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Abstract—Brain-Computer Interface (BCI) enables users to 

interact with a computer only through their brain biological 

signals, without the need to use muscles. BCI is an emerging 

research area but it is still relatively immature. However, it is 

important to reflect on the different aspects of the Human-

Computer Interaction (HCI) area related to BCIs, considering 

that BCIs will be part of interactive systems in the near future. 

BCIs most attend not only to handicapped users, but also healthy 

ones, improving interaction for end-users. Virtual Reality (VR) is 

also an important part of interactive systems, and combined with 

BCI could greatly enhance user interactions, improving the user 

experience by using brain signals as input with immersive 

environments as output. This paper addresses only noninvasive 

BCIs, since this kind of capture is the only one to not present risk 

to human health. As contributions of this work we highlight the 

survey of interactive systems based on BCIs focusing on HCI and 

VR applications, and a discussion on challenges and future of this 
subject matter. 

Keywords—Brain-Computer Interface; BCI; Headset; EEG; 

Human-Computer Interaction; HCI. 

I. INTRODUCTION 

The evolution of technology provides significant changes 
in the way users use interactive systems. With the ever-
increasing usage of tablets and smartphones, it can be observed 
that interaction between users and applications will take place 
through smaller displays and touchscreens. Whereas modern 
controls such as WiiMote and Kinect highlight the need for 
interaction adjustment considering user physical movements in 
their context of use to support appropriate utilization of 
systems. Therefore, design and development of interactive 
systems should follow new trends of technologies in order to 
provide better user experience, increasing productivity and 
offering intuitive actions for execution of different tasks. 

With technological advancements different kinds of 
interaction which use our bodies have emerged, enabling the 
use of various body parts other than our hands. For example, 
Harrison et al. [10] demonstrated the possibility of using 
human skin as a touch interface, Nam et al. [24] presented a 
wheelchair controlled by tongue movements, and Liu et al. [17] 
proposed an eye-tracking system as well as several examples of 
eye-tracking for human-computer interaction. Also, Vernon 
and Joshi [31] propose using a muscle above the ear – which 

lost its function along with human evolution – to control a 
television. However, it is possible to go further and use a part 
of human body’s central axis, already presented in all forms of 
human interaction: the brain. 

Brain-computer interface is a research field been studied 
since middle of 70s in diverse areas of knowledge such as 
neuroscience, biomedicine, automation and control engineering 
and computer science. Meanwhile only recently cost and 
accuracy required for civilian use have been achieved. People 
with severe motor impairments are main beneficiaries of brain-
computer interface researches, as persons with locked-in 
syndrome, i.e. a rare condition characterized by paralysis of 
voluntary muscles except for the eyes. Nevertheless, we realize 
that people without any disability are also potential users of 
solutions which promote interaction between humans and 
computers through cerebral signals, in the most possible 
natural way. 

However, interactive aspects of BCIs remain poorly 
explored by researchers, probably due to the intrinsic 
complexity of areas involved in this research topic. New 
studies are coming out guided by some computing areas such 
as Human-Computer Interaction (HCI) and Virtual Reality 
(VR). A prime example is a work by Solovey et al. [30], which 
describes the use of brain-computer interaction in a multi-
modal interface. Also, Friedman et al. [49] present a brain-
computer interface with virtual reality. There is therefore a 
strong need for a detailed study to identify clearly and 
objectively current limitation of brain-computer interface from 
an interactive perspective. 

Millán et al. [22] present a brain-computer interface review 
focused on motor substitution with neuroprostheses and 
recovery through neurorehabilitation. The authors discuss 
brain-computer interface applications in an assistive 
technology context, such as using sensors in a wheelchair for 
better brain-computer interface control. Lotte et al. [50] review 
and explore brain-computer interface works that use VR, 
focusing on the design of brain-computer interface based on 
VR applications. In this paper, we discuss brain-computer 
interface solutions in an interactive perspective, such as 
evaluation of user’s cognitive workload and the lack of 
freedom regarding visual attention. Furthermore, our work 
focus on HCI and VR aspects, while taking in consideration 
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both healthy and impaired users. Afterwards, we identify and 
discuss several challenges in this context. 

This paper is organized as follows: Section II 
contextualizes brain-computer interface area, introducing basic 
concepts and technologies; Section III presents a survey of 
brain-computer interface; Section IV presents several 
challenges related to brain-computer interfaces; Section V 
discusses this research topic; and Section VI concludes the 
paper. 

II. BRAIN-COMPUTER INTERFACE 

Brain-Computer Interface (BCI) is a mode of interaction 
between human beings and computers which does not use any 
muscle, since system is controlled through user’s mental 
activity captured with specific equipment. According to 
Wolpaw et al. [34], BCI is a communication system with two 
adaptive components that mutually complement each other. 
For these authors, at the current technology stage, users should 
fit into BCI to control the system since it should adapt itself to 
user’s mental signals. Hence, user must understand the system 
which must adjust itself to user, both required for BCI to 
succeed. 

BCI requires reception of brain signals captured directly 
from human brain. There are three different ways to capture 
these signals, i.e. (i) invasive, (ii) partially invasive, and (iii) 
noninvasive. Invasive capture is characterized by introduction 
of implants into user’s encephalic mass, directly into the gray 
matter, providing high quality signal reading; however it 
causes great inconvenience and risks to human health. In 
partially invasive capture, implants are placed beneath the 
skull without drilling the brain. Despite its lower quality 
signals, this signal capture form presents lower risks to health 
as compared with invasive approach. Lastly, noninvasive 
capture enables gathering information without any implant 
since sensors are placed on the scalp, fully external to the body. 
Noninvasive BCIs are more convenient and easy to use, and 
due to technological advancements of current solutions, 
provide good quality signal capture. It is also the only one to 
not present risk to users’ health. For this reason, this paper 
focuses only on noninvasive BCIs. 

