
An evaluation of real-time requirements for
automatic sign language recognition using
ANNs and HMMs - The LIBRAS use case

Mauro dos Santos Anjo, Ednaldo Brigante Pizzolato, Sebastian Feuerstack
Computer Science and Engineering Department
Universidade Federal de São Carlos - UFSCar

São Carlos - SP (Brazil)
Emails: maurosanjo@gmail.com, ednaldo@dc.usfscar.br, sebastian@feuerstack.org

Abstract—Sign languages are the natural way Deafs use to
communicate with other people. They have their own formal
semantic definitions and syntactic rules and are composed by
a large set of gestures involving hands and head. Automatic
recognition of sign languages (ARSL) tries to recognize the
signs and translate them into a written language. ARSL is
a challenging task as it involves background segmentation,
hands and head posture modeling, recognition and tracking,
temporal analysis and syntactic and semantic interpretation.
Moreover, when real-time requirements are considered, this
task becomes even more challenging. In this paper, we
present a study of real time requirements of automatic sign
language recognition of small sets of static and dynamic
gestures of the Brazilian Sign Language (LIBRAS). For the
task of static gesture recognition, we implemented a system
that is able to work on small sub-sets of the alphabet -
like A,E,I,O,U and B,C,F,L,V - reaching very high recognition
rates. For the task of dynamic gesture recognition, we tested
our system over a small set of LIBRAS words and collected
the execution times. The aim was to gather knowledge
regarding execution time of all the recognition processes (like
segmentation, analysis and recognition itself) to evaluate
the feasibility of building a real-time system to recognize
small sets of both static and dynamic gestures. Our findings
indicate that the bottleneck of our current architecture is the
recognition phase.

Keywords: LIBRAS, Sign Language, Computer Vision,
Gesture recognition.

I. Introduction

A wave, a jump, a contortion, a smile, a desperation
expression or any other body motion are people’s reac-
tions to some happenings and are also means of commu-
nication. These gestures may represent more than 50% of
a conversation’s content as pointed out by Birdwhistell
[1]. Besides, sign languages (which use gestures) are the
natural way Deafs use to communicate. There are many
sign languages all over the world and LIBRAS is the
Brazilian version with its own lexical as well as syntactic
and semantic rules. It is a visual demanding language
and the meaning of the signs is strongly attached to the
context of the communication or situation. Even inside
a deaf person’s family there are people who do not
understand it. The signs may be performed with both

hands in front of the body with or without movements
and with or without touching other body’s parts. Besides
all the hand and face movements, it is also important to
notice that face expressions contribute to the meaning
of the communication. They may represent, for instance,
an exclamation or interrogation mark. As sign languages
are very different from spoken languages and it is hard
to learn them, it is natural, therefore, to expect computer
systems to capture gestures to understand what someone
is feeling or trying to communicate with a specific sign
language in order to promote social inclusion. This can
be accomplished by automatic gesture recognition (AGR)
[2].

AGR is also important to Human-Computer Interac-
tion as multimodal interfaces (MMI) can be significantly
enhanced by using gestures to complement some already
common inputs like touch, keyboard, and mouse, since
it is a natural way of communication - like speech.

According to Hong [3], learning and recognizing ges-
tures are difficult as the gestures vary from instance
to instance (position, trajectory, pose, background,...).
Mitra’s survey [2] points out that gesture recognition is
a complex task that can be divided into two categories:
static and dynamic gestures. The former recognizes pos-
tures without movement whilst the latter includes move-
ments (and they have to track the user hands or any
other significant limbs over time to output a recognized
gesture).

On the one hand, the major concerns of static gestures
are the segmentation of the hands and head postures
from the scene and the classification of the hand configu-
ration and face expressions. The dynamic gesture recog-
nition, on the other hand, has further challenges, such
as: (1) recognizing the hands trajectory; (2) recognizing
the sequence of hand postures; and (3) recognizing the
face expression.

The task, therefore, could be divided into three cat-
egories regarding challenges: segmentation of body’s
parts, pattern classification and gesture recognition. The
major challenges of segmentation are:

14 SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

ISSN: 2236-3297

• High degree of freedom: hands and arms can have
a high degree of mobility which increases the search
space for movement patterns;

• Human parts overlapping: due to the high degree
of freedom, arms can overlap each other and also
may be in front of the chest or head;

• Face expressions: face detection is a trivial task, but
the task of recognizing a face expression is not that
simple as it needs to take eyes, eye brown, nose,
mouth and forehead variability into account;

• 3D trajectory: Signs of any sign language are 3D; A
2D projection may make things a bit harder;

From the pattern classification viewpoint, some impor-
tant challenges are:
• Large vocabulary of signs: there are 46 different

hand postures [4], but different posture angles, dif-
ferent relative position to the body or even different
face expressions for the same posture produce dif-
ferent meanings;

• Variations of hand postures perspectives: as the
camera is put in a fixed place, the relative position
of people may produce different perspectives;

And from the gesture recognition viewpoint, there are
also other important challenges:
• Variations of sign trajectories: it is almost impossible

to do the same movements in the same manner
all the time. So, although the trajectory plays an
important role for the gestures classification, for the
same word or sentence, the trajectory varies for the
same person and from person to person;

• Variations of speed at performing a sign: the com-
munication is a sequence of signs which could be
just compared to a sequence of frames. Some people
may perform the same sign in a sequence of - let’s
say - 20 frames whilst others may do the same in
30, 35, 40 or 50 frames. This could be related to the
context of the information or just the way people
perform the sign.

Considering that Human-Computer Interaction
through signs requires real-time processing and that
for multimodal interaction real-time processing is a
basic requirement to sync gesture recognition with
other modes like voice or body movements, researchers
started to address this topic [5], [6], [7].

With the recent development of Microsoft’s Kinect for
XBox gaming console and its personal computer version,
segmenting and tracking parts of the human body have
become easier and a variety of applications has been
investigated: Healthcare [8]; Augmented Reality Envi-
ronments [9] and Gesture Recognition [10] among others.

