
A model-based tracking framework for textureless
3D rigid curved objects

Marina Atsumi Oikawa∗, Takafumi Taketomi∗, Goshiro Yamamoto∗, Makoto Fujisawa†,
Toshiyuki Amano‡, Jun Miyazaki∗ and Hirokazu Kato ∗

∗Nara Institute of Science and Technology, Japan
Email: {marina-o, takafumi-t, goshiro, miyazaki, kato}@is.naist.jp

†University of Tsukuba, Japan
Email: fujis@slis.tsukuba.ac.jp
‡Yamagata University, Japan

E-mail: amano@yz.yamagata-u.ac.jp

Abstract—This paper addresses the problem of tracking tex-
tureless rigid curved objects. A common approach uses polygonal
meshes to represent curved objects inside an edge-based tracking
system. However, in order to accurately recover their shape,
high quality meshes are required, creating a trade-off between
computational efficiency and tracking accuracy. To solve this
issue, we suggest the use of quadrics calculated for each patch
in the mesh to give local approximations of the object contour.
This representation reduces considerably the level of detail of the
polygonal mesh while maintaining tracking accuracy. The novelty
of our research lies in using curves to represent the quadrics’
projection in the current viewpoint for distance evaluation instead
of comparing directly the edges from the mesh and detected
edges in the video image. In our tracking framework, we also
include a method to calculate the measurable Degrees of Freedom
(DoF) of the target object. This is used to recover the pose
parameters when the object has less than 6DoF. Experimental
results compare our approach to the traditional method of
using sparse and dense meshes. Finally, we present a potential
Augmented Reality application of the proposed method.

I. INTRODUCTION

Tracking the 3D pose of a known object is a common task in
computer vision and many approaches aiming to achieve real-
time tracking have been developed to attend different appli-
cations and scenarios. Considering tracking for rigid objects,
there is a need to continuously recover 6 DoF parameters
representing the object position and orientation relative to the
camera while it moves around the scene [1].

The method described in this paper uses a model-based
approach that considers the object edges during tracking,
similar to [2], [3]. A CAD model of the target object is used for
matching with the edge information found in the video image.
This matching is done by looking for strong gradients in the
image using an initial estimation of the pose and performing
edge normal search of projected edges in the image. The final
pose is obtained after an optimization process.

However, unlike the aforementioned approaches, which are
applied mainly to polyhedral objects with flat faces, our
method targets rigid curved objects. In this case, the tracking
becomes more challenging because curved objects do not
present static edges; instead, they change according to the
viewpoint, representing the apparent contour of the object.

(a) (b)

Fig. 1. In (a), a sparse mesh is rendered on the target object resulting in (b)
a coarse representation of the object contour (red lines).

The apparent contour is a curve formed by the projection
of the contour generator, that is, parts of the surface that
are tangent to the viewing ray [4]. It is the main feature
found in curved surfaces and useful when the object does not
have any texture information available. However, its use with
standard edge based tracking methods is not trivial as shown
by previous works in section II.

Furthermore, when dealing with curved objects, high quality
meshes are required to accurately represent the object’s shape.
This creates a trade-off between the computational efficiency
and tracking accuracy: reducing the number of patches in
the mesh to improve the system efficiency affects the object
contour representation.

In Figure 1(a), a sparse polygonal mesh representing the
angel figurine is rendered on top of the real object. The object
contour has a coarse representation as highlighted in Figure
1(b), which affects accuracy since this increases the error
between projected and detected edge points.

A. Our approach

To use sparse polygonal meshes for edge-based tracking
of curved objects, we have developed a model representation
named quadrics patch representation, where a general quadric
equation is calculated for each patch in the mesh and used to
represent the local shape of the object.

2 SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012

ISSN: 2236-3297

Fig. 2. (a) When the edges from the mesh are used alone with sparse
meshes, a large distance d between the sample points on the model and the
detected edge points is evaluated. (b) However, by approximating each patch
by a quadric surface, its projection represented by conic curves (blue line)
approximates better the object outline - the conic curve shape is very close
to the object outline in the highlighted part.

Different from standard edge-based tracking systems, our
approach does not evaluate the distance between the points
assigned on the mesh edges to the detected points in the video
image; instead, the distance is evaluated by using the curves
representing the quadrics projection of the patches located on
the object contour. For instance, in Figure 2(b), instead of
using the model edge (in yellow) as reference, the curve which
approximates the local shape of the object contour (in blue) is
used to analyze the current patch. The error is clearly smaller
when compared to Figure 2(a).

Quadrics were chosen because they have simple contour
generators. Their apparent contour is represented by conic
curves and can be easily obtained by using the theory pro-
vided by differential geometry [4]. When dealing with sparse
meshes, using the conic curves instead of the original edges
from the mesh makes the tracking more robust because more
correct point correspondences can be found. Additionally,
accuracy is also improved because conic curves gives a better
approximation of the object’s local shape. This also allows
applying the proposed framework to diverse object shapes and
since this calculation is done during the offline stage, it does
not affect the computational time in the optimization step.

II. RELATED WORK

It has been shown that the apparent contour itself and
its deformations contain enough geometrical information to
recover the shape and camera motion of curved surfaces
[4], since it is considered the dominant image feature when
few or no texture is available. Some attempts aiming to
estimate the structure and motion of apparent contours include
the use of epipolar parameterization [4]; monocular camera
but constrained to orthographic, weak-perspective and affine
projection [5]; conic-stereo vision [6] or trinocular stereo [7].
In some cases, these approaches are appealing because a model
of the target object is not required, though approximating the
object shape with a polygonal mesh, for instance, simplify the
tracking.

Furthermore, since the apparent contour changes according
to the viewpoint, in order to incorporate them in standard edge
based tracking methods, some adjustments are required and in
some cases restrictions are imposed on the target object. In [8],
a unified approach that can handle fixed and apparent contour
edges within the same framework is suggested but it is limited
to a certain range of motions.