There are three most common techniques to obtain 
cerebral information, i.e. (i) electroencephalogram (EEG), 
(ii) functional magnetic resonance imaging (fMRI), and (iii) 
functional near-infrared spectroscopy (fNIRS). With EEG, 
brain activity is captured through sensors called electrodes. It is 
possible because neurons communicate with each other via 
electrical signals, which eventually reach brain surface and 
then are captured by electrodes. The fMRI technique measures 
brain activity through blood oxygenation and flow, which 
increase in the specific area involved in mental process. This 
capture technique requires usage of equipment with 
considerable dimensions and a scanner with a large magnetic 
field. And fNIRS method also measure brain activity through 
blood oxygenation and flow, but it is based on identifying 
variation of optical properties in brain images. Near-infrared 
light is sent into the user’s forehead and, through light 
detectors, the reflected rays are picked up and correlated to 
specific concentration of oxygen. 

Fig. 1 shows different equipment to gather cerebral 
information in a noninvasive way with the above mentioned 
techniques, i.e. EEG electrodes capturing electrical signals 
(Fig. 1a), scanner fMRI with magnetic resonance imaging (Fig. 
1b), and spectroscopic sensors with near-infrared radiation 
(Fig. 1c). Nowadays, only EEG and fNIRS enable to gather 
cerebral information in a real usage scenario due its relative 
low-cost and portability. Moreover, EEG has the best temporal 
resolution, which means that it captures signals faster than 
others, and hence this method is the most used in BCIs. 

 

Fig. 1. Nonivasive equipments used to capture cerebral information (a) EEG 

electrodes (b) fMRI scanner (c) spectroscopic sensors. Sources: [1],
1
,
2
. 

There are different capture devices, which vary greatly in 
shape and may be a cap, tiara, headband, helmet, or even loose 
electrodes. In this paper we unify all these terms in a single 
one: headset. Hence, we consider as headset a set of sensors 
placed on user’s head. For marketing purpose, companies have 
been developed more portable headsets with attractive designs 
at lower costs. These devices aims to provide greater comfort 
as compared with equipment showed in Fig. 1. In 2009, 
NeuroSky3 has launched MindSet, a wireless headset with a 
single EEG electrode and capable of measuring user 
concentration. This company has others headsets available 
such as MindWave, launched in 2011. In 2009, other company 
named Emotiv4, launched EPOC: a wireless headset in a tiara 
format. EPOC has 14 EEG electrodes and a gyroscope, which 
measures head movements. BCI researches with fNIRS in real 
usage scenarios usually use sensors covered with a headband in 
order to maximize comfort. Fig. 2 shows some BCI headsets, 
i.e. NeuroSky MindSet (Fig. 2a), Emotiv EPOC (Fig. 2b), and 
fNIRS sensors covered with a headband (Fig. 2c). 

 
Fig. 2. BCI headsets (a) NeuroSky MindSet (b) Emotiv EPOC (c) fNIRS 

snsors covered with a headband. Sources: [7],[1],[29]. 

                                                        
1

 http://blogs.oem.indiana.edu/scholarships/index.php/2009/10/26/neurons-an 

d-electrodes/fmri_groot/. 
2
 http://www.spiegel.de/fotostrecke/fotostrecke-13782-3.html. 

3
 http://www.neurosky.com. 

4
 http://www.emotiv.com. 
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A. Thoughts Recognition 

BCIs require recognizing a thought or mental activity in 
order to activate an action. An ideal scenario should be to think 
about turning a lamp on and then, BCI system recognizes this 
thought and turns a lamp on automatically. Currently, 
recognizing specific thought such as “turn lamp on” is still 
very difficult. However, there are three mental activities 
recognized with certain precision, which are commonly used 
on BCIs applications, i.e. (i) concentration, in which Alpha 
and Beta waves are used to estimate user’s attention and 
relaxation/meditation, (ii) stimulus response, in which brain 
responses are detected when user focus on certain flashing 
graphic elements (visual stimulus) and/or special sound 
patterns (sound stimulus), and (iii) imagined movement, in 
which is possible to detect kinetic thoughts, such as imagining 
your right hand opening and closing, due to the 
synchronization and desynchronization of Mu rhythm. 

The detection for a stimulus response (ii) is subdivided 
into two types, i.e. oscillating stimulus and transient stimulus. 
In oscillating stimulus, elements are differentiated by 
frequency, such as LEDs where each one flashes – oscillates – 
in a different frequency, inducing a natural response from brain 
and generating electrical activity in the same or multiple 
frequency of stimulus. Other example of oscillating stimulus is 
in the case of two sounds from different frequencies, which 
generates a specific response to the focus in each one. The 
response for a visual oscillating stimulus is called Steady State 
Visually-Evoked Potential (SSVEP) and a response for a 
sound oscillating stimulus is called Steady State Auditory 
Evoked Potential (SSAEP). Transient stimulus are 
differentiated by response to a transition from a visual/sound 
state to another. When an individual waits for a certain 
stimulus among other similar stimulus, a wave called P300 is 
generated as a response. An example would be five squares, off 
most of the time, which each one turns on for a short time and 
turns off again. User concentrates in one square and when this 
square turns on, a P300 wave is generated due to the small 
“surprise” caused by the transition from off to on. Likewise, it 
is possible to identify a user’s response when listening a sound 
repeatedly and then suddenly, a different sound occurs. 