In this paper we focus on static and dynamic gesture
recognition using a software architecture based on Ar-
tificial Neural Networks (for pattern classification) and
Hidden Markov Models (for time alignment). We also
report some information related to real-time recognition.

In order to evaluate the software architecture, we chose
the Brazilian Sign Language (LIBRAS) as use case.

The paper is structured as follows: In section 2 we
present the related work; in section 3, the issues related
to segmenting hands and heads from the scene; in
section 4, the problem of classifying the signs; in section
5, the time alignment problem of dynamic gestures; in
section 6, the methodology aspects of our investigation,
considering our system’s architecture, the datasets, the
scenarios of the experiments and the results; and, in
section 7, we present the conclusions and future work.

II. RelatedWork

Static gesture recognition has been investigated by
many researchers: Bretzner [11], Chen [12], Fang [13],
Wysoski [14] and Phu [15], among others. Bretzner [11],
for instance, presented a scale-space blob model for the
hands to recognize four static postures and with them
control a TV device. Chen [12] and Fang [13] used
Haar-Like features and AdaBoost training to recognize
static gestures. Chen proposed a two-layered system to
recognize four static hand postures. Fang used color
information and scale-space blobs in a twenty five level
pyramidal structure in order to detect the fingers and
the palm of the hand. With homogeneous background
the system recognize six hand postures with 98% recog-
nition rate; with complex backgrounds, the recognition
rate drops down to 88%. Phu [15] and Wysosky [14]
investigated the use of Multi-Layer Perceptron [16] as
a classifier for the problem of hand postures recogni-
tion. The former obtained 92.97% recognition rate when
working on a set of 10 postures; the latter achieved 96.7%
when applied on a set of 26 postures of the American
Sign Language.

Hong [3], Modler [17], Vadafar[18], Elmezain [19]
Pizzolato [20], Bauer [21], Wang [22], Brasher [23] and
Pahlevanzadeh [24] (just to mention a few), tackled the
problem of dynamic gesture recognition. Hong proposed
a system based on finite-state machines (FSMs). The
system first segments head and hands using skin color
detectors and then uses FSMs to model the temporal
behavior of each gesture. Modler proposed a system to
recognize cycled gestures (those that the initial and the
final postures are the same) using Time-Delay Neural
Networks [25]. The gestures are performed with only
one hand in a controlled background. The overall recog-
nition rates were 99%. Vadafar proposed an approach
called Spatio-Temporal Volumes. The idea is to create
a feature vector based on temporal 3D shapes created
through sequences of segmented hand shapes over time.
Three different classifiers were tested: k-nearest neigh-
bor, Learning Vector Quantization (LVQ) and Artificial
Neural Networks (ANNs). For the task of recognizing
six gestures, the k-nearest neighbor presented the best
performance: 99.98%. Elmezain proposed a stereo vision
system (in order to capture depth information) based

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013 15

ISSN: 2236-3297

on Hidden Markov Models (HMM) [26] in order to
model the temporal behavior of the dynamic gestures.
The system presented a recognition rate of 98,33% for
all the alphabet letters (A-Z) and digits (0-9) drawn with
the fingers on the space. Pizzolato proposed a two layer
architecture based on ANNs and HMMs to recognize 15
animal names spelled with LIBRAS gestures. The first
layer uses an ANN to recognize static hand postures
of LIBRAS and the second level uses HMMs to model
the temporal behavior of each word. Working on batch
mode, the system presented a recognition rate of 91.1%.
Bauer proposed a HMM based system to recognize 97
different gestures of the German Sign Language (GSL)
and the system presented a recognition rate of 91.7%.
Wang’s system focused on modeling small units of
the gestures (similar to the phonemes). This approach
tackled 5.119 gestures of the Chinese Sign Language.
The system was able to perform phrase recognition
and showed an overall recognition rate of 90%. Brasher
proposed a system to be used on the CopyCat game
to teach the American Sign Language to deaf children.
The system used colored gloves to recognize 541 phrases
with 91.75% recognition rate. Pahlevanzadeh proposed
a system based on Fourier Descriptors to model the tra-
jectory gestures and Generic Cosine Descriptors for the
hand shape modeling. Tested for 15 dynamic gestures it
showed a recognition rate of 100%.

III. The Segmentation Problem
As stated, interpretation of human actions in computer

systems is a complex task due to problems of segmenting
human figures in a scene and tracking body parts with
a high degree of freedom. The difficulty of the segmen-
tation is the attempt to handle all issues that rise in
vision systems like: illumination; cluttered backgrounds;
clothing; occlusions; velocity of movement; quality and
configuration of cameras and lens; among many others.
In order to make the systems simpler, the most common
approach used by researchers is to eliminate some of
the variables by stating system constraints or using extra
devices like in the following situations:
• Controlled environments: to eliminate some envi-

ronment variables, for instance avoiding cluttered
backgrounds by using a plain wall or Chroma Key
and constraining user clothing permits segmenta-
tion by simple thresholding [20].

• Colored markers: to track a specific body part a
common approach is the use of a colored marker.
For instance a colored glove to track a user hand
and segmenting it by thesholding in a color space
model [27], [28], [29], [30].

• 3D Gloves: sometimes a great precision of tracking
is needed, like finger movements. In this case an
extra device is needed, like a 3D Glove that embeds
gyroscopes and accelerometers to track users move-
ments [31], [32].

As the objective for many researchers is to interact
naturally with the computers, it is important to avoid
extra wearable devices or specific restrictions of envi-
ronment. To do so, researchers tried to abstract how
humans perceive objects in space. They found out that
what eases human perception of objects is the Stereopsis
or impression of depth that we can perceive due to
human binocular vision. Researches tried to replicate
that in computer systems with an approach called Stereo-
Vision. The Computer Stereo-Vision is obtained by a pair
of visual cameras trying to estimate depth information
using stereo correspondence algorithms [33].

