

TABLE III
DEVICE FPS – SECOND MEASUREMENT

Number of Graphical interface’s
Points of Interest average device FPS

2 601.14
4 405.12
8 252.20
16 148.06
32 82.57
64 49.19

An analysis was made in the text drawing strategy in
OpenGL ES. The used strategy forces the program to load
a texture for each character in ASCII table, so this could be
one of the factors that affect the performance of the graphical
interface.

For performance measurement, initially, we removed all the
functionality for text drawing . Let us e call this measurement
“second measurement”. The results can be seen in Table III.

The results presented in the second measurement were much
higher than those obtained in the first measurement, showing
that the design strategy of dynamic texts used in this work has
a significant impact on application performance as depicted in
figure 9.
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Fig. 9. Graphical interface’s FPS

The present work isn’t focused in specific OpenGL ES
matters, it is not necessary to propose another solution for text
drawing. On the other hand, we could replace the OpenGL ES
text drawing with another solution that would be best suited for
use in augmented reality. Thus we propose the use of images
and textures for the virtual objects represented. The OpenGL
ES API has the functionality to upload images of objects in
the form of textures and draw them in certain locations on the
screen. Conceptually this concept meets our design needs.

Another solution to improve the performance of OpenGL
ES functionality is by using Vertex Buffer Objects (VBO).
The basic idea of this feature is to provide memory space,
called buffers, which are available through identifiers [21].
The VBO provides control trough buffer objects mapping and
defines the type of each buffer, for instance, vertices, colors
and indices. This allows graphics to optimize the management
of internal memory choosing the best type of memory (such as
cached/uncached system memory or graphics memory) which
will store the buffers [22]. Because VBOs allow a better
management of device’s memory and have more optimizations
with respect to the use of the device’s GPU, we chose to
investigate its use in augmented reality.

TABLE IV
DEVICE FPS – THIRD MEASUREMENT

Number of Graphical interface’s
Points of Interest average device FPS

2 677.72
4 429.29
8 261.42

16 154.52
32 101.34
64 90.91

The augmented reality application prototype required a lot
of changes with respect to the GUI component to suit the use
of VBO on all objects drawn on the screen. The performance
test uses the application version in which the texts design
strategy had already been removed, so the VBO solution
came to increase the previous solution’s performance that
was observed in the second measurement. Let us call this
experiment as the “third measurement”. The corresponding
results can be seen in Table IV.

Comparing the performance measurements made in the first
and second version of the application, with the latest measure-
ments, we could generate the chart depicted in figure 10.
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Fig. 10. Graphical interface’s FPS

The results presented in the third measurement were higher
than those obtained in the first and second measurements,
showing that use of the VBO had positive impact on the
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graphical interface’s performance. The second and third mea-
surements show good results regarding the improvement of
the mobile application’s performance, not only presenting an
appropriate FPS rate for augmented reality applications, but
also proposing a solution that is rather complete, allowing the
replacement of conventional OpenGL text drawing strategies
to textures with VBO.

VI. CONCLUSION

This paper presented an application architecture with AR
using geographic coordinates for the registration of virtual
objects, called points of interest. The impression of augmented
reality is ensured through the use of video camera, in which
virtual objects are drawn over the images from the camera.
The interaction between reality and virtuality occurs through
the movement of the device, triggering the compass and
accelerometers. The paper also presented a set of tools and
features that allows the AR application developer perform tests
using the mobile platforms device simulators.

The features here are similar to those of related work.
Among them we can highlight the determination of points
of interest by geographical coordinates, accelerometer and
compass; reality visualization through the camera and the
visualization of virtual objects rendered in 3D system; and
the retrieval of points of interest through a web server.

This case study verified that it is possible the use of
the resources available in major mobile platforms such as
accelerometers, compass and video camera in AR applications.
It was also shown that the use of OpenGL ES can be used to
render the immersion through a three-dimensional space, even
though its performance and optimization should be focused.

This work confirmed the need for simulation tools that have
support for developing applications with augmented reality.
We demonstrated in this paper that the simulation of camera
and sensors can be made through a connection socket between
the simulator and the computer used for development. Based
on performance testing conducted, we can conclude that the
Android platform simulators still need major improvements to
achieve the performance achieved by devices.

The design strategies within the OpenGL ES used in this
study were analyzed in order to provide the augmented reality
user the best possible experience concerning the mobile device
technologies commercially available nowadays. Through the
use of VBO, it was possible to increase the performance of
the graphical interface to a rather robust rate, allowing up to
64 design points of interest on the screen with 90.91 FPS. It
can also be noticed that the initial design strategy aproached
in this work caused the greatest impact on performance of
the graphical interface, so it was removed from work. Its
replacement was done through the use of images in the form
of textures with VBOs.

As extensions of this work, we can highlight the rendering
of textures with images that represent the points of interest,
along with the possibility of using animations and even 3D
models. Another possible future work would be to implement
touch event handling in the object of immersion, simulating a

touch on the virtual object for changing, for instance, its shape
or position.

Finally, this paper presented an innovative concept of inter-
action with the virtual reality via mobile devices, with a case
study of emerging platforms. As result, this work presented a
functional architecture that stands out not only by immersion,
but also for its unique feature of allowing the execution in
the device simulator, eliminating the need of deploying the
application to a device for testing purposes.
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