One of the first visual stimulus-based applications 
commonly used in tests is typing, called speller. In this test, 
screen contains letters from ‘A’ to ‘Z’ arranged in a grid/matrix 
and user must concentrate in a specific letter. BCI recognizes 
which letter and presents it to user. Then, user can focus and 
concentrates in other letter and therefore, letter by letter to 
form words. In SSVEP-based BCIs, each letter flashes 
intermittently in different frequencies, whereas in P300-based 
BCIs, one line/column flashes at time in a random pattern. 
When the line corresponding to the user’s chosen letter flashes, 
P300 wave is recognized, indicating that user is focusing on 
that line. Likewise, when the column flashes this wave is 
identified. Thus, with both the line and column recognized, it is 
possible to identify the letter chosen by user. Fig. 3 shows two 
different spellers which enables word entry like as a keyboard. 
In Fig. 3a the speller is used on P300-based solutions and Fig. 
3b illustrates a speller for SSVEP-based solutions. 

 

Fig. 3. Spellers based on (a) P300 (b) SSVEP. Sources: [26],[13]. 

In BCIs, processing can be performed online and offline. 
Online processing occurs in real time while the user utilizes a 
BCI and offline processing is performed after user experiment 
with a post-processing approach in order to obtain the 
maximum precision. There is also a BCI classification 
regarding rhythm, i.e. synchronous and asynchronous. In 
synchronous BCIs, commands are interpreted at a constant 
time rate. Therefore, after every certain amount of time, a 
command is recognized regardless of user’s intent. Whereas 
asynchronous BCIs – also called self-paced – give control to 
the user to recognize a command only when wanted. 

We consider pertinent presenting some fundamental 
concepts of the BCI area in order to provide a refined 
understanding about the literature works presented in this 
survey. The objective of this background is to present a 
theoretical overview, not an introduction tutorial about BCIs. 
The following section presents a survey that comprises a 
relevant part of the literature about this research topic. 

III. SURVEY 

The survey presented in this paper describes works which 
address new BCIs. These interfaces are related to daily task 
accomplishment, now possible through cerebral waves. 
Therefore works presented demonstrate the potential of new 
interaction forms with interactive systems through BCIs. 
Moreover, to a greater identification of proposes and 
challenges of this research area we grouped works according 
detection approach it utilizes, i.e. (a) visual stimulus response, 
(b) sound stimulus response, (c) concentration, (d) imagined 
movement, and (e) neurofeedback. 

The search strategy consisted of automatic and manual 
searches in scientific libraries and bibliographic databases. 
Automatic search was conducted in IEEE Xplore, ACM DL, 
Springer, Elsevier, Scielo, Scopus, ISI Web of Knowledge, and 
also in Google Scholar; manual search was made in PLoS 
Biology and Frontiers in Neuroscience Journals. In the search 
process we used a combination of the following keywords in 
English (presented in this paper in alphabetical order): BCI, 
brain, computer, HCI, human, interaction, interface, reality, 
virtual, and VR. For this study we select only recent works, i.e. 
paper published in the last five years. 

A. Visual Stimulus Response 

Mauro et al. [21] exhibit the use of a BCI to control the 
cursor of a desktop operating system. They implemented two 
BCIs based on P300, one exogenous and other endogenous; in 
an exogenous interface the user focus is external, while on an 
endogenous interface the user focus should be at the center 
(internal). Both interfaces allow four movement directions with 
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four squares – one in each side – representing position 
objectives for testing purposes. On the exogenous interface, 
those squares flash, and the user has to focus on the square in 
desired direction. The squares do not flash in the exogenous 
interface. Instead, one letter is showed on the center of screen, 
alternating between the initials of Italian words for directions, 
i.e. alto (up), destra (right), basso (down), and sinistra (left). 
The user has to count the occurrences of the letter representing 
the desired direction. Eight patients, half healthy and the other 
half in advanced state of paralysis, participated in the 
experiment. Results demonstrated that there was no difference 
on the precision of the healthy group versus the paralyzed one, 
which indicates that the interfaces devised do not depend on 
motor abilities. 

Hood et al. [42] developed a BCI control for a car driving 
virtual simulation using CARRS-Q. CARRS-Q simulator 
consists of a platform with 180 degrees frontal projection and 
three simulated mirrors. The BCI uses three LEDs as SSVEP 
stimulus, each one offering a configurable command. One 
possible configuration would be with three LEDs, i.e. one to 
right steer the wheel, another one for left steering it, and the 
last for straight steering. It reached good precision rates but 
still cannot be applied in real situations, because it is not safe 
enough. In the authors opinion, a virtual ambient will be 
essential for improvements on the interface and safety 
guarantees of future car-driving BCIs. Fig. 4 showcases the 
system being used. 

 
Fig. 4. BCI for car driving in virtual simulator CARRS-Q. Source: [42]. 

A different BCI application is a web browser created by 
Mugler et al. [23]. The BCI is based on the P300 and follows 
Mankoff et al. [20] web usability needs. For Mankoff et al. 
[20] all web browser systems must offer the following features: 
web navigation, page navigation with fewest commands 
possible, history browsing, bookmarks, and text input. In 
addition to those ones, the authors add functionalities like an 
URL bar. Speed is considered an interesting factor but not a 
need. Another BCI web browser is the one created by Xu et al. 
[35], which uses the SSVEP approach. The application allows 
searching in Google and inputting text. The authors mounted a 
hardware, in which a small LED board with six LEDs is 
attached on a conventional notebook. Each LED represents an 
option and these LEDs are used to input characters, to navigate 
a 6x6 menu, and to select web browsing commands like “next 
URL” and “HOME”. The interface achieves great precision 
(92%) but it is very slow (four and a half minutes for a simple 
Google search). Although the described application is 
interesting, Liu et al. [18] argue that SSVEP BCIs have a 
fatigue factor due constant and intermittent flashes. For this 
reason, these authors created an alternative BCI. Like the usual 
SSVEP, the interface uses a visual stimulus differentiated by 
frequency and also a movement frequency instead of the usual 
light frequency. According to the authors, this new SSVEP 

interface offers an increased comfort with a good precision 
(83%). 