Other than polygonal meshes, curved surfaces can also
be represented by curved primitives or implicit surfaces [9].
Although curved primitives are simple and efficient, they are
limited to a small class of shapes [10]. Implicit surfaces are
more general and efficient but the models are usually very
complex to be constructed by hand. In [9], the apparent con-
tour is calculated by solving an ordinary differential equation
and used to match with image edges. However, using this
approach with complex objects increases the computational
time due to the number of evaluations of the implicit function
and its derivatives at each point.

III. TRACKING FRAMEWORK

A. Overview

Our tracking framework uses a sparse polygonal mesh of the
target object inside a standard edge-based tracking system. An
overview is shown in Figure 3. The object coordinates in the
world coordinate frame are represented by Xw = (xw, yw, zw)
and the pose parameters vector by s = (rx, ry, rz, tx, ty, tz)

T .
Considering perspective projection, the rigid body transfor-
mation between the world and the camera coordinate frame
is related by a rotation R and a translation t. This transfor-
mation matrix is combined to the matrix K, containing the
camera internal parameters. The result is the matrix equation
P = K[R|t] used to project the current view of the object in
the image plane at each iteration.

During the offline stage (A) in Figure 3, the matrix K is
obtained by calibrating the camera using the OpenCV library.
The data available in the polygonal mesh representing the
object shape are used as input to create an implicit model
representing local approximations of the entire object, that is,
quadrics that best fit each patch. In our experiments (section
V), the polygonal mesh of complex shapes was obtained by
using the Range 7 3D laser scanner. Simple shapes, such as
the torus, were modeled using the open source 3D modeling
software Blender1.

In the online stage (B), steps (i) to (v) are similar to a
standard edge based tracking [2]. The object pose is manually
initialized (ii) and a visibility test is performed to find which
patches from the mesh are visible to the camera (iii). Sample
points are assigned to the visible edges (iv) and used to find
nearby edge points (v). For step (vi), the main changes imple-
mented to allow the use of the apparent contour represented by
conic curves are shown in Figure 4: a cost function (Equation
5) is calculated based on the distance between detected points
and the conic curves on the contour. If the error value returned
by this cost function is smaller than a threshold, the system

1http://www.blender.org/, version 2.49

SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012 3

ISSN: 2236-3297

(A) Offline stage

(ii) Update pose

parameters

Manual

initialization

(B) Online stage

(vi) Compute pose

Camera parameters

calculation

Object model

creation

Quadrics

calculation

(iii) Test patches

on the contour

(iv) Assign sample

points along

visible edges

(v) Locate edge

positions in video

image

(i) Capture new

image frame

Fig. 3. An overview of our tracking framework: in (A), the offline stage with
the camera parameters calculation, model creation and quadrics calculation
and in (B) the online stage, with the optimization loop highlighted in red.

Calculate cost

function

(Equation 5)

Error < thresh

or iteration > n

Yes

No
Calculate

Jacobian

(Equation 6)

(ii) Update pose

parameters

Edge position

can be reused

(iv) Assign sample

points along

visible edges

(v) Locate edge

positions in video

image

(v)

(iii) Test patches

on the contour

Yes

No

(i)

Fig. 4. More details about the operations processed in step (vi): the error
value returned by the cost function is evaluated and if it less than the threshold,
the pose can be updated. Otherwise, the pose parameters are refined. Since
the apparent contour changes according to the viewpoint, the edge positions
are tested again to verify if the correspondence between visible edges and
detected points have changed. If necessary, steps (iv) and (v) are repeated.

loops back to step (i); otherwise, the pose parameters are
refined. Since a small movement of the apparent contour can
change the correct correspondence between the detected edge
points and the patches on the contour, after updating the pose
parameters, the edge positions are tested again. If the edge
positions can be reused, the tracking loop restarts; otherwise,
steps (iv) and (v) are repeated.

B. Quadrics calculation

As mentioned previously, using sparse polygonal meshes
to represent curved objects result in a coarse approximation
of the object contour, therefore affecting tracking accuracy.

Fig. 5. (a) Coarse shape approximation after model remeshing. (b) A conic
which approximates the object shape more accurately for the area highlighted
in (a). In (c), the internal vertices are represented by the black dots bounded
by the red triangle (current patch). (d) Quadric fitting obtained.

In addition, the remeshing process may sometimes overlook
important details of the object shape. For instance, in Figure
5(a), the red box shows the region where a concave part
is replaced by a straight line. These issues motivated us to
develop a new representation for the patches in the mesh,
considering a function simple to calculate, with better local
approximations of the object, as can be seen in Figure 5(b).

Curved primitives have been used in previous approaches
by dividing the object in parts and creating a suitable model
for each one. For instance, truncated quadrics are used in
[10]. Although it is an efficient method, its use is restricted
to a small class of shapes. In our suggested representation,
curved primitives represented by quadrics are also used, but
our approach is not affected by the same issue because the
smallest component in which the object can be divided was
used, that is, the patches from the mesh.

In our quadrics patch representation, each patch on the
mesh has a quadric equation associated. The 3D object model
is constructed using triangle patches connected on the po-
sitions Vpki = (xi, yi, zi) ∈ pk (k − th patch), where
i = {1, 2, 3} and k represents the number of patches. When
a patch pk is located on the object contour, its projection is
calculated according to the viewpoint, but only part of it is
used to form the apparent contour - the length varies according
to the length of the edge of pk that is located on the contour.

In general, quadric surfaces are algebraic surfaces of degree
2 in R3 defined implicitly by:

f(x, y, z) = a1x
2 + a2y

2 + a3z
2 + 2a4xy + 2a5yz +

2a6xz + 2b1x + 2b2y + 2b3z + c = 0 (1)

where (a1, a2, a3, a4, a5, a6, b1, b2, b3, c) are real numbers rep-
resenting the quadric parameters, not all being zero.