The major problem of this approach is that it relies on
visual properties (corners, edges, color), and all of them
are prone to problems due to illumination variation,
camera and lens quality, environment, clustered back-
grounds, among others. Further on, this reduces the ac-
curacy of the estimation and also requires hardware level
code, like GPU or even Field-Programmable Gate Array
(FPGA), to achieve real-time data. Another solution is
to use depth cameras, that instead of visual spectrum
they use the infra-red spectrum to avoid illumination
and other environment constraints. These cameras are a
recent development, and have achieved good results in
depth estimation in a range of 80cm to 4m. Microsoft
Kinect is one example of such devices. It is a product
initially developed for the XBox 360 gaming console with
the purpose of enabling the user to interact with the
games using nothing but body movements. Kinect is a
device with an Infra-Red (IR) projector, a VGA camera
and an IR camera. Kinect estimates the depth of the
objects in the scene doing a stereo-vision approach, like
aforementioned, in the IR spectrum. This technology was
developed by the Israeli company PrimeSense. The IR
Projector projects a known dotted pattern in the envi-
ronment and the IR camera (along with the embedded
algorithm patented by PrimeSense) can estimate depth
with a resolution of 640x480 pixels.

IV. The Pattern Classification Problem
Pattern classification is, from the theoretical viewpoint,

an automatic transformation of observed features into
a set of symbols or classes. The classes are built based
on some training data through some learning process.
The learning process can be supervised or unsupervised.
There are many methods to perform pattern classifica-
tion, such as:
• Bayes Classifier;
• Decision Trees;
• Gaussian Mixture Models;
• Support Vector Machines (SVMs);
• Artificial Neural Networks (ANN); and
• Conditional Random Fields (CRFs).
Artificial Neural Networks (ANNs) have been widely

used to solve pattern recognition problems in a great
variety of applications like time forecasting [34], medical

16 SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

ISSN: 2236-3297

Fig. 1: A sequence of hand postures to spell the word
pato (duck in portuguese)

diagnosis [35], astronomy [36], gesture recognition [2],
among others. The Multi-Layer Perceptron (MLP) [16] is
a feed-forward ANN that is an evolution of the Standard
Perceptron [37]. The purpose of this statistical model is
to learn how to distinguish between nonlinear separable
data. MLP is composed by neurons disposed in input,
hidden and output layers; its structure is of a directed
graph with all neurons of one layer fully connected with
the next layer. The connections between neurons are
called weights (as they are values to weight the inputs).
Each neuron has an activation function that processes all
the weighted inputs. The MLP learns to solve the pattern
classification problem by using a learning algorithm that
tries to model the mapping of inputs, with a predefined
dimension, in a subset of possible outputs and the
knowledge of the network is stored in the weights. Each
of them has an initial value and through the learning
process, all of them are updated until convergence is
reached.

V. The Time Alignment Problem

Similar to the spoken language, signs may be per-
formed in different ways according to the speed or
ability of the person (or also due to the context of the
communication). A schematic representation of the se-
quence of static signs to spell ’pato’ (duck in Portuguese)
is presented in figure 1. Although it is not an actual
sequence, one can see that the letters can span several
frames. Further on, there are transition frames that may
be assigned to a symbol not related to the letters of the
word.

In order to handle the exposure of signs with different
durations, one could use Dynamic Time Warping algo-

Fig. 2: HMM with 3 states

rithm (DTW). With it, it is possible to measure similarity
between two sequences of data which may vary in time
or speed. Through a DTW a computer program can find
an optimal match between two given sequences.

However, sign duration is not the only problem re-
garding gesture recognition. As can be seen at figure 1,
there are hand posture transitions between every two
signs. And they may have different durations as well.

One method to tackle this problem is Hidden Markov
Models (see figure 2).

Hidden Markov Models attempt to model the joint
probability distribution of a sequence observations x
and their relationship with time through a sequence of
hidden states y. A HMM is described by a tuple:

λ = (A,B, π) (1)

in which A denotes a matrix of possible state transition
probabilities, B is a vector of probability distributions
governing the observations and π is a vector of initial
states probabilities. The probability of given sequence of
observations x being emitted alongside the state path
described by y is given by

p(x, y) =
T∏

t=1

p(yt|yt−1 ∗ p(xt|yt) (2)

where the observations xt ∈ x can be either continuous
or discrete, univariate or multivariate. It is possible to
extract the likelihood of a sequence x by marginalizing
y out of the equation:

p(x) =
∑

y

p(x, y) =
∑

y

T∏
t=1

p(yt|yt−1 ∗ p(xt|yt) (3)

in which the summation over all possible state se-
quences can be computed efficiently using the Forward
algorithm. A very comprehensive explanation of HMMs
and their canonical problems can be found in [26].

A. Hidden Markov Models for Classification

Exploring the fact that an HMM is able to provide the
likelihood for a given sequence x, it is possible to create
a classifier by creating a model λi for each sequence

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013 17

ISSN: 2236-3297

label ωi ∈ Ω (see figure 3). Treating each model λi as a
density model conditioned to an associated class label ωi,
one can apply the Bayes’ rule to obtain the a posteriori
probability

P(ωi|x) =
p(ωi) ∗ p(x|ωi)∑k

j p(x|ω j)
(4)

and then decide for the class with maximum a poste-
riori.

Of course, creating models for each label means that
the system needs to evaluate all of them in order to reach
a decision. This implies that as the number of models
increases so does the time to compute it (and therefore,
has in implicit real-time performance). Later on we will
produce some results on this respect.

VI. Methodology: tools, experiments and Results

In this paper we focus on the real-time requirements
to perform static and dynamic gesture recognition. For
static gesture recognition we used ANNs and for dy-
namic gesture recognition a combination of ANNs and
HMMs. The input device chosen for the experiments was
the Kinect.

We have carried out two types of experiments: static
and dynamic gestures recognition. A tool called Gesture
User Interface (GestureUI) was developed in order to
encapsulate all the work that has been done and also
to ease the implementation of additional applications.
GestureUI was implemented with multi-platform frame-
works and tools; for image processing and visual spec-
trum cameras frame-grabbing, OpenCV was used while
the interface was developed in C++ using wxWidgets
in the Code::Blocks IDE. For integration with Kinect (or
any other device) we used the middleware OpenNI .