Ceccoti [4] developed an asynchronous BCI speller based 
on SSVEP. The speller objective was to achieve an intuitive 
system where even inexperienced users could successfully use 
it, while causing the least possible discomfort. Therefore, the 
letters are divided into groups and what flashes is the contour 
of those groups. The system automatically configures the BCI 
and the asynchronous nature of the interface leaves the user 
more relaxed. Another interesting work is the one presented by 
Campbell et al. [2] that proposes the NeuroPhone, a iPhone 
application in which phone calls are made through a BCI using 
the EPOC. A contact photo grid is showed to the user and one 
photo flashes at time in a P300 fashion. Then, the user focuses 
on the contact to call. Fig. 5 shows the process of calling a 
contact. 

 

Fig. 5. Contacts flash, one by one, detecting the user visual focus. A phone 

call is made to the one choosed. Source: [2]. 

A remote robot is controlled in the SSVEP BCI made by 
Gergondet et al. [6]. In this system, a real-time video displays 
the robot “vision”, i.e. a camera coupled on the robot. On the 
controlling machine – notebook – the interface mixes the robot 
vision with four red squares at the four sides – top, bottom, left, 
and right – that act as the visual stimulus. Focusing on one of 
these directions, the robot increases speed in the same 
direction. For testing purposes the authors use a robot 
benchmark known in the robotic area as SLALOM, the robot 
BCI successfully passes in the benchmark test. Yuksel et al. 
[37] employ a P300 BCI for object selection. These objects are 
arranged in a multi-touch table display and a computer vision 
algorithm computes the approximated shape for each object. 
This shape is expanded and flashed under the object following 
the same process in P300 spellers with an object grid instead of 
a letter grid. Fig. 6 exhibits the BCI table in action. 

 
Fig. 6. Multitouch display interface, where objects are enlightened one by 

one, triggering a P300 wave. Source: [37]. 

Grierson e Kiefer [7] test MindSet – conventionally used to 
detect concentration – for a BCI based on P300. The efficacy 
was benchmarked through an experiment, in which two 
squares – one blue and one red – take turns flashing and the 
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BCI has to detect which one the user is focusing. With squares 
of same size the precision is good (78.5%), while with squares 
of different sizes the precision is close to 100%. The results 
indicate that it is possible to use a commercial headset for BCI 
applications based on visual stimulus. Wang et al. [33] 
developed a smartphone BCI application based on SSVEP for 
calling contacts by number typing. The interface contains 
numbers 0 to 9, a confirmation option (Enter), and a correction 
option (Backspace). Frequencies between 9 and 11Hz are used 
as visual stimulus. Normally those frequencies cannot be 
achieved in a smartphone due to screen refresh rate but the 
authors employ a special technique of black/white alternating 
patterns to circumvent this restriction. A good precision was 
achieved (close to 100%). 

Hakvoort et al. [9] implemented a SSVEP BCI game, 
whose goal is to lead sheep into a sheep pen by controlling 
shepherds dogs. Kapeller et al. [14] remark the importance of 
analyzing BCIs in a distracting context. They did a benchmark 
where a user has to focus on SSVEP visual stimulus, overlaid 
on a movie. The experiment showed that some precision – 6% 
on average – is lost in this distraction context. One of the 
participants had a very large loss of precision (40%) and 
according to the authors this indicates that some users are more 
sensible to visual distractions. 

Escolano et al. [45] developed a BCI telepresence system, 
wherein a robot is remotely controlled from a different 
geographic location. A camera on top of the robot shows his 
current “vision”. The BCI is based on the P300 and the 
graphical interface imposes options as augmented reality on the 
robot vision with commands like “turn left” appearing as icons. 
Besides the camera, the robot is also equipped with a laser 
sensor, wheelchair and a location tracker based on 
measurements of the rotations of the wheel.  The BCI 
developed has two operating modes: robot navigation, where a 
point grid is used as Visual Stimulus for choosing a destination 
and camera exploration, in which the point grid is used to 
indicate where the camera should look at. Five users 
participated in an experiment, having to navigate the robot 
through close space situations, all users managed to control the 
robot successfully to the final position. 

An assistive BCI application is the one by Grigorescu et al. 
[46], where the interface controls a robotic assistant for helping 
people with motor deficiencies. The system is named by the 
authors as FRIEND (Functional Robot with dexterous arm and 
user-frIENdly interface for Disabled people). The BCI was an 
addition to a new generation of the robot system to supply 
quadriplegic needs. FRIEND combines several modules, i.e. 
wheelchair, robotic arm with gripper, EEG headset, monitor 
and camera (used for machine vision). The BCI uses the 
SSVEP approach, where five LEDs act as visual stimulus, each 
one representing a menu option. FRIEND is a semi-
autonomous robot and has two modes, i.e. (i) complete 
autonomous mode, wherein objects are automatically 
recognized and manipulated, and (ii) shared control mode, 
where the user assists the system with ambient information, 
like approximate object positions. System performance is 
measured in four scenarios: prepare and serve a drink, prepare 
and serve a meal (showed in Fig. 7), tasks at a library service 
desk, and tasks for keyboard maintenance (checking if they're 

working correctly). Those tests indicate that Friend still needs 
improvement for real world usage but it has great potential. 

 
Fig. 7. A user selects the “prepare meal” in the FRIEND BCI system. 

Source: [46]. 