4 SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012

ISSN: 2236-3297

These 10 quadric parameters are calculated for every patch
by using the corresponding vertices positions Vpk. However,
since the model is made of triangle patches, the existent data
in only one patch is not enough to find a solution for this
equation. To solve this problem, the internal vertices of each
patch is used. They are defined as vertices that originally
belonged to the dense mesh, but were deleted during the
remeshing process. In this work, remeshing is obtained by
the software QSlim provided in [11] and a boundary test is
conducted to all deleted points to find which patch in the sparse
mesh they belong to, as shown in Figure 5(c).

C. Quadrics evaluation

To calculate the quadrics parameters, the value c = 1.0
is fixed and the other nine parameters (a1, a2, a3, a4, a5,
a6, b1, b2, b3) are calculated by geometric fitting. This fitting
uses the internal vertices to find the quadric that best fits
each patch. Hence, the sparser the mesh is, more data will
be available for the calculation. If less than nine points are
available, calculation of the quadrics is not possible and if this
patch falls on the object contour, this edge cannot be used for
tracking. For this reason, our method works better for sparse
meshes than for dense meshes (see evaluation graphs in section
V-A1).

Although the quadrics fitting is good for most of the patches
in the mesh, in some cases the obtained fitting is not the most
suitable one. Hence, to improve the overall performance of our
method, the quadric fitting error is also evaluated - if it exceeds
a threshold, the patch is discarded and the corresponding edge
contour is not considered for tracking. For instance, Figure 6
shows the conics approximation for the patches on the contour
for the current object view: the images highlighted in red are
the ones discarded during tracking due to the bad fitting.

D. Contour Generation

Once the model is projected using an initial estimation
of the pose, tests are performed to identify which patches
from the polygonal mesh are tangent to the current viewing
ray. Subsequently, for each patch, the corresponding conic
is calculated, generating the object apparent contour as a
collection of different conic segments (Figure 6).

Considering a point Xw lying on a quadric Q, the conic
curves belonging to the contour can be obtained by conve-
niently writing Equation 1 in matrix form using homogeneous
coordinates:

f(x, y, z) = XT
wQXw = 0 (2)

where Q is a 4x4 symmetric matrix:

Q =

a1 a4 a6 b1

a4 a2 a5 b2

a6 a5 a3 b3

b1 b2 b3 c

 =

[
Q3 q
qT c

]
(3)

Each quadric is converted to the camera coordinate frame
and then to image coordinates to obtain the apparent contour,

Fig. 6. Conics Tracking: conic curves (in blue) on the patches that belong
to the object contour. The images highlighted by the red square show patches
with a bad conic fitting for the current pose.

which is the intersection of the cone of tangent rays with the
image plane at z = f , i.e., the points x = (x, y, f)T [4]:

xT (qqT − cQ3)x = 0 (4)

where qqT − cQ3 represents the conic parameters.

E. Pose Parameters Computation

The pose parameters are calculated as a minimization prob-
lem and Levenberg-Marquardt Algorithm (LMA) [1] is used to
compute the registration that minimizes the distance between
the projected and the observed features. In our approach, the
following cost function ec(s) is minimized:

ec(s) =
1

n

n∑

i=1

de(Xi, φ(c(Qi, s)))
2 (5)

where Qi represents the quadric parameters in world coor-
dinates, c(Qi, s) calculates the quadric parameters in camera
coordinates and φ(c(Qi, s)))is the projection of the quadric in
camera coordinates in the 2D image plane resulting in a conic
curve. Lastly, s represents the pose parameters vector and the
function de represents the distance between projected features
and the detected points Xi in image coordinates.

The pose s is updated by applying LMA on a Jacobian
matrix Jes of a function describing the influence of each
element of s on each element of de. In addition, the influence
of outliers is removed by using M-Estimators. The Tukey
estimator [1] is used to weight the error returned by de:

wi =

k2

6

{
1 −

[
1 −

(
de

k

)2
]3

}
, if |de| ⩽ k

k2

6 , otherwise

(6)

SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012 5

ISSN: 2236-3297

where k represents the threshold value separating the inliers
and outliers points. The value of k is the double of the nth

value of the vector de in ascendant order, where n represents
the number of inliers. The calculated Jacobians also need to
be weighted at each iteration step, given by the derivative of
Equation 6:

weight =

{
de

[
1 −

(
de

k

)2
]2

, if |de| ⩽ k

0, otherwise
(7)

F. Distance evaluation

When dealing with static edges, de can be calculated by
using the formula of the distance from a point to a line (Figure
7(a)). However, this calculation is not trivial for the apparent
contour of curved surfaces because there is no closed form
to calculate the distance between points to a generic implicit
curve.

Some iterative approaches such as [12] have been suggested
to evaluate this distance, but it makes the original minimization
given by Equation 5 impractical. In [13], an analytical appro-
ximation for the Euclidean distance of a point to an implicit
curve is also suggested. However, this first order approximated
distance did not provide good results in our approach - the
approximation had satisfactory results only when the detected
point was very close to the conic.

Furthermore, in some cases the distance was erroneously
calculated because the whole conic was being considered and
not just the corresponding conic segment located exactly on
the patch contour. In Figure 7(b), even though p1 is closer to
the detected point p0, this distance cannot be used because it
is further from the contour edge. Therefore, the development
of a different strategy to evaluate this distance was necessary.

In our approach, reference points, namely p′
1 = (x′

1, y
′
1)

and p′
2 = (x′

2, y
′
2), are placed on the visible contour edge

and used to find two other points on the apparent contour,
p1 = (x1, y1) and p2 = (x2, y2), from which the distance
is calculated (Figure 8). These reference points are calculated
initially considering the two points of the edge from the current
patch located on the contour and they are updated according
to the position of the detected point. Sometimes the detected
point is closer to one reference point than another, so the
reference point that is further away is updated to a closer
position and the orthogonal projection of the detected point
can be correctly calculated. This update is necessary because
their position influences the position of the points on the conic
passing through the current patch.