We based our tool on previous work [20] where 27
signs of the LIBRAS alphabet were classified by a MLP

Fig. 3: Maximum likelihood decision using multiple
HMMs

and produced 90,7% recognition rate for the static ges-
tures. We still used binary images of 25x25 pixels as
input although it is not the best statistical option due
to the high dimensionality of the inputs. We found out
that this is not a problem for small sets of gestures, as
we describe later on.

The basic structure of our classifier (figure 4) for static
gesture recognition has an input layer of 625 inputs
(25x25 binary image), followed by one hidden-layer with
100 neurons and an output layer with 5 possible classes.

It was very interesting to get good recognition results
over small sets of static gestures using binary images as
feature vector. We believe, however, that:
• we could get the same performance (or even better)

by using a small feature vector based on shape
descriptors; and

• shape descriptors would capture slight differences
among similar gestures.

When creating a new interface in GestureUI the user
has to choose the segmentation approach between two
categories:
• Visual Camera: In this mode, the software uses a

monocular system that tracks colored gloves. The
user can define different colors for each hand. The
system is able to detect the markers by thresholding
the HSV color-space model and has been presented
in [20].

• Kinect: This mode provides automatic segmentation
of the user, and uses the Virtual Wall algorithm
(detailed in next subsection) to segment and track
user hands.

The user can also set the type of recognition:
• Static Gestures: hand postures are supposed to be

presented to the tool for training and recognition.
• Dynamic Gestures: gestures that comply hand and

arms movements are fed into the system. The results
of the MLP are fed to HMMs which can be trained
to learn the poses and trajectories of the dynamic
gestures or can recognize the gesture that has been
performed.

Fig. 4: Architecture of the MLP Classifier for static ges-
ture recognition

18 SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

ISSN: 2236-3297

After configuring the system, the user can train new
models or use previously trained ones for recognition.

To train new models the training and testing set must
be representative, including possible variations of user
input. To ease this task the software is able to collect
samples in real-time using a sequential trigger that snaps
the images of the postures and organize them in folders
by gesture name. These samples can be used to train
a new MLP model, letting the user configure all the
properties of the ANN.

When turned into the execution mode, the system
captures the hands postures and feeds the MLP with
them. The output of the recognized gestures are shown
in the screen.

As an example, in figure 5, a user presents two signs
(one for each hand) and the system outputs the corre-
sponding letters (the leftmost sign is L and the rightmost
is V).

There are two pre-conditions to identify dynamic ges-
tures:
• At least one of the hands must be visible;
• At least one of the hands must be moving;

Therefore, the system understands that a dynamic ges-
ture has finished if:
• There is no visible hand;
• There is no movement.

A. Virtual Wall and Hand Tracking algorithm
We have used the Kinect controller to enable user in-

teraction in indoor non-controlled environments. Prime-
Sense provides a middleware called NITE that enables
the system to segment the users figures in the scene
and to obtain: a) a mask with all user pixels and b)
the user Center of Mass (CoM). Before we explain our
algorithm for hand tracking and segmentation we need
to state some domain information about LIBRAS. When
the person is performing the gesture, the hands are al-
ways in front of the torso and sometimes there is contact

Fig. 5: GestureUI recognizing static gestures L and V

with the users face or even the torso itself. Furthermore,
in LIBRAS the person can perform a gesture with the
dominant hand or both hands. The dominant hand is
the right one for right-handed people and the left one
for left-handed people. In this context we developed a
simple algorithm to segment user hands called Virtual
Wall that sets a depth threshold that works like an
invisible wall in front of the user. The position of this
wall is calculated using the users CoM in the following
way:

VWdepth = CoMdepth − α (5)

where α is an offset to avoid that the Virtual Wall
is transposed by the face or torso. It can be set with
an empiric value depending on how the application
will be used. With this approach the user can move
around and the Virtual Wall will follow him/her. After
obtaining only the blobs that are in front of the Virtual
Wall by thresholding the depth map, we obtain a binary
image. We then extract the blobs that correspond to the
hands of the user from the binary image and eliminate
some undesired noise blobs. First one has to find the
blobs, or connected components, positions and calculate
their area. To do so a linear-time component labeling
algorithm [3] is applied. After obtaining the list of blobs,
we created a simple algorithm to track the hands based
on the aforementioned domain restriction of LIBRAS:

Algorithm 1 Algorithm for finding a list of blobs

Sort blobs detected in descending order of area
Select one or two major blobs as hands
if (there is only one blob) then

dominant-hand = blob
Define the Region Of Interest (ROI) of the present

hand as the minimum rectangle that encloses the blob
Calculate the CoM of the hand

end if
if (two blobs are visible) then

left-hand = leftmost-blob
right-hand = rightmost-blob
Define the Region Of Interest (ROI) of the present

hands as the minimum rectangle that encloses the
blobs

Calculate the CoM of each hand.
end if

B. Aspect Ratio Hand Cropping Heuristic

One problem of classification that arises when apply-
ing the Virtual Wall method is the appearance of the arm
when a gesture is performed. When performing static
gestures from the Libras alphabet, the person’s arm is,
most of the time, positioned orthogonally in relation to
the horizontal axis. When we frame the person’s sign, it
contains a significant part of the arm. This reduces the

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013 19

ISSN: 2236-3297

Fig. 6: The static gestures of Libras alphabet used for
training the ANNs

recognition rate as many signs have a similar pattern
(the arm). In order to tackle this problem, we introduced
a heuristic to eliminate or at least reduce the visible
arm: Aspect Ratio Hand Cropping Algorithm (ARHCA).
It tries to eliminate the arm by a simple aspect ratio
checking. We defined a fixed aspect ratio to reduce the
Region of Interest (ROI) in the following way:

AspectRatio =
ROIheight

ROIwidth
(6){

CoMy + α i f AspectRatio > β
ROIheigth, otherwise (7)

where β is the aspect ratio threshold desired and α
is an offset in relation to the y coordinate of the Center
of Mass of the ROI (CoMy). These parameters can be
changed in real-time but empirically we defined β= 1.34
and α= 1.05*ROIheight. After recalculating ROIheight, the
ROIwidth needs to be adjusted so the resulting ROI keeps
being the smallest rectangle enclosing the blob of the
hand.