Kaufmann et al. [15] developed the Optimized 
Communication System, a P300 BCI speller where a single 
button automatically configures and adjusts the system. The 
user presses the button one time to start EEG signal capture, 
and a second time to stop the capture and use the data collected 
to configure and calibrate the system. It also improves on other 
spellers in information transmission speed through word auto 
completion – the word prevision was written in Python –, the 
complete words appear together with the letters in the grid. 
Following the idea of less configuration as possible, the 
application creates the word base automatically - navigating 
the web and computing word frequencies for a determined 
idiom. Poli et al. [41] take BCI domain to space interaction, 
creating an spaceship navigation BCI controller. BCI usage on 
space applications have great potential since they allow 
piloting, collaboration and machine control without the, in 
several situations restrict, movement of hands. The developed 
BCI uses P300 approach with an innovative graphical 
disposition. Eight gray circles form a greater circle and one by 
one is flashed to red or green – randomly selected – color. 
Three volunteers participated in a simulation, whose goal was 
to make a path with the ship, passing as close as possible to the 
sun. The authors also devised a cooperative mode, in which the 
control is made simultaneous by more than one person. On the 
experiments the cooperative mode had better precision than the 
single-person mode. Still, the BCI developed has to improve to 
achieve high-enough precision for real world usage. 
Nevertheless, it is an excellent result and offers an optimistic 
vision for future BCI space applications. 

Edlinger et al. [43][44] developed a domotics BCI 
application based on an hybrid approach, using SSVEP for 
turning on and off the application, while using P300 for 
command selection and activation. They define four 
requirements for domotics BCIs, i.e. (i) signal amplifiers most 
work even on noisy environments, (ii) EEG capture has to be 
made with a portable device, to avoid collisions and user 
irritations, (iii) for real time experiments it's necessary to 
connect the BCI to a virtual reality simulation, and (iv) the 
communication interface between BCI and VR needs to offer a 
satisfactory degree of freedom. In the VR the user is equipped 
with 3D glasses and a head-position tracker. EEG signals are 
captured through g.MOBIllab+ amplifier, those are send to a 
PC which controls the virtual ambient using XVR (eXtreme 
VR). Video output is projected into a high resolution surface 
(powerwall). The virtual ambient is composed of three rooms, 
each one with controllable devices like television, music 
player, telephone, lights and door. Commands are divided into 
seven categories: lights, music, telephone, temperature, 
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television, move and “go to”. Each of those categories act as an 
interface “mask”, one screen that has only the relevant 
commands for that category. Fig. 8 shows the BCI and 
controlled virtual ambient. 

 
Fig. 8. A (a) P300-based BCI for controlling (b) a virtual domotics 

environment. Source: [44]. 

B. Sound Stimulus Response 

Lotte et al. [19] developed a sound stimulus based BCI 
using a P300 approach. Their objective is to present a BCI 
efficient in a scenario of great mobility, where concentration in 
a visual stimulus is a hard task and user movement can cause 
interference on EEG capture, since movement is responsible 
for a great part of brain electrical activity. The BCI developed 
uses two sounds as stimulus, one rarely appears – a ring bell 
sound (“Ding Dong”), while the other sound frequently plays – 
a buzzer sound. The user has to focus on the ring bell sound, 
counting the number of occurrences, eliciting a P300 wave 
each time the sound plays. They conducted an analysis to 
identify movement interference on P300 detection and three 
movement states were tested, i.e. sitting, standing and walking. 
Experiment results were promising: no significant precision 
was lost due to movement interference and a good EEG 
capture was possible in all states tested. 

On the work of Kim et al. [16] a BCI based on steady state 
evoked potential was conceived. However, sound frequency 
(SSAEP) was used instead of the usual visual flashes frequency 
(SSVEP). Two sounds of different frequencies are used, each 
one in different sides of the user – left/right – to strengthen 
contrast between them. A good precision was achieved, 71% 
online and 86% offline. One disadvantage of such sound based 
BCIs is the binary choice, i.e. the user can only choose 
between two options (sounds). Hill and Schölkopf [12] 
research ways to improve sound based BCIs. They use the 
same approach of SSAEP – sound frequency – combined with 
spatial location – one on the left of the user, the other on the 
right – in a way that resembles the “surprise” associated to 
P300 approaches. Their BCI achieves higher performance, 
obtaining 85% precision online. 

C. Concentration 

Coulton et al. [5] created a smartphone game named Brain 
Maze, which uses BCI as one of the controllers using the 
MindSet. The game objective is to move a ball from a start 
point to a finishing destination. Moving the ball is done 
through accelerometer, but some obstacles need to be 
overcome using a BCI. Some paths are blocked by closed 
gates. There are two types of gates, i.e. attention and 
meditation gates. The user has to increase concentration to 

open attention gates, while he needs to relax to open meditation 
gates. 

Marchesi [40] presents a BCI prototype for interactive 
cinema, the Neu system. Neu system measures the user degree 
of concentration/relaxedness using a MindWave and those 
measurements affect course of events in the history of the 
interactive movie. Neu is an evolution of MOBIE System, 
developed by the same author. Mobie monitors and records the 
degree of concentration/relaxedness of the user while he 
watches a movie. From this feedback the user engagement in 
each scene is obtained. Neu takes this concept one step beyond 
offering, in the authors’ viewpoint, a BCI interactive, 
immersive, and personal experience. 

D. Imagined Movement 

Poor et al. [27] assess EPOC capacity in a BCI based on the 
imagination of kinetic actions. On the experiments the 
objective was to rotate a cube after an initial brain signal 
recording and calibration. The precision was low (59%) but the 
authors attribute the cause to training lack and immaturity of 
Stimulus-Less BCI systems and techniques. Friedman et al. 
[49] conduct research on navigation in a cave virtual 
environment based on imagined movement. The VR consists 
of a street with people spread out and stores on the sides - those 
can be projected in stereo view shutter glasses for increased 
realism and experience. To walk, the user has to imagine the 
user feet moving, while head rotation – tracked through an 
accelerometer – is used for changing walking direction and 
imagined hands movement – to pass the impression of “touch” 
– is used for interacting with other persons on the street. The 
virtual people remain at still until the user interacts with them. 
In that instant, they start to walk to indicate interaction success. 

