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Abstract—In this paper we present an extension to the Kinect-
Fusion algorithm that allows a robust real-time face tracking and
modeling using the Microsoft’s Kinect sensor. This is achieved
changing two steps of the original algorithm: pre-processing
and tracking. In the former, we use a real-time face detection
algorithm to segment the face from the rest of the image. In the
latter, we use a real-time head pose estimation to give a new
initial guess to the Iterative Closest Point (ICP) algorithm when
it fails and an algorithm to solve occlusion.

Our approach is evaluated in a markerless augmented reality
(MAR) system. We show that this approach can reconstruct
faces and handle more face pose changes and variations than
the original KinectFusion’s tracking algorithm. In addition, we
show that the realism of the system is enhanced as we solve the
occlusion problem efficiently at shader level.

Index Terms—Augmented Reality; Head Pose Estimation; Face
Modeling.

I. INTRODUCTION

Augmented reality (AR) is a technology in which a user’s
view of a real scene is augmented with additional virtual
information. Accurate tracking, or camera pose estimation, is
required for the proper registration of virtual objects. However,
tracking is one of the main technical challenges of AR.

In some AR systems, the user turns his head in front of a
camera and the head is augmented with a virtual object. In
this case, is desirable an algorithm able to track the person’s
head with enough accuracy and in real-time. One way to
achieve this goal is building a reference 3D model of the
user’s head and aligning it to the current head captured by the
sensor. However, this process (i.e. face modeling) often has
high computational costs and needs manual post-processing.

With the recent advances in the field of 3D reconstruction,
nowadays it is possible to reconstruct high-detailed models
in real-time exploiting the power of the graphics processing
units (GPUs) [1]. The user can achieve this goal by turning
an object in front of a 3D scanner or by turning a 3D scanner

around an object. It can be easily extended to faces if we make
the assumption that the user will turn his head in front of the
scanner with a neutral expression and as rigidly as possible,
as in [2].

We present an approach for robust real-time face tracking
and modeling using the Microsoft’s Kinect sensor for a mark-
erless augmented reality (MAR) system. First, we apply the
Viola-Jones face detector [3] to locate and segment the face
in the whole image. Afterward, a reference 3D model is built
with a real-time 3D reconstruction system. Next, the Kinect
raw data is aligned to the reference 3D model, predicting the
current camera pose. Finally, to improve the robustness of the
system, is used a head pose estimator to give an initial guess
to the tracking algorithm when it fails. An overview of this
method can be seen in Figure 1. In addition, we enhance the
realism of the system solving the occlusion problem between
the virtual and real objects.

The method is inspired by three notable works: An al-
gorithm that allows the dense mapping of extended scale
environments in real-time using only Kinect raw data called
KinectFusion [1]; an algorithm for estimating the location and
orientation of a person’s head from low quality depth data
[4] and an algorithm for detecting faces in real-time [3]. Our
approach adapts the KinectFusion to the face modeling and
extends its tracking using the head pose estimation. We show
that this approach can reconstruct faces and handle more face
pose changes and variations than the original KinectFusion’s
tracking algorithm. This approach is evaluated in a MAR
system.

The rest of the paper is arranged as follows. Section 2
provides a brief review on the related work of surface recon-
struction, real-time face modeling, markerless AR and real-
time head pose estimation. Section 3 presents the proposed
algorithm. Section 4 discusses the experimental results. The
paper concludes in Section 5, with a summary and discussion
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Fig. 1. Overview of the online processing pipeline. A) RGB-D live stream. B) A face detector is used to locate and segment the face from the rest of the
scene. C) Reference 3D model is reconstructed with KinectFusion. D) In a MAR system, the user rotated his face fast and the ICP failed. E) The head pose
estimation is used to give an initial guess to the ICP and the fast motion is compensated.

of future work.

II. RELATED WORK

Surface reconstruction, face modeling, markerless AR and
head pose estimation have been driven by different approaches,
as we can see in the next subsections (a full review of face
modeling is beyond the scope of this paper and we refer to
[5] for a more detailed discussion).

Surface reconstruction: In 1996, Curless and Levoy [6]
described a method for volumetric integration of complex
models from range images (VRIP). The volumetric integration
basically consists of a cumulative weighted signed distance
function (SDF). This method is able to integrate high-detail
models, in the order of a million triangles. However, the
execution time can be in the order of hours and it is not
suitable for AR applications. The range images used in this
work were captured by laser scanners. Laser scanners provide
range images with high accuracy, but the drawback of them is
the high cost of the hardware.