Denoting the points p1 and p2 as pi (as well as p′
1 and p′

2

as p′
i), with i = 1, 2 and considering p0 = (x0, y0) is the

detected point in the video image, the point pi on the conic
curve and belonging to the line li passing through p0 and p′

i

can be written as:
{

xi = (x0 − x′
i)ti + x′

i

yi = (y0 − y′
i)ti + y′

i
(8)

p0

p1

d

p1

p2
(a) (b)

p0
d1

d2

Fig. 7. (a) Distance evaluation using the edge from the mesh. (b) When
dealing with conic curves, it is necessary to find the correct conic segment
from which the distance will be calculated. In this case, although d1 < d2,
the correct distance to be used is d2.

p0

p0'

contour edge

contour edge

p0''

conic

conic

l1
l2

d1

p1'
p2'

p0

p1 p2

p1'

l1 l2

p2'

d2

Fig. 8. (a) Standard approaches calculate the distance between p0 and the
point p′

0 on the contour edge. (b) In our approach, a new point position p′′
0

is found on the conic passing through this patch to calculate the distance.

In the equation above, the values of the parameters ti can
be found by replacing Equation 8 in a general conic equation
of the form:

f(x, y) = c1x
2 + c2y

2 + c3xy + c4x + c5y + c6 = 0 (9)

where (c1, ..., c6) are real constants and c1, c2, c3 are not all
zero. This resulted in the following equation:

(c1(x0 − x′
i)

2 + c2(y0 − y′
i)

2 +

c3(x0 − x′
i)(y0 − y′

i))t
2
i +

(2c1x
′
i(x0 − x′

i) + 2c2y
′
i(y0 − y′

i) +

c3(x0y
′
i + x′

iy0 − 2x′
iy

′
i) +

c4(x0 − x′
i) + c5(y0 − y′

i))ti +

(c1x
′2
i + c2y

′2
i + c3x

′
iy

′
i + c4x

′
i + c5y

′
i + c6) = 0

(10)

Equation 10 is a quadratic equation in the form aix
2+bix+

ci = 0 with components:

ai = c1(x0 − x′
i)

2 + c2(y0 − y′
i)

2 +

c3(x0 − x′
i)(y0 − y′

i)

bi = 2c1x
′
i(x0 − x′

i) + 2c2y
′
i(y0 − y′

i) +

c3(x0y
′
i + x′

iy0 − 2x′
iy

′
i) +

c4(x0 − x′
i) + c5(y0 − y′

i)

ci = c1x
′2
i + c2y

′2
i + c3x

′
iy

′
i + c4x

′
i + c5y

′
i + c6

(11)

6 SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012

ISSN: 2236-3297

p0

p1' p2'

p0

p1' p2'

p0

p1' p2'

p0

p1'
p2'

p0

p1'
p2'

p0

p1' p2'

(a) (b) (c)

(d) (e) (f)

edge n

edge n+1
edge n+2

edge n

edge n+1 edge n+2

edge n

edge n+1
edge n+2

Fig. 9. (a) to (c) illustrates different relationships between the detected points and the mesh edge as well as the conic. (d) to (f) shows a slight movement
of the object to the left resulting in a new correspondence between detected point and contour edge.

which can be calculated by finding the roots of the respective
quadratic equations:

ti =
−bi ±

√
b2

i − 4aici

2ai
(12)

Equation 12 returns two values representing the two points
where the line li intersects the conic. The smallest value for pi

is chosen, that is, the point closer to p0. Finally, the distance
from the point p0 to the line passing through p1 and p2 is
evaluated, being expressed by:

(y2 − y1)x + (x1 − x2)y + (x2y1 − y2x1) = 0 (13)

whose parameters (y2 − y1) = a, (x1 − x2) = b and (x2y1 −
y2x1) = c will be used to calculate the distance from a point
to a line:

de =
|ax0 + by0 + c|√

a2 + b2
(14)

Figure 9(a)-(c) shows a point p0 in different positions and
the respective relationship established with respect to the
contour edge from the mesh as well as the corresponding
conic. It is possible to notice that the reference point positions
p′
1 and p′

2 also change according to the p0 position.
Furthermore, since curved surfaces do not present static

edges, it is necessary to constantly check the correct corres-
pondence between p0 and the contour edge. Figure 9(d)-(f)
shows a small movement of the object to the left, which will
associate p0 to a new contour edge and hence to a different
conic. In this example, edge n+1 and edge n+2 have similar
conic curves, but depending on the object shape they may be
associated with conics of different shapes. This can affect the
result if the correct correspondence is not constantly verified.

IV. TRACKING OBJECTS WITH LESS THAN 6DOF

In general, many rigid objects found in the real world have
6DoF, which means that the Jacobian matrix Jes has rank 6
and the estimation of the six parameters defining the object
pose is possible.

(a) (b)

Fig. 10. Example of objects with 5DoF whose accurate pose estimation in
one axis is not possible: (a) torus shaped object and (b) a cup without handle.

However, object shapes such as the ones shown in Figure
10 have only 5DoF, making Jes rank-deficient and hence
the solution to find the pose parameters vector s cannot be
determined. To allow our framework to be able to handle these
kind of objects, first calculation of the measurable DoF of
the target object is performed. This is achieved by counting
the non-zero singular values obtained from the Singular Value
Decomposition (SVD) [14] of Jes, similar to [15].

Let n be the number of points found on the object model
contour through search on the normal vector direction. Since
there is one Jacobian matrix for each of these points, a
n × 6 matrix Jes is constructed and by using SVD, it can
be decomposed in:

Jes = UΣV T (15)

where U is an orthogonal n × 6 matrix, V T is the transpose
of an orthogonal 6×6 matrix and Σ is a 6×6 diagonal matrix
containing the singular values:

Σ = diag(σ1, ..., σ6);σ1 > σ2 > ... > σ6 (16)

This decomposition can be always done, no matter how
singular the matrix is, what makes possible to find the solution
for the pose parameters even when matrix Jes has rank<6.

SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012 7

ISSN: 2236-3297

The singular values represent the degree of influence on the
image of each change in the pose between frames. The bigger
the singular values, the bigger the changes in the image and
accurate estimation of the pose parameters is possible. If these
values are small, it is more difficult to estimate the changes
in the image and, hence, the pose parameters.