C. The Experiments with Static Gestures
We trained two MLPs to recognize the following

groups: 1) A, E, I, O, U and 2) B, C, F, L, V. The former is
a set containing all the vowels of the alphabet. The latter
we chose only 5 consonants, so the set has the same size
as the one with vowels.

We gathered a training set of 150 images and a testing
set of 250 images of each static gesture in figure 6.
The testing set was never presented to the MLP during
training process.

The datasets were created in order to represent pos-
sible small rotations and also scale variance that users
may present at real world situations. This eases the
generalization capacity of the MLP classifiers. Further-
more, as we obtained images with variable scales using
our segmentation algorithms, we had to prepare all
images to be used by the classifier doing the following
procedure:

1) Calculate the aspect ratio of the ROI image and
resize proportionally trying to achieve 25 pixels in
at least one dimension;

TABLE I: Recognition rates for A, E, I, O, U

Static Gesture Without ARHCA With ARHCA
A 65% 100%
E 60% 100%
I 74% 100%
O 70% 100%
U 68% 100%

Mean 67.4% 100%

TABLE II: Recognition rates for B, C, F, L, V

Static Gesture Without ARHCA With ARHCA
B 73% 100%
C 77% 100%
F 80% 100%
L 73% 100%
V 74% 100%

Mean 75.4% 100%

2) The resized image will not be binary anymore due
to approximations of the resizing algorithm, so it
must be thresholded;

3) If the resized image has one of its dimensions
different from 25, center it in a 25x25 image

Due to 25x25 resizing, we lose resolution for the hand
representation, which is the most important part for the
MLP to distinguish between gesture classes. Therefore,
we had to collect an additional testing and training
set using the Aspect Ratio Hand Cropping algorithm
in order to improve the level of detail in the images.
With the two datasets we could compare performances
of recognition using both datasets (see tables I and II).

It is important to notice that the training and testing
were performed with 25x25 binary images which do not
deliver a good 2D resolution (as stated before). Slight dif-
ferences among some gestures could be better captured
by some shape descriptor which should be evaluated in
the future work. From a real-time viewpoint, working
with the raw image (25x25) is a worst scenario than
with a feature vector of size 80, for instance (like the one
explained latter on for the dynamic gesture recognition).

One can see from the results, a major improvement
when the ARHCA algorithm was used to collect sample
data. Also we can see that the second MLP performed
better, due to the visually perceptible discrepancy be-
tween patterns of B, C, F, L, and V that eased the
discrimination of the gestures even with resolution loss
(table II).

In order to evaluate the execution time of the whole
static gesture recognition system, we subdivided the
steps of execution in three categories:
• Segmenting: involves capturing the depth map, de-

tecting the user position and using the Virtual Wall
algorithm;

• Analyzing: time to detect blobs; extract hands Re-
gion of Interest; and prepare images to feed the
ANNs (resizing and centering);

• Recognizing: time for the trained MLP to process the

20 SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

ISSN: 2236-3297

TABLE III: Mean Times of execution along with the
standard deviation of each category

Task Mean Standard deviation
Segmenting 7,295.17 µsec 3,169.06 µsec
Analysing 2,180.62 µsec 724.56 µsec

Recognition 651.26 µsec 131.27 µsec

input gesture and to output a classified category.
We gathered five streams of videos with 25 seconds

each, in which a user was performing random gestures
with both hands while moving towards and backwards
in front of the Kinect. The computer used for testing was
an Intel i7 processor with 6GB of RAM.

The measurement of these categories times was per-
formed using the POSIX Time Boost library with a
microsecond (µsec) precision clock.

With the streamed videos we obtained 3,750 measure-
ments of frame processing. The measured mean times
and its standard deviations are presented in table III.

Summing the means of execution time we obtained
10,127.05 µsec which is the time necessary for the sys-
tem to analyze one single frame. This means that the
system can process frames with a frequency of 98.81Hz.
However, there is an overhead of about 6 milliseconds
to update the interface and give feedback to the user.
So the system is actually able to process frames at
62.5Hz. Unfortunately, the Kinect version we used is able
to output only 30 frames per second which limits the
system to 30Hz.

D. The Experiments with Dynamic Gestures
The LIBRAS’s signs are performed with hands. Face

expressions or head movements may be part of the
sign. In order to understand the technical details of the
recognition it is important to know how the system
works: the user stays in front of the computer and starts
performing the sign of a specific word; the signed word
is a sequence of gestures (like the spelled word in figure
1) which is analogous to a sequence of frames in a video
(words like wardrobe or shoes in LIBRAS are performed
in a dynamic fashion). For instance, figure 7 shows a
small sequence of gestures (from A to F) related to the
sign for shoes whilst figure 8 presents the sequence for
wardrobe; as indicated before, the user performs the
sequence of gestures to compose the sign and the system
identifies the most likely Hidden Markov Model that
would produce such sequence (following the schema
presented in figure 2). If one imagines a model with 6
states (like the one in figure 9) each of them responsible
to recognize the poses of figure 7, then, as the user
performs the poses, these states produce better results
than the states of the other words (notice that the self
transitions are responsible to match the same pose for
that state).

Of course, a more complex system would allow recog-
nition of a sequence of words (signs) in order to produce

Fig. 7: Small sequence of gestures for shoes (LIBRAS)

Fig. 8: Small sequence of gestures for wardrobe (LIBRAS)

a phrase. Such system would have to allow the connec-
tion of the end of one model to the beginning of all the
models (or at least some of them - according to some
grammar) in order to recognize several words (signs)
in a phrase. Figure 10 shows an example of 4 HMMs
(for 4 signs) in which the system is hypothetically trying
to make a transition from the first sign (on top) to the
other three (excluding itself). The blue circles stand for
the beginning of the models whilst the red ones to the
end. The other circles at the figure represent the HMM
states for each sign (the self transitions are omitted).
The signs in this example have the same number of
HMM states, but this is not the case for real modelling.
And, it is important to notice that, according to the
Viterbi algorithm [38], only after computing the last
gesture it is possible to identify the best sequence of
states and, therefore, the best sequence of signs. From the
explanation it is possible to conclude that such systems
must have techniques (like prunning [39]) to optimize
the search space.