One of the first authors’ experiments [48] was conducted 
with a quadriplegic patient, who successfully moved across the 
virtual environment as displayed in Fig. 9. Another experiment 
[47] with 10 participants compared BCI precision in two 
different scenarios: a controlled choice scenario and a free 
choice scenario. In the first one, user receives a sound cue for 
the action he must realize and in the other one, user freely 
chooses which action to perform. The precision on the 
controlled choice scenario was higher (82.1%) than the free 
choice scenario (75%), which presents a challenge to be 
overcome, since freedom of choice is essential in interactive 
systems. 

 

Fig. 9. User walks in a virtual street imagining feet movement. Source: [48]. 

Leeb et al. [39] leverage a conventional game – i.e., which 
was not originally designed to work with a BCI controller – 
named PlanetPenguin Racer. In the original game a penguin is 
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controlled to descend a snow mountain, collecting fishes on the 
way. The game was modified to float all the fish, suspending 
them mid air. Jumping is the only way to catch the fish in this 
new version and to jump, user has to imagine feet movement. 
For increased immersion the game happens on a cave virtual 
reality, where the user is surrounded by walls with projectors 
directed to each one of them. As such, the game uses a 
multimodal interface: the penguin’s direction is controlled by a 
joystick and the jumps by BCI. An experiment with 14 users 
demonstrated that concomitant use of joystick with BCI did not 
decreased BCI precision. Furthermore, leg positioned sensors 
proved that jumps – BCI control – did not use any muscles. A 
pure joystick control achieved highest precision on catching 
the fish, as expected by the authors. However, the majority of 
users preferred the BCI controls, remarking the fun of jumping 
only through mental power. According to authors, the game 
needs only a short time of training, being entertaining without 
leaving the player bored with long sessions of training. 

E. Neurofeedback 

Vi and Subramanian [32] were able to detect an electrical 
potential called Error-Related Negativity, caused by user 
frustration when an interaction does not occur as planned. An 
example is when the user tries to select an option among others 
but misses, by user or system error, and chooses one he did not 
want, getting the user frustrated. A BCI detecting this 
frustration – through Error-Related Negativity potential – a 
system could try to auto-correct the interaction error, choosing 
the closest option of the one miss-selected. An experiment was 
made to measure the precision of successfully detecting this 
potential. The authors choose to analyze the precision through 
an interaction test known as Superflick, where a user has to 
“throw”, with a drag-and-drop movement, a small ball into a 
big target ball. If the user misses the target the system must 
auto-correct the interaction, trying to achieve a most 
satisfactory state for the user. The BCI application conceived 
achieved 70% precision, and proved that is possible to detect 
interaction errors, and use this information to provide a better 
experience for the user, compensating the error with an action 
rollback, giving a small advantage to a player, or selecting 
close objects. Fig. 10 shows a user participating on the 
Superflick test, “throwing” a ball while the headset captures 
the user frustration. 

 

Fig. 10. Superflick interaction test using a BCI for auto-correction. Source: 

[32]. 

Solovey et al. [30] created a BCI application – Brainput – 
that avails the priority of tasks being done by the user. This 
priority is estimated through detection, using fNIRS sensors, of 
three mental states of concurrency, i.e. (i) branching, when the 

current task is interrupted, and replaced, by another of 
increased priority, (ii) delay task, where a user receives another 
task but chooses to ignore it, implicitly indicating that few 
resources must be allocated to that lower priority task, and (iii) 
dual task, where the user works on two tasks of same priority, 
and constantly switch between them. The BCI system 
conceived by the authors adapts to allocate more resource to 
tasks of higher priority. For testing this BCI an experiment was 
made with 11 users, they needed to remotely control two 
robots, one blue and one red. They could only control one 
robot at time, switching between them. Both robots expanded 
resources to move, and had to reach a specific destination and 
send a signal. A priority was assigned to each robot, and 
performance was compared between a Brainput interface doing 
the robot control switch, and an interface where the robot 
where more autonomous. The results showed the Brainput 
interface as the better one. 

F. Summary 

Table I summarizes 29 interactive systems based on BCI 
presented above and grouped in this table by year of 
publication. As previously described, BCIs go beyond of 
computer control, comprehending domains such as domotics, 
assistive interfaces, robot control and electronic games. It is 
important to highlight that most of stimulus-based BCIs uses a 
visual form due to its higher precision. Table I shows approach 
used by BCI classifying works in (V)isual stimulus, (S)ound 
stimulus, (C)oncentration, (I)magined movement, and 
(N)eurofeedback. 

TABLE I.  LITERATURE WORKS PRESENTED IN THIS SURVEY. 

Work Detection 

approach 
Brief description 

Year Ref. 

2007 [48] I Avatar control/walking in a virtual street 

2009 
[35] V Web browsing and speller 

[19] S BCI control while walking 

2010 

[23] V Web browsing 

[18] V Web browsing and speller 

[4] V Asynchronous speller 

[2] V Call a contact through smartphone 

[37] V Object selection in a real ambient  

[33] V Phone dialing 

[49] I Avatar control/walking in a virtual street 

2011 

[21] V Mouse control 

[6] V Robot control with real time vision-camera 

[7] V Headset benchmark 

[9] V Sheep game 

[43] V Domotic control in a virtual house 

[16] S SSAEP benchmark 

[5] C Smartphone Maze Game 

[27] I Commercial headset benchmark 

2012 

[45] V Telepresence robot with vision-camera 

[46] V Auxiliary robot for disabled people 

[15] V No configuration speller with word prediction 

[44] V Domotic control in a virtual house 

[42] V Car control on virtual CAVE simulation 

[12] S SSAEP + P300 benchmark 

[40] C Interactive movies 

[32] N Superflick interaction test 

[30] N 
Resource control through brain concurrency 

detection 

2013 
[41] V Spaceship control in a virtual simulation 

[39] I CAVE VR game 
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IV. CHALLENGES 

Through reflection on the BCI literature review, we 
identified several challenges with implications for user 
interaction. These challenges must be faced in order to BCIs 
been used in a more effective manner with interactive systems. 
To a better understanding, we grouped challenges in topics. 