When the number of measurable DoF decreases, the singular
values of the missing DoF becomes zero. However, due to
computational approximations, these values do not become
zero; instead, they become very small values. For this reason,
a threshold was set to test the singular values and determine
the measurable DoF of the target object. Hence, if one DoF is
missing, the singular value σ6 ≈ 0; if two DoF are missing,
σ5 ≈ σ6 ≈ 0 and so on.

V. EXPERIMENTAL RESULTS

Experiments were carried out in two scenarios to verify
the performance of the proposed tracking system: the first
with synthetic data generated by a simulator and the second
with video images taken in a real environment. The machine
used for the tests was a Corei7 3.20Ghz, with 8GB of RAM
and NVIDIA GeForce GTX 560Ti. Comparative results are
shown for our Conics Tracking (CT) method with a standard
Line Tracking approach using Sparse (SLT) and Dense (DLT)
meshes.

A. Quantitative results

In this section, quantitative results from a controlled expe-
riment are presented. The simulator developed in [16] is used,
having as input three models of the target object in different
levels of quality:
(a) A high quality mesh of the target object, used as reference

for the edge search step. It corresponds to a synthetic
representation of the real object.

(b) A medium quality mesh to be used with DLT and having
approximately 10% of the total number of patches of the
mesh used in (a);

(c) A sparse mesh to be used with SLT and CT.
Depending on the object complexity and the method em-

ployed to obtain its polygonal mesh, the number of patches
used in each of the items described above varies. If the model
is obtained using the 3D laser scanner, the final model usually
has more than 100,000 patches. However, this amount of data
is neither necessary nor computationally efficient. Hence, to
get the model used in item (a), the original model is simply
reduced until all redundant data is deleted and the smoothness
of the object is not affected.

TABLE I
OBJECTS DESCRIPTION

Object Approximate size in mm (x, y, z)
Torus (80, 80, 23)
Duck (80, 110, 100)
Angel (119, 69, 120)
Bunny (120, 90, 120)

z

Y
X

Torus

Duck

Bunny

Angel

Fig. 11. The 5 poses used in the quantitative evaluation of each object. Each
pose was tried 100 times with different noise values.

For item (b), after testing for several objects, it was found
that, on reducing the number of patches of the high quality
mesh by around 10%, the final model still retained smoothness
and had a reasonable number of patches to be processed in
realtime. Furthermore, the data of this polygonal mesh is used
later to define the internal vertices (section III-B) used in the
conics fitting. Hence, the polygonal mesh is tested to ensure
that all patches, or more than 90% of the patches, have at
least nine internal vertices. The larger the number of internal
vertices, the better the conics fitting. In our experiments,
usually it is possible to have more than 30 internal vertices for
each patch of a complex shape. This is also taken into account
if the polygonal mesh is manually modeled using Blender.
Finally, for item (c), the number of patches is chosen according
to the experiment goal as described in the next sections.

The simulation consisted of a series of 5 trials for each
object, each trial having a total of 100 runs. The trials represent
the object in a different initial position, manually initialized
using the poses shown in Figure 11. The tracking approaches
are evaluated by computing the camera displacement between
these initial positions and a new pose generated by the
simulator by adding Gaussian noise to them.

The mesh size of the four different objects’ models (torus,
duck, angel and bunny2) used in this experiment can be found
in Table I. The distance of the objects to the camera was fixed
to 350mm and the camera internal parameters were obtained
from a Logitech QuickCam Fusion webcam calibrated with
the OpenCV library.

23D model of the bunny object is available at http://graphics.stanford.edu/
data/3Dscanrep/

8 SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012

ISSN: 2236-3297

To simulate similar noise that can be found when video
images are taken from the real environment, Gaussian noise
with mean equal to zero and standard deviation of σn = 2.0
was added to the edge detection process.

Two experiments were performed in this context: one vary-
ing the number of patches in the mesh to verify the relationship
between the quality of the mesh and the tracking accuracy;
the other evaluates the tracking accuracy considering different
amounts of noise by changing the simulator parameters and
fixing the number of patches.

1) Experiment A: In this first experiment, the main goal
is to compare the performance of the evaluated methods by
varying the number of patches in the polygonal mesh. This
range varies according to the object complexity.

Since the torus has a simple shape, a range from 500 to
50 patches was used. For the duck, 750 to 50 patches was
chosen, while, for the angel and the bunny, a range from 1,000
to 100 patches was more suitable. The noise values used to
generate the poses were generated with standard deviation of
σa1 = 1.0◦ and σa2 = 10.0mm per frame, for each axis in the
rotation (rx, ry, rz) and translation (tx, ty, tz), respectively.

Accuracy (Mean Squared Error (MSE) of the angle and the
distance components of the pose vector s), computational time
(average processing time) and robustness (success rate in 100
runs) were evaluated. For the last item, the success rate is
based on a threshold used to compare the error value returned
by the cost function: if it is less than approximately 3.0, the
tracking succeeds; otherwise, it is considered a failure.

Torus

(a) (b) (c)

Duck

(d) (e) (f)

Angel

(g) (h) (i)

Bunny

(j) (k) (l)

Fig. 12. Results for accuracy and computational time of experiment A, where each row represents one object: torus, duck, angel and bunny, in this order.
Left: MSE for the rotation in degrees. Middle: MSE for translation in mm. Right: Average of the computational time.

SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012 9

ISSN: 2236-3297

750 patches 500 patches 250 patches 150 patches 100 patches 75 patches 50 patches

1000 patches 750 patches 500 patches 250 patches 150 patches 100 patches

Fig. 13. Polygonal meshes used in the experiments of the duck and the angel objects: when the remeshing is overdone, accuracy of CT becomes lower
because of changes in the original shape of the object.