Our system, so far, works only with single words.
And, to be more precise, the experiments, so far, do not
take face expressions and head movements into account.
Hands and arms are the most important information.
Therefore, the first step is to extract them from the
scene using the Virtual Wall algorithm. The result: blobs
that need to be labeled. For this task the blob labeling
algorithm [40] - which uses the internal and external
contours to identify the blobs in linear time - is used.
After labeling, three kinds of objects may be found:

1) Noise: blobs that may appear due to Kinect’s depth
estimation;

2) User’s legs: when the user is sitting, it is likely that
the legs will trespass the virtual wall;

3) Hands and arms: the objects we really want.

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013 21

ISSN: 2236-3297

Fig. 9: HMM states associated to the sign for shoes

Fig. 10: The connection of one Hidden Markov Model to
the others

The first one can be easily discarded by a threshold
area. All the blobs with an area (in pixels) smaller than
the threshold are discarded. For the experiment, the
minimum area was 400 pixels. The remaining blobs are
sorted and the two with biggest areas are labeled as the
person’s hands. It is important to notice it is still possible
to have one or two big blobs associated to the legs, but
a simple heuristic of eliminating blobs that overlap the
bottom border of the image is enough to get rid of this
problem.

In order to describe the hands actions, a feature vector
is created in order to gather information of both hands
(postures and movements). Our feature vector is based
on the work of Thiago Trigo e Sergio [41] and contains:

1) Geometric descriptors: aspect ratio, circularity,
spreadness, roundness, solidity and finger tips;

2) Trajectory descriptor : 3D position relative to the
Center of Mass of the person; and

3) Fourier descriptors: invariable to translation, rota-
tion and scale.

We created two 7-word gesture groups in order to
evaluate the recognition performance:

1) Adorar (to like), armário (wardrobe), carro (car),
comprar (to buy), eu (I), querer (to want), sapato
(shoes); and

2) Banheiro (toilet), borboleta (butterfly), casa (house),
cesta (basket), complicado (complicated), nós (we),
simples (simple).

They were chosen due to their complexities which
include partial face occlusion and different contact posi-

tions between the hands and the body parts.
In order to evaluate the feasibility of our feature vector,

we created three testing cases:
• Scenario 1: Trajectory, Fourier and Geometric de-

scriptors compose the feature vector (80 dimen-
sions);

• Scenario 2: Only 3D position and Fourier descrip-
tors were used to compose the feature vector (68
dimensions); and

• Scenario 3: Only 3D position and Geometric descrip-
tors (aspect ratio, circularity, roundness, solidity and
finger tips) were used to compose the feature vector
(18 dimensions).

For each of the 14 words we have collected 40 samples
for the training set and another 40 for the testing set.
The samples were collected through the GestureUI and
we cared about:
• Changing the position of the capturing device to

capture different angles of the gestures;
• Changing the perspective of the people performing

the signs in order to make the system more robust
to perspective; and

• Instruct them to perform the signs at different
speeds.

All the training samples were used to create 16 or
32 clusters (using K-means algorithm [42]). Each word
had its own HMM with different numbers of states. The
recognition was performed via Viterbi algorithm [26].

In the first scenario the system presented a recognition
rate of 98.39% with 16 clusters and 99.82% with 32
clusters.

In the second scenario (without geometric descriptors)
the system presented a poor recognition rates: 12.50%
with 16 clusters and 14.82% with 32 clusters.

In the third scenario (without Fourier descriptors) the
system presented a recognition rate of 99.64% with 16
clusters. We could not evaluate the performance with
32 clusters as 8 of them were empty (probably due to a
low dimensionality). We believe, however, that if we had
more words in our vocabulary, we would have had more
different gestures and, as consequence, more clusters.

Again, the tasks were divided into 3 categories: seg-
mentation, analysis and recognition and the measure-
ment of these categories times was performed using the
POSIX Time Boost library with a microsecond (µsec)
precision clock.

We evaluated the system at the task of recognizing
7 words using 16 or 32 clusters. With 16 clusters, the
evaluation is quicker than with 32 clusters as shown in
table IV. As expected, a scenario with a high dimension-
ality and 32 clusters is more time consuming than the
others. Besides recognition times (shown in table IV) we
had also to consider: the segmentation time (7.29 ms),
the analysis time (2.18 ms) and the interface overhead
(6 ms). The whole processing time is 27.38 ms which

22 SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

ISSN: 2236-3297

TABLE IV: Mean times and pattern deviation of 7-word
dynamic gesture recogntion

Clusters Scenario Mean Standard deviation
16 3 2.60 ms 0.68 ms
16 1 6.38 ms 1.60 ms
32 1 11.91 ms 3.00 ms

means that in the worst scenario, the highest frequency
would be 36.52 Hz. The best scenario would perform at
a frequency of 55.34 Hz.

We also measured the execution time for the task of
recognizing 14 words. For the task we considered the
best configuration of the experiments with seven words
(55.34Hz) and obtained an average recognition time of
10.77 ms (with pattern deviation of 4.24 ms). The whole
processing time was 26.24 ms (7.29 ms for segmentation;
2.18 ms for analysis; and 6 ms for interface overhead).
With 14 words, the frequency is about 38,10 Hz.

In order to get good recognition rates, we had to
double the number of clusters which increased the whole
execution time about 45% (compared to the best results
of seven word experiments). As the clusters represent the
basic units of the gestures, it is expected that a restricted
vocabulary (7 to 14 words) produces a small number
of clusters (16 or 32 clusters) whilst a large vocabulary
(more than 100 words) would produce a better distribu-
tion of the feature vectors among the clusters and the
total of them would be 32 or 64. If we assumed that 64
clusters would be enough to represent a large number
of words and that in a worst scenario with another
increase of recognition time around 45% we would end
up having around 38 ms of total execution time. This
would produce a frequency around 26 Hz, which would
still be considered real-time (above 24 Hz of the cinema).