In 2002, Rusinkiewicz et al. [7] described a method for
real-time 3D model acquisition. Using a real-time low-quality
structured-light 3D scanner, they aligned the range images
from different viewpoints to produce complete 3D rigid ob-
jects. Different from the method proposed by Curless and
Levoy, it operated at ≈ 10 Hz with lower cost hardware but
did not reconstruct high-quality models. It was the first system
to reconstruct and display the 3D models in real-time and it
increased the possibility to do markerless AR with surface
reconstruction.

In 2010, Cui et al. [8] described a method for 3D object
scanning using a time-of-flight (ToF) camera. In this work,
Cui et al. showed a superresolution method that improves
significantly the quality of the depth maps acquired from a
ToF camera. One drawback of this method is that it does not
run in real-time. Compared to the other scanners presented,
time-of-flight cameras have the lowest cost and provide range
images with the lowest accuracy.

Markerless AR: In 1999, in the field of AR, Kato and
Billinghurst [9] presented a video-based AR system with
marker tracking which mixed virtual images on the real world.
They used fast and accurate computer vision techniques to
track the fiducial markers through the video. The system

presented is also called ARToolKit and it is one of the most
used systems in this field.

In 2000, Simon et al [10] described one of the first methods
using markerless tracking for an AR system: a tracker of planar
structures. Despite being a special case of tracking (i.e. when
there is a planar structure visible in the scene), the method
does not need fiducial markers and robustly tracks the planar
structures through the video.

Real-Time Face Modeling + Markerless AR: Izadi et
al. [1] described a system that enables real-time detailed 3D
reconstruction of a scene using the depth stream from a Kinect.
The system was called KinectFusion. Using a GPU, it was the
first system to reconstruct high-detail models at ≈ 30Hz. Izadi
et al. [1] also presented some markerless AR applications,
showing the level of the user interaction in their system. This
method was originally developed to reconstruct large scale
scenes but it can be applied for face modeling.

In the same year, Weise et al. [11] presented a system that
enables active control of facial expressions of a digital avatar
in real-time. The system is called FaceShift [12]. It was the
first system to enable high-quality reconstruction and control
of facial expressions using blendshape representation in real-
time. FaceShift represents a great advance in the field of MAR
and non-rigid surface reconstruction.

An adaptation of the KinectFusion for face modeling was
done in [13]. It reconstructs high-quality face models by rep-
resenting the face in cylindrical coordinates and by applying
temporal and spatial smoothing on the 3D face shape. We
present an alternative and simpler method to adapt the original
KinectFusion to reconstruct faces properly and in real-time.

Head Pose Estimation: Recently, automatic real-time 3D
head pose estimation have become popular due to the increas-
ing availability of the 3D scanners.

Breitenstein et al. [14] developed a real-time algorithm to
estimate 3D head pose using GPUs. Using high-quality depth
data, the algorithm computes a set of candidate nose positions
and compares the input depth data to precomputed pose images
of an average face model.

Fanelli et al. [4] developed a real-time algorithm to estimate
3D head pose using only the CPU. Using low-quality depth
data (e.g. captured from a Kinect sensor), the algorithm trains
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random forests to estimate head pose.
We choose this last algorithm for head pose estimation

because it operates directly on low-quality depth data.

III. KINECTFUSION FOR FACES

In this section we describe the proposed improvements
we made to the KinectFusion to track and reconstruct faces.
Before, we describe the original KinectFusion, the head pose
estimation and the face detector used.

A. Reconstructing 3D Models with KinectFusion

KinectFusion [1] is a system that integrates raw depth data
from a Kinect camera into a voxel grid to produce a high-
quality 3D reconstruction of a scene.

The system first applies a bilateral filter [15] to the depth
map to reduce the noise preserving discontinuities of the raw
data. The filtered depth map is then converted into a vertex
map and a normal map in the camera’s coordinate space. It is
done by the product between the filtered depth map and the
Kinect infrared camera’s intrinsic calibration matrix.

To compute the transformation that defines the camera
pose is used a real-time variant of the well known ICP
(Iterative Closest Point) algorithm [16]. The ICP estimates the
transformation that aligns the current depth frame with the
accumulated model. It consists of six stages:

• Selection of points: All the points visible (depth greater
than 0) are selected;

• Matching of points: It is used the projective data as-
sociation [17] that is described in more details in the
Subsection III-D;

• Weighting of pairs: It is assigned constant weight to
each association;

• Rejecting pairs: Pairs are rejected if the Euclidean
distance or angle between the points are greater than some
user-defined threshold;

• Error metric: The error is defined by the sum of squared
distances from each point in the current frame to the tan-
gent plane at its corresponding point in the accumulated
model (point-to-plane error metric) [18];

• Error minimization: The error is minimized using a
Cholesky decomposition on a linear system.