The graphs in Figure 12 show the accuracy results obtained
for all objects in the 5 poses according to the number of
patches of the polygonal mesh. It is important to note that
the variation of the number of patches used in this experiment
is valid only to CT and SLT results. All results for DLT
considered a fixed number of patches (2.500 patches) and they
were plotted on the same graph only for comparison reasons.

Graphs (a)(d)(g)(j) summarize the results for the rotation
component. When the number of patches is high, SLT per-
forms better than CT, with MSE values close to the ones
calculated by DLT. However, as the number of patches de-
creases, the SLT performance also decreases and at a certain
point, the MSE of CT gets better results. Similar behavior can
be seen in graphs (b)(e)(h)(k) in the middle, with the results
for the translation components: the MSE for CT decreases as
the number of patches decreases. In some cases, CT results
are better than the results presented by DLT, such as in graph
(h) for the angel with 250 and 150 patches; and in graph (k),
for the bunny with 500 and 250 patches.

Furthermore, while the error of SLT keeps increasing with
the decrease of the number of patches, the error of CT
decreases until it reaches an optimal point where the error
starts to increase again (though with values still lower than
SLT). This behavior happens because there is a limit for the
object’s model remeshing: when it is overdone, the changes in
the shape no longer resemble the original shape in some parts,
affecting the quadrics fitting and hence the tracking accuracy.

To illustrate the remeshing effects on CT, in Figure 13 the
beak of the duck is missing when it has 50 patches and part
of the wing and the leg of the angel are missing when it has
100 patches. These numbers of patches represent the point
in which CT has the highest error, as can be seen in the
graphs of MSE in Figure12. Hence, depending on the object’s
shape complexity, the ideal number of patches to be used
with CT changes, being determined by visual evaluation of
the remeshing process.

Regarding computational time, the average of the results of
each method is shown in Figure 12(c)(f)(i)(l). Among the three
methods, CT has the best results.

In the cases where simple shapes are used (torus and duck),
the computation time varies comparatively less than other
methods with the decrease of the number of patches. However,
for complex objects (angel and bunny), the trade-off between
computational time and accuracy is clear for SLT: the lower
the number of patches the faster the algorithm performs, but
at the same time, MSE becomes higher. On the other hand,
CT performs well in both accuracy (up to the optimal point)
and computation time.

Finally, Figure 14 shows the average of the success rate
in 100 runs, with CT performing better than SLT when the
number of patches is low. The dashed green line represents
the values obtained for DLT with fixed number of patches.
For simple shapes, such as the torus and the duck, the values
of CT are very close to DLT in most cases, indicating high
success rate even for a reduced number of patches. A decrease
in the success rate for CT is noticed for the angel and the
bunny, but with equivalent or higher values than SLT when
the number of patches is low.

2) Experiment B: In this experiment, the polygonal mesh
has a fixed number of patches, but the simulator parameters
are changed following the conditions below:

(a) Condition 1: σb11 = 1.0◦ and σb12 = 10.0mm.
(b) Condition 2: σb21 = 1.5◦ and σb22 = 15.0mm.
(c) Condition 3: σb31 = 3.0◦ and σb32 = 15.0mm.

These conditions are used to set the standard deviation
of the Gaussian noise applied to the rotation and translation
components, respectively.

The number of patches to be used for each object was
chosen after the analysis of Figure 12 and Figure 14. They
basically represent the point where CT had better performance.

10 SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012

ISSN: 2236-3297

Torus

(a)

Duck

(b)

Angel

(c)

Bunny

(d)

Fig. 14. Results for the success rate in 100 runs of experiment A. The success rate of SLT drastically decreases when the number of patches is reduced,
while in CT, a slight or no decrease is noticeable.

In our experiments, the following number of patches were
chosen:

• Torus: 150 patches
• Duck: 100 patches
• Angel: 250 patches
• Bunny: 250 patches

The graphs in Figure 15 show the accuracy and success rate
results obtained for all objects using the same 5 poses of the
previous experiment. For all conditions, CT presented better
accuracy than SLT in both, rotation and translation compo-
nents (graphs (a)(d)(g)(j) and (b)(e)(h)(k)). This is consistent
with Table II, in which the average of the re-projection error
for each of the tested conditions was lower for CT.

Regarding the success rate, in most of the cases, SLT
performed slightly better than CT. Since bigger amounts of
noise means larger displacements from the original pose, it is
expected the re-projection error also increases, affecting the
success rate. On the other hand, comparing the success rate
graphs from Figure 15 with graphs (a), (c) and (d) of Figure
14, the torus (150 patches), angel (250 patches) and bunny
(250 patches) also had lower success rate. Hence, the increase
in noise lowered the success rate of these objects but it is still
consistent to the expected result.

The graphs for computational time are omitted because the
number of patches is fixed. The results for each object can be
verified in the corresponding graphs (c)(f)(i)(l) of Figure 12.

DLT results are also presented in Table II for comparison
purposes. CT results are in some cases better than DLT.
This confirms that our proposed tracking system using sparse
polygonal meshes and conics can be as accurate as a standard
line tracking using dense meshes, with the advantage that it
consumes less computational time.

TABLE II
RE-PROJECTION ERROR AVERAGE (MM)

Object Conditions CLT SLT DLT

Torus
Condition 1 0.876564 1.2456 0.9039172
Condition 2 0.8785856 1.284532 0.962884
Condition 3 0.9089266 1.298442 0.971726

Duck
Condition 1 0.9008606 1.954882 0.8850602
Condition 2 0.9176128 1.944626 0.912994
Condition 3 0.9526356 1.936006 0.9215902

Angel
Condition 1 0.8737294 1.445286 0.936935
Condition 2 0.8873462 1.471256 1.0600578
Condition 3 0.8891558 1.46911 1.0177716

Bunny
Condition 1 0.9894448 1.592458 0.967533
Condition 2 1.003952 1.701384 1.1316334
Condition 3 1.078521 1.707916 1.122874

B. Qualitative results

The previous experiments provided numerical results to
quantify the tracking performance. In this section, qualitative
evaluation is implemented using video sequences captured
from the real world. It aims to confirm that CT can perform
well not only in a synthetic environment, but also in a real
environment, where the presence of noise is bigger and the
movement of the object or/and the camera is more complex.