Most of existing BCIs causes a high level of fatigue, 
demanding high concentration or attention to quick and 
intermittent stimulus. In addition to fatigue inconvenience, BCI 
may not work since user cannot reach enough level of 
concentration. In [11], Hasan and Gan try to assure BCI’s 
operation even when user is tired. The BCI implemented by 
these authors properly monitors user performance and when it 
declines, system activates an adaptation which reduces the 
concentration limit necessary to interact with system. The use 
of VR in BCI applications may assist in this process, providing 
a high immersive environment. It motivates the user while 
interacting with the system, consequently increasing users’ 
attention and concentration levels. 

Concentration required to stimulus also causes a mixture 
between input and output since mental activity is being 
constantly monitored and user’s focal point changes the input. 
Instead of relax, user must concentrate on a point as input and 
look to the output. For example, a user watching a movie; the 
user has to look at a specific point on screen instead of a part of 
scene that the user wants to see. At this stage, interaction has a 
forced aspect, instead of natural aspect presented in the case of 
user may decide which region of visual output the user wants 
to focus. A similar challenge occurs with traditional 
interactions since interaction flux often depends on user 
perceiving certain feedbacks, mainly the ones issued by 
computational system. In VR environments this issue is 
exacerbated since the lack of visual freedom may disrupt the 
immersion. This challenge is also applied in other 3D 
environments such as augmented reality, which may bring 
other problems such as safety since user has to focus on a 
certain point and may not pay attention in what comes ahead. 

According to Wolpaw et al. [34], with current BCI 
technologies, users must fit themselves into the system in order 
to control it; speed and satisfaction of this adjustment depends 
on system’s intuitiveness. During tasks accomplishments on 
applications, the study of user’s visual focus and intuitiveness 
of graphical interface are conducted by HCI researchers. These 
researchers must apply HCI techniques in BCI context in order 
to develop a visual interface with as fewer nuisances as 
possible regarding constant transitions of user’s visual focus 
and also easy-to-use, providing a fast user’s adjustment to the 
system. 

Using a BCI system is often a complex task. It is necessary 
to verify electrodes’ position on user’s head and configure 
different parameters before using the system. Furthermore, 
users must know which technology is best suited to their needs, 
including purpose and profile. Randolph [28] evidences that 
factors such as gender, caffeine and experience on videogames 
or musical instruments, affect mental states and waves, which 
are tracked by capture technologies. Hence, different people 
may have different needs regarding BCIs, which makes the use 
of this kind of interaction in a practical way even more 

difficult. 3D environments technologies are also impacted by 
this challenge since technology which provides the best user 
experience may vary for each user. So, when mixing both 3D 
and BCI technologies, user’s needs must be considered 
carefully. 

In most cases BCIs do not provide mobility to users. 
Users must obligatorily remain at still and quiet, preferably 
sitting down, during test application. However, in a real using 
situation user may need to use BCI while the user walks on the 
street in order to control a smartphone, for example. In 
addition, BCIs must also provide comfort to user. An EEG 
headset must be easy to carry on and simple to use on daily 
routine, as well as a person uses a headphone to listen to music. 
An EEG headset must be lightweight, not only to provide 
mobility but also to enhance use experience; its weight must 
not be uncomfortable to user. Other significant inconvenience 
is caused by a gel, which is applied on electrodes in most of 
EEG headsets in order to enable signal capture, even though 
Guger et al. [8] indicate that dry electrodes are priority to user. 
To meet this requirement, authors present a non-commercial 
EEG headset with dry electrodes and high precision. 

Another similar challenge is the possible conflicts between 
different interface devices, i.e. using a Head-Mounted-
Display (HMD) together with an EEG headset can prove to be 
difficult given that the EEG sensors must stay on position. 
Choosing an EEG headset becomes a complex task if we 
consider mobility and comfort requirements. Equipment 
presented in Fig. 1 and Fig. 2 must be redesigned to be used in 
real situations. Some of equipment use wires or cables, and 
most of them require application of gel or saline substance to 
capture mental signals with high precision. The contribution of 
HCI in this BCI issue is exactly proposing the redesign of such 
equipment considering, for example, accessibility, usability, 
and ergonomic aspects. An ideal BCI headset must not use 
wires or cables, which hamper mobility; neither use gel or 
saline solutions, which are one more component to be carried 
on and make headset’s use more difficult. We understand that 
this device must be lightweight and without additional parts, 
for example, batteries. 

In BCIs, system needs to constantly adapt itself to user’s 
signals. This adjustment must be fast and with precision. 
Current BCIs present a very low information transmission 
speed rate, being necessary, for example, almost two minutes 
to “digitalize” a simple word. Nowadays, this challenge is 
minimized with the use of word completers, accelerating the 
speed, as described in [15]. The BCI precision does not 
always reach a satisfactory value, mainly in BCI based on 
visual stimulus.  Sometimes, actions repetition or undo are 
required, causing discomfort or even discontent in the usage of 
interactive systems with this kind of interface. The sum of 
these factors may generate frustrations to user and, 
consequently, resistance to the BCI usage. Furthermore, the 
performance of low-cost BCI commercial devices must be 
investigated, such as EPOC which presents less electrodes than 
other EEG headsets with medical purposes. In a comparison 
performed by Al-Zubi et al. [1], this headset with 14 electrodes 
presented only 5% fewer precision than a professional EEG 
headset with 128 electrodes. 
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BCI tests and experiments are often conducted in 
controlled environments, in laboratory, that does not 
correspond to the real context of use of desktop computers, 
where users usually perform different tasks in parallel and 
work simultaneously, breaking their concentration constantly, 
either to answer the phone or to fetch a glass of water. This fact 
seems to demonstrate that currently asynchronous BCIs have 
more advantages in real situations, since they provide greater 
facility to the user when performing tasks in parallel, without 
prejudicing interaction with computer. 