Once with the current transformation, the raw depth data can
be integrated into the voxel grid. The grid stores at each voxel
the distance to the closest surface (SDF) [19] and a weight that
indicates uncertainty of the surface measurement. The SDF
values are positive in-front of the surface, negative behind and
zero-crossing where the sign changes. In the KinectFusion,
the SDF is only stored at a truncated region around the
surface. This distance is also referred as a truncated signed
distance function (TSDF). These volumetric representation and
integration are based on the well known VRIP algorithm [6].

Surface extraction is achieved by detecting zero-crossings
through a raycaster. All these operations are made using the
GPU. An overview of this method can be seen in Figure 2.

Fig. 2. Overview of KinectFusion’s pipeline [1].

B. Real-Time Head Pose Estimation from Consumer Depth
Cameras using Random Regression Forests

Random Regression Forests are trees trained randomly that
generalize a problem better than decision trees taken separately
[20]. Fanelli et al. [4] trained random forests to estimate
head pose from low-quality depth images. To train the trees,
each depth map was annotated with labels indicating head
center and Euler rotation angles. These labels were estimated
automatically using ICP after a 3D facial reconstruction. After
the labeling and training, the head pose can be estimated
letting every image region to vote it. The vote consists of a
classification whether the image region contains a head and
a retrieval of a Gaussian distribution computed during the
training and stored at the leaf. This probabilistic approach
achieves high accuracy and runs in real-time using only CPU.

C. Robust Real-Time Face Detection based on Haar-like Fea-
tures

Viola and Jones [3] described a method for robust real-time
face detection in color images. They used a representation
called integral image to compute Haar-like features quickly
(i.e. each pixel contains the sum of the pixels above and to
the left of the original position) and a combination of simple
classifiers built using the Adaboost learning algorithm [21] to
detect the face regions.

D. Our Approach

Our approach consists of two main stages: head recon-
struction and markerless AR face tracking. The first stage
consists in the application of KinectFusion to reconstruct
the user’s head (Figure 3) and the second stage consists in
tracking of the user’s face augmented with a virtual object.
As mentioned before, we extended the original KinectFusion
algorithm in two steps: preprocessing and tracking. We also
use our tracking solution in both stages of the system.

For each new depth frame D, we segment the region of
interest (i.e. user’s head) by applying a Z-axis threshold of
1.3m. 1.3m was chosen because it is the maximum acceptable
distance from the user’s head to the camera center in the
original Fanelli’s head pose estimation [4].

Next, we apply the Viola-Jones face detector [3] to locate
and segment the face in the color image. Face detection is
only performed during head reconstruction. Once the face is
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Fig. 3. An example of user’s head reconstructed with the KinectFusion and
rendered with Phong shading [22].

detected, we fix the window that contains the face region.
Then, the user is constrained to translate and rotate his face in
that window (an example can be seen in Figure 1-B). With this
simple method, we can reconstruct the user’s head in real-time.

After (or during) that, we apply the ICP algorithm to
compute the current camera pose (i.e. transformation matrix
T ). The ICP uses the projective data association [17] to
find correspondences between the current depth frame and
the accumulated model. In this association, each point is
transformed into camera coordinate space and perspective
projected into image coordinates. The corresponding points
are that on the same image coordinates. The ICP fails (i.e.
does not converge to a correct alignment) when there is not
a small pose variation between sequential frames. We detect
it by checking if the linear system computed is solvable (i.e.
the matrix is invertible). If the ICP fails, we use the head pose
estimation to give a new initial guess to the ICP to compute
correctly the current transformation.

The use of the head pose estimation is shown in Algorithm
1. Given the previous depth frame Dprev and the current depth
frame Dcurr, the head pose estimation is used to set the head
orientation (Rprev and Rcurr) and the head center (Hcprev and
Hccurr) of them. The head centers are converted from camera
to global coordinates. The incremental rotation matrix Rinc

and the translation ∆t between the previous and the current
head center are computed (lines 7 and 8). The translation ∆t is
added to the current global translation t (line 9). The implicit
surface is then raycasted to generate a new view (i.e. new
previous depth frame) (line 10). The raycasted view is rotated
around Hccurr with Rinc (line 11). Finally, we reuse the ICP
to estimate the current T .

Our approach also solves the occlusion problem by using
a GLSL fragment shader [23] that compares the depth value
of the virtual (i.e. reconstructed head model) and real (i.e.
bilateral filtered depth data) objects to check whether the
virtual object is in front of the real object, and vice-versa.

IV. RESULTS AND DISCUSSION

In this section we analyze the system’s performance and
describe the experimental setups we used.