A handheld monocular camera Logitech QuickCam Fusion
was used and to ensure a fair comparison, all approaches were
tested using the same video sequence, recorded beforehand. To
visualize the tracking, the polygonal mesh is rendered on the
object’s surface: when tracking succeeds, the mesh is green;
if it fails, the mesh becomes pink. Finally, performance is
evaluated by counting the number of frames in which the
tracking fails.

SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012 11

ISSN: 2236-3297

Two objects were used in this experiment: Torus and Angel.
In the first video sequence, the user holds the torus with his
hand and moves it arbitrarily. An example of this sequence
is shown in Figure 16, where the upper images show CT
results without any failures and the bottom sequence shows
SLT failing for some of the poses. The failure in SLT happens
after making an horizontal movement with the torus, though
tracking is recovered in the next frames.

For the angel’s sequence, two conditions were applied:
(a) Angel I: The user moves the object with his hands.
(b) Angel II: The camera moves around the object.

Similar to the torus sequence, Figure 17 shows some CT
results in the upper sequence, which do not have any failures.
In the bottom sequence, SLT fails in some of the poses.

In the Angel I condition, SLT fails after rotating the object
and tracking is recovered when the object returns to a pose
close to the initial pose. In the Angel II condition, SLT fails
when the camera gets closer to the object and moves away.
However, after this failure, tracking is not recovered until the
end of the sequence. These results show the robustness of
CT regarding different movements made either by moving the
object or by moving the camera.

Torus (150 patches)

(a) (b) (c)

Duck (100 patches)

(d) (e) (f)

Angel (250 patches)

(g) (h) (i)

Bunny (250 patches)

(j) (k) (l)

Fig. 15. Results for accuracy and success rate of experiment B. Left: MSE for the rotation in degrees. Middle: MSE for translation in mm. Right: Average
of the success rate in 100 runs.

12 SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012

ISSN: 2236-3297

C
T

S
L
T

frame #136 frame #499frame #467frame #461

Fig. 16. Qualitative evaluation for the torus. In the upper sequence, CT does not present any failure. In the bottom sequence, SLT fails in some poses.

C
T

S
L
T

frame #176 frame #700

(a) Angel I (b) Angel II

frame #447 frame #458

Fig. 17. Qualitative evaluation for the angel. Two conditions are considered: (a) the user moving the object (two images on the left) and (b) the camera
moving around the object (two images on the right). In the upper sequence, CT does not present any failure. In the bottom sequence, SLT fails in some poses.

Table III shows more details about the results from these
experiments, with the number of frames recorded in each video
sequence and the respective number of frames in which each
approach failed. They confirmed the results obtained in the
quantitative experiments, with CT performing better than SLT
when using sparse polygonal meshes. The video sequences
showing the comparison between CT and SLT are available
at: http://imd.naist.jp/videos/quadrics.html.

TABLE III
NUMBER OF FAILURES

Object # of Frames CT failures SLT failures
Torus 605 - (0%) 69(≈ 11.4%)

Angel I 749 - (0%) 89(≈ 14.7%)

Angel II 702 - (0%) 532(≈ 87.93%)

VI. AUGMENTED PROTOTYPING APPLICATION

In Augmented Reality (AR), virtual imagery is properly
overlaid inside the real world to give the user the feeling that
the virtual and real worlds coexist, though this coexistence is
strongly influenced by the accuracy of the registration between
virtual and real objects is [17]. Different fields have been
using AR for a wide variety of purposes: to improve the
user experience, such as in the entertainment industry; to
give guidance during assembly operations or to include virtual
annotations in the real world to give directions as well as
information about specific places nearby the user.

In this section, we present an application of our proposed
CT method in AR for Rapid Prototyping (RP). With RP, a
physical prototype of the desired product can be automatically
constructed from Computer-Aided Design (CAD) data by
using a 3D printer. By enhancing this prototype with AR,
evaluation of aesthetic concepts of the final product (e.g. color

SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012 13

ISSN: 2236-3297

(a) (b) (c)

(d) (e) (f)

Fig. 18. Image sequence showing the AP application: (a) the ideal scenario, with the user holding the angel figurine and wearing a Head-Mounted Display,
from where it is possible to visualize different colors and textures rendered on the object in real-time. In the sequence, (b) the original object, without any
texture, followed by (c) an augmented image of the same object with a blue color. Different textures were also tried and the object is shown in different views
(d)-(f). In (f), the detail of the shadow of the user’s hand is smoothly blended with the object’s virtual texture and realistically rendered.

or texture) in real-time and inside the users’ environment
becomes easier, saving both time and production costs. This
usage of augmentation in RP has been previously proposed,
being referred as Augmented Prototyping (AP) [18], [19], [20].

In our AP application, curved shapes are the main target
and different versions of the planned design can be overlaid
on the prototype in real-time and easily interchanged without
the need of producing new prototypes. The user can interact
with his hands and place it in his own environment as he would
do with the final product.

The CAD model used to construct the physical prototype
is employed inside the proposed tracking system. Hence, the
prototypes do not need to have any kind of texture information
and no fiducial markers are required. In Figure 18, an image
sequence shows our AP application: by using a Head-Mounted
Display, the user can have a natural view of the object and
visualize different colors and textures as they are rendered
onto the object in real-time. In (f), the detail of the shadow of
the user’s hand is smoothly blended with the object’s virtual
texture and realistically rendered.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel method to solve the
trade-off between computational efficiency and tracking accu-
racy when dealing with textureless rigid curved objects.

Quadrics are suggested to represent each patch of the
mesh, being a simple representation, easy to calculate and
efficient for curved objects. A new method for evaluating
the distance between projected and detected features was also
developed to attend the particularities of using the quadrics

Fig. 19. Highlighted by the red square, a pose incorrectly handled by our
framework.

patch representation. Furthermore, a method to calculate the
DoF of the target object is also included in our framework,
allowing the tracking of objects with less than 6DoF.