VII. Conclusions and Future work
In this paper we detailed our experiments with seg-

mentation and recognition of static and dynamic ges-
tures in real-time using, as use case, the LIBRAS alphabet
(for static recognition) and LIBRAS words (for dynamic
recognition). For the static gesture recognition, we re-
ported recognition rate of 100% for A, E, I, O, U and
B, C, L, F, V using the Aspect Ratio Hand Cropping
algorithm along with the Virtual Wall algorithm. The
overall execution frequency of the system was 30 Hz
limited by the Kinect device frame rate. However, the
system is able to reach 62.5Hz.

For the dynamic gesture recognition, we performed
different experiments regarding feature vectors and
number of clusters with recognition rates as good as
99.82% for 7 words.

Regarding execution time, the system performed at
55.34Hz for 7 words in Libras and 38.10Hz for 14 words.
This was due, mainly, to the number of the clusters and
the dimensions of the feature vectors (as expected). For
large vocabularies we expect the number of clusters to

be below 64, which would still deliver real-time perfor-
mance. It is important to notice that no optimization was
performed in the whole recognition process.

As future work we intend to increase the number
of static gestures that can be classified at the same
time by using invariant shape descriptors, since binary
images are not the best option for large datasets. Further-
more, improvements in the cropping hand algorithm are
needed. The current version works only when the hands
are pointing upwards. In order to solve this problem we
intend to use depth information to improve the decision
making for cropping. We also need to address the prob-
lem of recognizing head movements and face expres-
sions. For the dynamic gesture recognition viewpoint,
the evaluation of the HMMs could be optimized by the
use of the pruning technique [43], [44]. We also believe
that a better algorithm for searching the nearest cluster
(such as [45]) would increase the overall performance.

Acknowledgment
The authors would like to thank the Brazilian funding

agencies FAPESP and CNPq and the German Funding
Agency (DFG) for sponsoring the work.

References
[1] R. Birdwhistell, Kinesics and Context, university of pennsylvania

press ed., 1970.
[2] M. S. and T. Acharya, “Gesture recognition: A survey,” IEEE

Transactions on Systems, Man, and Cybernetics - Part C: Applications
and Reviews, vol. 37, no. 3, May 2007.

[3] P. Hong, M. Turk, and T. S. Huang, “Gesture modeling and recog-
nition using finite state machines,” in Fourth IEEE International
Conference on Automatic Face and Gesture Recognition, Grenoble,
March 2000, pp. 410–415.

[4] L. F. Brito, Por uma gramatica de linguas de sinais. Rio de Janeiro;
UFRJ, Departamento de Linguistica e Filologia: Tempo Brasileiro,
1995.

[5] M. Correa, J. Ruiz-del Solar, R. Verschae, J. Lee-Ferng, and
N. Castillo, “Real-time hand gesture recognition for human robot
interaction,” RoboCup: Robot Soccer World Cup XIII, pp. 46–57, 2009.

[6] L. Shi, Y. Wang, and J. Li, “A real time vision-based hand gestures
recognition system,” in Proceedings of the 5th international conference
on Advances in Computation and Intelligence, 2010, pp. 349–358.

[7] T. Coogan, G. Awad, J. Han, and A. Sutherland, “Real time hand
gesture recognition including hand segmentation and tracking,”
in Proceedings of the Second international conference on Advances in
Visual Computing, 2006, pp. 495–504, volume I.

[8] Y. Chang, S. Chen, and J. Huang, “A kinect-based system for
physical rehabilitation: A pilot study for young adults with motor
disabilities,” Elsevier, Research in Developmental Disabilities, Volume,
vol. 32, no. 6, 2011.

[9] E. S. Santos, E. A. Lamounier, and A. Cardoso, “Interaction in
augmented reality environments using kinect,” in XIII Symposium
on Virtual Reality (SVR). IEEE Computer Society, 2011, pp. 112–
121.

[10] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, “Robust hand gesture
recognition with kinect sensor,” in Proceedings of the 19th ACM
international conference on Multimedia, 2011, pp. 759–760.

[11] L. Bretzner, I. Laptev, T. Lindeberg, S. Lenman, and Y. Sundblad,
“A prototype system for computer vision based human computer
interaction,” 2001, technical Report, Department of Numerical
Analysis and Computing Science KTH (Royal Institute of Tech-
nology), Stockholm, Sweden.

[12] Q. Chen, N. D. Georganas, and E. M. Petriu, “Hand gesture
recognition using haar-like features and a stochastic context-free
grammar,” IEEE Transactions On Instrumentation And Measurement,
vol. 57, no. 8, 2008.

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013 23

ISSN: 2236-3297

[13] Y. Fang, K. Wang, J. Cheng, and H. Lu, “A real-time hand
gesture recognition method,” in IEEE International Conference on
Multimedia and Expo, 2007.

[14] S. G. Wysoski, M. V. Lamar, S. Kuroyanagi, and A. Iwata, “A
rotation invariant approach on static-gesture recognition using
boundary histograms and neural networks,” in in Proceedings of
the 9th International Conference on Neural Information Processing
(ICONIP), 2002, pp. 2137–2141.

[15] J. J. Phu and Y. H. Tay, “Computer vision based hand gesture
recognition using artificial neural network,” in Proc. Int’l Conf.
on Artificial Intelligence in Engineering and Technology (ICAIET’06),
Kota Kinabalu, November 2006.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” Parallel Distributed
Processing, vol. 1, pp. 318–362, 1986.

[17] P. Modler and T. Myatt, “Recognition of separate hand gestures by
time-delay neural networks based on multi-state spectral image
patterns from cyclic hand movements,” in IEEE International
Conference on Systems Man and Cybernetics, 2008, pp. 1539–1544.

[18] M. Vafadar and A. Behrad, “Human hand gesture recognition
using spatio-temporal volumes for human-computer interaction,”
in International Symposium on Telecommunications, August 2008, pp.
713–718.