BCIs with wireless headsets are more practical and 
comfortable. Many manufacturers state that EEG signals are 
encrypted before transferred to device. However, it is 
necessary to note that, in a future with massive use of BCIs, 
cryptography breaking enables attackers to capture cerebral 
waves, which transmit not only commands but also mental 
states and feelings. As BCI area progresses, this challenge has 
more severe consequences since the higher the precision and 
greater the amount of information, the greater is the risk of 
privacy loss. Looking forward, when BCI technologies reach 
advanced stage, information espionage will no longer use 
phone tapping and network sniffers. Instead, it will use mind 
tapping and cerebral signals sniffers. Thus, with research 
advancements, new challenges arise and the presented survey 
is taken as starting point to development and evolution of 
BCIs. 

V. DISCUSSION 

The brain is in constant activity and humans think all the 
time, even while they are asleep or dreaming. When a person 
uses a computer, an information wave is lost, e.g. concentration 
level, frustrations, cognitive workload and user’s tension. This 
information could be used in BCIs, enabling interactive 
systems to adjust to their users, for example, changing the 
amount of text and figures [25], changing desktop screen sizes 
to control resources [30] and to offer more space to important 
applications, identifying and correcting interaction mistakes 
[32], choosing a more suitable video to user [36], or even 
presenting more relevant information based on the user 
cerebral activity. 

Invasive BCIs based on implanted chips using 
biocompatible materials are mature enough to enable monkeys 
to control a mechanical arm only with thought, as for example 
presented by Carmena et al. [3]. However, it requires a long 
period of training. Also, the invasion levels, costs and health 
risks make it an unviable procedure to healthy humans. 
Whereas noninvasive BCIs are not mature enough to be used 
as a single input, although it may already be adopted on 
multimodal interfaces efficiently in real usage scenarios.  In 
addition, BCIs without stimulus, in which a simple thought 
would control an entire system, are the most desired ones. 
However, with current technologies, without stimulus, it is 
only possible to recognize mental states with certain precision, 
such as concentration. 

Thus, based on  the BCI literature review, we identified that 
most of noninvasive BCIs depends on visual stimulus to reach 
satisfactory precision and speed (see Table I). Such a care with 
design becomes even more important in these interfaces, since 

input/output depends on system’s graphical interface. BCIs 
based on sound stimulus also face a similar difficult, because 
these BCIs require a special concern regarding warning sounds 
in order to sounds do not disturb the feedback to sound 
stimulus. 

There are no ready-to-use models in which we can model 
interaction between users and computers via brain waves. It is 
henceforth necessary to develop methods, techniques, 
approaches and technologies to greater support works in this 
area. The interaction documentation of a specific user based on 
information captured from user’s brain may be used to evaluate 
interfaces and indicate, as a result, the system’s intuitiveness. 
Moreover, user’s behavior pattern directly captured from brain 
activity may contribute to enhance the interaction quality of 
adaptive interfaces since system may learn about user’s 
behavior and automatically provide a molded interface. 

For widespread use of this interaction form, it is necessary 
to face current limitations and overcome its challenges. 
Whereas precision involves partially HCI area, concentration, 
speed, comfort, environment, difficulty in its usage, and 
privacy are constant concerns of interactive systems. The fact 
that most of works using noninvasive BCIs needs visual 
stimulus increases the need of a greater concern from HCI and 
VR communities in BCI research. Even in BCIs without visual 
stimulus, these areas may contribute since it is important to 
consider the feedback, making the command more intuitive 
with HCI and more immersive with VR. BCI technologies are 
a fundamental step to more transparent ubiquous interactions, 
in which we’ll control different devices simply by our “will”. 
Through capture and identification our thoughts, no effort will 
be required in daily interactions with devices. Using muscles 
will not be necessary, except those ones responsible for vital 
activities of organism, such as involuntary movements of 
heartbeat. 

We believe that, if HCI knowledge is associated from the 
beginning, it is possible to advance toward more comfortable, 
suitable and easy-to-use BCIs, so that users may have a higher 
degree of satisfaction in interactive systems. Our research 
group is exploring this area, in order to purpose new BCIs 
guided by human factors, which are involved in this high 
complex form of (brain)human-computer interaction. In the 
same way, we believe that the area of VR plays a vital role in 
brain-computer interactions, providing an immersive 
environment, easing movement imagination and increasing 
focus on visual stimulus. 

VI. CONCLUSION 

This paper presented a survey of BCI and additionally, 
based on this review, we identified and discussed several 
challenges for BCI in the interactive systems context. We 
believe that these challenges must be addressed so that BCIs 
may be adopted in interactive systems more effectively. 
Furthermore, due to advancements and price reduction of 
headsets, BCIs will be common in the near future as well as 
other kinds of interface/interaction are today, for example, such 
as those provided by mobile devices and by Kinect. 

We are aware that thinking about interaction design in this 
domain involves various areas of knowledge, especially to 
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reach its full potential. However, it is important to point out 
that HCI can contribute to the expansion of knowledge 
frontiers; outcomes achieved with this study is a concrete 
example since it enhances the importance of this review and 
outstands the merit of literature works. Considering different 
related areas and the diverse use possibilities of BCI, this 
research topic deserves greater attention from both HCI and 
VR communities in order to undertake further studies on 
interaction in BCIs. 

As future works we make an interaction design study and 
we will implement a visual stimulus-based BCI game for use 
with a low-cost noninvasive EEG headset. 
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