Quantitative results comparing our approach and the tradi-
tional method using sparse and dense meshes are presented
in two stages. First, by using several polygonal meshes of the
same object with different number of patches to verify their
affect on accuracy, speed and success rate of each method.
Second, by choosing one mesh from the previous experiment
and testing it under different conditions, with simulation of
small and large movements made with the object.

While the quantitative experiments are performed with a
simulator, qualitative results are presented by using video
images captured from the real environment. Thus, success and
failure conditions can be evaluated in more realistic conditions,
confirming the quantitative results previously presented.

14 SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012

ISSN: 2236-3297

Our current implementation showed good results in both
synthetic and real environment, but there are still some issues
to be solved. Currently our framework is able to handle objects
with less than 6DOF by using SVD as shown in section
IV. However, it cannot properly handle situations where the
object starts with 6DOF but depending on the viewpoint, the
DOF changes. For instance, in Figure 19, when the duck
is rotated, at some point the shape becomes symmetric and
1DOF is lost. The tracking does not fail, but the model is not
correctly rendered on the object. This problem can be solved
by incorporating into our framework the approach developed
in [15] which, in order to recover the object DoF, performs
null space search on the Jacobian matrix relating model pose
and detected features.

Finally, an application of our proposed method in AP of
rigid curved surfaces is presented, with examples from a real
scenario using the angel figurine. Different colors and textures
could be easily tested using only one physical prototype.

Other applications in which our method can be applied
include augmented reality targeting mobile devices, in which
the data size of the 3D model can be critical for the tracking
performance. By using sparse meshes, loading 3D models
from a remote sever would be faster as well as the tracking
itself, with less model data to be analyzed during tracking.

In order to allow a large variety of objects to be tracked
by our framework, our method will be extended to deal with
curved objects that are not entirely smooth. An example can
be the cup shown in Figure 10(b), in which the upper and
bottom part of it is not smooth. To obtain more accurate
tracking for this type of objects, a patch classification step
can be performed during the offline stage to identify which
patches in the mesh are smooth and which are not. Then, for
non-smooth patches, depending on the edge that is located on
the contour, a different Jacobian and matching method could
be triggered.

REFERENCES

[1] V. Lepetit and P. Fua, “Monocular model-based 3d tracking of rigid
objects: A survey,” Foundations and Trends in Computer Graphics and
Vision, 2005.

[2] T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 24, no. 7, pp. 932–946, 2002.

[3] A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette, “Real-
time markerless tracking for augmented reality: The virtual visual
servoing framework,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 4, pp. 615–628, 2006.

[4] R. Cipolla and P. Giblin, Visual Motion of Curves and Surfaces.
Cambridge University Press, 2000.

[5] Y. Furukawa, A. Sethi, J. Ponce, and D. Kriegman, “Robust structure and
motion from outlines of smooth curved surfaces.” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp. 302–315,
2006.

[6] S. Ma, “Conics-based stereo, motion estimation and pose determination,”
International Journal of Computer Vision, vol. 10, no. 1, pp. 7–25, 1993.

[7] T. Joshi, N. Ahuja, and J. Ponce, “Structure and motion estimation from
dynamic silhouettes under perspective projection,” International Journal
of Computer Vision, vol. 31, no. 1, pp. 31–50, 1999.

[8] G. Li, Y. Tsin, and Y. Genc, “Exploiting occluding contours for real-
time 3d tracking: A unified approach.” in Proceedings of the IEEE
International Conference on Computer Vision, 2007.

[9] E. Rosten and T. Drummond, “Rapid rendering of apparent contours
of implicit surfaces for realtime tracking,” in British Machine Vision
Conference, 2003, pp. 719–728.

[10] T. Drummond and R. Cipolla, “Real-time tracking of highly articulated
structures in the presence of noisy measurements,” in Proceedings of the
Eighth International Conference on Computer Vision, 2001, pp. 315–
320.

[11] M. Garland, “Quadric-based polygonal surface simplification,” Ph.D.
dissertation, Carnegie Mellon University, 1999.

[12] V. H. Mederos, J. Sarlabous, and P. Sanchez, “A new algorithm to
compute the euclidean distance from a point to a conic.” Revista
Investigacion Operacional, vol. 23, no. 2, 2002.

[13] G. Taubin, “Distance approximation for rasterizing implicit curves,”
ACM Transactions on Graphics, vol. 13, no. 1, pp. 3–42, 1994.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: the art of scientific computing, 3rd ed. Cambridge
University Press, 2007.

[15] K. Kumagai, M. A. Oikawa, T. Taketomi, G. Yamamoto, J. Miyazaki,
and H. Kato, “Robust model-based tracking considering changes in
the measurable dof of the target object,” in Proceedings of the 21st
International Conference on Pattern Recognition, 2012.

[16] M. A. Oikawa, G. Yamamoto, M. Fujisawa, T. Amano, J. Miyazaki,
and H. Kato, “Quantitative evaluation method for model-based tracking
of 3d rigid curved objects,” in Proceedings of The 2nd International
Workshop on AR/MR Registration, Tracking and Benchmarking, 2011.

[17] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIn-
tyre, “Recent advances in augmented reality,” IEEE Computer Graphics
and Applications, pp. 34–47, 2001.

[18] J. Verlinden and I. Horvath, “A critical systems position on augmented
prototyping systems for industrial design,” in Proceedings of the ASME
2007 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, 2007.

[19] W. Lee and J. Park, “Augmented foam: A tangible augmented reality
for product design,” in Proceedings of the International Symposium on
Mixed and Augmented Reality, 2005, pp. 106–109.

[20] H. Park, H. C. Moon, and J. Y. Lee, “Tangible augmented prototyping of
digital handheld products,” Computers in Industry, vol. 60, pp. 114–125,
2009.

SBC Journal on 3D Interactive Systems, volume 3, number 2, 2012 15

ISSN: 2236-3297