[19] M. Elmezain, A. Al-hamadi, and B. Michaelis, “Hand ges-
ture recognition based on combined features extraction,” World
Academy of Science, Engineering and Technology, vol. 60, p. 395,
December 2009.

[20] E. B. Pizzolato, M. S. Anjo, and G. C. Pedroso, “Automatic
recognition of finger spelling for libras based on a two-layer
architecture,” in Proceedings of the 2010 ACM Symposium on Applied
Computing. ACM, March 2010, pp. 969–973.

[21] B. Bauer and H. Hienz, “Relevant features for video-based con-
tinuous sign language recognition,” in Fourth IEEE International
Conference on Automatic Face and Gesture Recognition, Grenoble,
March 2000, pp. 440–445.

[22] Y. Wang and B. Yuan, “A novel approach for human face detection
from color images under complex background,” Elsevier Journal of
Pattern Recognition, vol. 34, pp. 1983–1992, 2001.

[23] H. Brashear, V. Henderson, K. Park, H. Hamilton, S. Lee, and
T. Starner, “American sign language recognition in game devel-
opment for deaf children,” in 8th International ACM SIGACCESS
Conference on Computers and Accessibility. New York: ACM, 2006,
pp. 79–86.

[24] M. Pahlevanzadeh, M. Vafadoost, and M. Shahnazi, “Sign lan-
guage recognition,” in 9th International Symposium on Signal Pro-
cessing and Its Applications, 2007, pp. 1–4.

[25] J. C. Principe and B. Vries, “A theory for neural networks with
time delay,” in Advances in Neural Information Processing Systems,
R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA,:
Morgan Kaufmann, 1991.

[26] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Readings in speech recognition,
pp. 267–296, 1989.

[27] A. Bellarbi, S. Benbelkacem, N. Zenati-Henda, and M. Belhocine,
“Hand gesture interaction using color-based method for tabletop
interfaces,” in IEEE 7th International Symposium on Intelligent Signal
Processing, 2011.

[28] J. B. Cole, D. B. Grimes, and R. P. N. Rao, “Learning full-
body motions from monocular vision: Dynamic imitation in a
humanoid robot,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007.

[29] S. Feuerstack, M. S. Anjo, J. Colnago, and E. Pizzolato, “Mod-
eling of user interfaces with state-charts to accelerate test and
evaluation of different gesture-based multimodal interactions,”
Informatik, pp. 4–7, October 2011.

[30] S. Feuerstack, M. S. Anjo, and E. Pizzolato, “Model-based de-
sign generation and evaluation of a gesture-based user interface
navigation control,” in Proceedings of the 10th Brazilian Symposium
on Human Factors in Computing Systems and the 5th Latin American
Conference on Human-Computer Interaction, B. C. Society, Ed., Porto
de Galinhas, Brazil, October 2011, pp. 227–231.

[31] J. Weissmann and R. Salomon, “Gesture recognition for virtual
reality applications using data gloves and neural networks,” in

IEEE International Joint Conference on Neural Networks, July 1999,
pp. 2043–2046.

[32] A. Y. Yang, S. Iyengar, S. Sastry, R. Bajcsy, P. Kuryloski, and R. Ja-
fari, Distributed Segmentation and Classification of Human Actions
Using a Wearable Motion Sensor Network, ieee computer vision and
pattern recognition workshops ed., 2008.

[33] R. Yang and M. Pollefeys, “Multi-resolution real-time stereo on
commodity graphics hardware,” in IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, June 2003, pp.
211–217.

[34] M. W. Gardnera and S. R. Dorlinga, “Artificial neural networks
(the multilayer perceptron) - a review of applications in the
atmospheric sciences,” Atmospheric Environment, vol. 32, no. 14-
15, pp. 2627–2636, August 1998.

[35] Y. Hayashi and R. Setiono, “Combining neural network predic-
tions for medical diagnosis,” Computers in Biology and Medicine,
vol. 32, no. 4, pp. 237–246, July 2002.

[36] A. Ciaramella, C. Donalek, A. Staiano, M. Ambrosio, C. Aramo,
P. Benvenuti, G. Longo, L. Milano, G. Raiconi, R. Tagliaferri, and
A. Volpicelli, Applications of neural networks in astronomy and as-
troparticle physics. Recent Research. Developments in Astronomy
and Astrophysics: Research Signpost, 2005.

[37] F. Rosenblatt, “The perceptron - a perceiving and recognizing
automaton,” Report 85-460-1, Cornell Aeronautical Laboratory,
Tech. Rep., 1957.

[38] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Transactions on In-
formation Theory, vol. 13, no. 2, pp. 260–269, April 1967.

[39] W. Liu and H. Weisheng, “Improved viterbi algorithm in contin-
uous speech recognition,” in International Conference on Computer
Application and System Modeling (ICCASM), China, October 2010,
pp. 207–209.

[40] F. Chang, C. Chen, and C. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Elsevier Computer
Vision and Image Understanding, vol. 93, no. 2, pp. 206–220, 2004.

[41] T. R. Trigo and S. R. M. Pellegrino, “An analysis of features
for hand-gesture classification.” in 17th International Conference on
Systems, Signals and Image Processing (IWSSIP), 2010, pp. 412–415.

[42] S. P. Lloyd, “Least square quantization in pcm,” IEEE Transactions
on Information Theory, vol. 28, pp. 129–137, 1982.

[43] D. Willett, C. Neukirchen, and G. Rigoll, “Efficient search with
posterior probability estimates in hmm-based speech recogni-
tion,” in in Proc. Int. Conf. Acoustics, Speech and Signal Processing,
1998, pp. 821–824.

[44] A. X. L., “An overview of decoding techniques for large vo-
cabulary continuous speech recognition,” Computer Speech and
Language, vol. 16, no. 1, pp. 89–114, 2002.

[45] H. B. Kekre and T. K. Sarode, “Centroid based fast search algo-
rithm for vector quantization,” International Journal of Imaging (IJI),
vol. 1, no. A08, pp. 73–83, 2008.

24 SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

ISSN: 2236-3297