We based our system on the open source C++ implementa-
tion of the KinectFusion [24] released by the PCL project [25]

Algorithm 1 Use of the head pose estimation
1: estimate head pose of Dprev .
2: Rprev ← extract rotation matrix estimated from Dprev .
3: Hcprev ← extract global head center from Dprev .
4: estimate head pose of the Dcurr.
5: Rcurr ← extract rotation matrix estimated from Dcurr.
6: Hccurr ← extract global head center from Dcurr.
7: Rinc ← Rcurr ∗R−1

prev .
8: ∆t← Hcprev −Hccurr.
9: t← t + ∆t.

10: raycast the implicit surface to generate a new view.
11: rotate the raycasted view around Hccurr with Rinc.

and on the open source C++ implementation of the head pose
estimation released by Fanelli [26]. For all tests we ran our
system on an Intel(R) Core(TM) i7-3770K CPU @3.50GHz
8GB RAM in real-time. When the head pose estimation was
used, the main pipeline of our system needed only 80ms to
process a frame. Without the head pose estimation, the main
pipeline needed only 40ms.

We tested our algorithm with real data captured with
a Kinect sensor using a grid with volume size of
50cmx50cmx130cm that could reconstruct high-quality heads.
We can analyze the qualitative performance for three cases:
fast translation and rotation of the user’s face and variation
of illumination condition. An example of application of our
approach can be seen in Figure 4.

When the user translated his face in front of the camera and
the ICP failed, the algorithm could give a correct initial guess
to the ICP. If the user translates his face fast, there will not be
sufficient points at the same image coordinates and the ICP
will fail. By applying our approach we can solve this problem.
This situation can be seen in Figure 5.

Fig. 5. A) The user translated his face fast. A small number of points were at
the same image coordinates and the ICP failed. B) By applying our approach
we solved this problem.

The algorithm slightly improved the tracking performance
when the user rotated his face and the ICP failed. The reason
is that the larger the pose variation, the larger the non-
overlapping region, and there are cases that the ICP is not
appropriate in the presence of non-overlapping regions (Figure
1, D and E) even if the head pose estimation provides the initial
guess. In this case (Figure 6), the user needs to reposition his
face to the tracking algorithm to align correctly the raw depth
data. One can use non real-time up-to-date algorithms, as the
Sparse ICP [27], to solve this problem.
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Fig. 4. Tracking with ICP: a) The tracking is started. b) The user moves his face in front of the Kinect and the motion is not totally compensated by the
algorithm. c) The ICP fails d) completely.
Tracking with ICP + Head Pose Estimation: e) The tracking is started. f) The user moves his face in front of the Kinect and the motion is not totally
compensated by the algorithm. g), h) The ICP fails but it recovers with the initial guess provided by the head pose estimation.

Fig. 6. An example of tracking failure. The user needs to reposition his face
to the tracking algorithm align correctly the raw depth data to the reference
3D model.

The face detector was robust even in presence of low
and high illumination (Figure 7), allowing the system to
reconstruct faces under different illumination conditions.

Fig. 7. A) The face was detected correctly in presence of high and B) low
illumination.

As mentioned earlier, our approach also supports occlusion
(Figure 8). However, in our case where we are comparing a
reconstructed model against noisy data, the presence of holes
and the partial occlusion of the real object can reduce the
occlusion and tracking accuracies, as stated in [28].

Fig. 8. Occlusion is solved by using a fragment shader that checks whether
a virtual object is in front of a real object.

The accuracy of the head pose estimation is the same as the
Fanelli’s approach (angle error: about 8o in each axis; head
center error: 10mm). However, as mentioned before, in the
case of large pose variations, its initial guess is not sufficient
for the ICP algorithm.

V. CONCLUSIONS AND FUTURE WORK

We have presented the KinectFusion for Faces: an approach
for real-time face tracking and modeling using a Kinect camera
for a markerless AR system. We used the KinectFusion to
reconstruct the user’s head and we extended its tracking
algorithm using the head pose estimation to give the initial
guess to the ICP algorithm when it failed. Also, we have
solved the occlusion problem to enhance the realist of the
system. We have shown that this approach can reconstruct
faces and handle more face pose changes than the original
KinectFusion’s tracking. In addition, we have shown that the
use of the head pose estimation proposed by Fanelli et al. [4]
is suitable for AR applications, as it runs in real-time.

Encouraged by the work of Meister et al. [29], for future
work we plan to analyse the accuracy of the system to check
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if this method can be used for medical applications. Further
improvements can be achieved by implementing a deformable
registration algorithm to track the face, as proposed in [11],
[30] and [31], or by implementing a better rendering algorithm
for mixed reality, as proposed in [32].
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