
Correcting Drift, Head and Body Misalignments
between Virtual and Real Humans

Vitor Reus, Márcio Mello, Luciana Nedel, Anderson Maciel
Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS)

Porto Alegre, Brazil
{vureus,marcio.mello,nedel,amaciel}@inf.ufrgs.br

Abstract—Head-mounted displays (HMD) allow a personal and
immersive viewing of virtual environments, and can be used
with almost any desktop computer. Most HMDs have inertial
sensors embedded for tracking the user head rotations. These
low-cost sensors have high quality and availability. However,
even if they are very sensitive and precise, inertial sensors work
with incremental information, easily introducing errors in the
system. The most relevant is that head tracking suffers from
drifting. In this paper we present important limitations that still
prevent the wide use of inertial sensors for tracking. For instance,
to compensate for the drifting, users of HMD-based immersive
VEs move away from their suitable pose. We also propose
a software solution for two problems: prevent the occurrence
of drifting in incremental sensors, and avoid the user from
move its body in relation to another tracking system that uses
absolute sensors (e.g. MS Kinect). We analyze and evaluate our
solutions experimentally, including user tests. Results show that
our comfortable pose function is effective on eliminating drifting,
and that it can be inverted and applied also to prevent the user
from moving their body away of the absolute sensor range. The
efficiency and accuracy of this method makes it suitable for a
number of applications in immersive VR.

Keywords-virtual reality; tracking filters; inertial navigation;
interactive computing

I. INTRODUCTION

Virtual Reality (VR) systems often require a position track-
ing infrastructure to allow user navigation and interaction in
a virtual space. Expensive and complex tracking systems are
commercially available to track head position and orientation
as well as limbs movements in real time. The information
collected from such systems are then used to reproduce and
apply user movements on their respective avatar for display or
interaction.

In most cases, however, especially in research systems, such
tracking is limited due to constraints as: funding (precise
position trackers are expensive); availability of physical space;
or the use of markers and complicated setups. Many immersive
VR systems use a typical setup with a head mounted display
(HMD) and some handheld interaction device, e.g. gamepads,
magic wands, or specific VR controllers, which do not require
complex tracking systems. Notice that the typical HMDs
provide embedded inertial sensors for tracking of the head
rotations. Handheld devices, in turn, may or may not require
some tracking infrastructure. When they do, it is often simple
as only one reference frame must be tracked.

HMD inertial sensors cannot always guarantee that the
geometric transformations they represent are coherent. For

(a)

(b)

Fig. 1. These two sketches illustrate the problems introduced by drifting.
After a sequence of head motions, inertial sensors accumulate errors and the
orientation of the user head does not correspond any more to the avatar head’s.
Then, the user is in a very uncomfortable pose (a), and starts to turn his/her
body unconsciously, until to feel comfortable again (b), going out of the field
of view of the absolute sensor.

SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013 55

ISSN: 2236-3297



(a)

(b)

Fig. 2. Typical problems in VR systems when a full and complex tracking
infrastructure is not being used. In (a), cumulative errors cause drift in the
virtual environment. In (b), head body misalignment caused by poor body
tracking system.

example, a user facing a door in the virtual environment
(VE) who is also facing a door in the real environment, after
a sequence of head motions can be still facing the virtual
door but not the real door any more. This happens because
the inertial sensors accumulate errors as they cannot always
distinguish accelerations and velocities caused by rotations
from those caused by small displacements of the head. In
other words, rotations of the user head in the real world
are not necessarily registered with those of the virtual world,
a phenomena we call “drifting”, as depicted in Figures 14a
and 2a.

Some VR systems also require the user body to be modeled
for proprioception, i.e., for the user to be able to see their own
body, increasing presence. In these systems, the body is driven
to walk around the VE at the same time that the head rotations
are tracked by the HMD. Most of these systems require a
complex tracking system able to track the body and the head
separately. If this tracking is not available or not accurate,
another phenomena also occur which is derived from drifting:
“head-body misalignment” (Figure 2b).

Many systems today try to take advantage of the MS Kinect
device for body tracking. Although it is a non-expensive device
widely available, it requires that the user remain standing at
a certain distance in front of it. In this context, as the user
is immersed with the HMD without any real world reference,
some solution must be found to gently force the user not to

(a)

(b)

Fig. 3. Typical problems in VR systems when the user is allowed to move
their feet. In (a), the avatar does not mimic the real user body orientation.
In (b), turning the body may disturb the perfect functioning of an external
sensor such as the MS Kinect.

turn the body away from the standard orientation and still
avoid drifting. Naturally, such solution cannot rely on complex
equipment as the Kinect is used exactly to make the hardware
setup simple.

In Fig. 3, the problems of allowing free body rotations are
illustrated. In Fig. 3(a), the user has its head forward in step
1 then turns it 45 degrees right in step 2. After some time
in pose 2 it starts to get uncomfortable, therefore the user
involuntarily rotates their body to a more relaxed pose in step
3. The avatar does not mimic the body rotation since we are
only tracking the user’s head, thus it creates again a head body
misalignment. In Figs. 14b and 3(b), an external sensor such as
the MS Kinect may not work properly if the user is not facing
the device, therefore a solution to force the user forwards is
needed.

In this paper, we introduce the comfortable pose function,
an algorithm that iteratively computes the referential north
without the help of any additional sensor, excepting the embed-
ded HMD inertial sensors. We hypothesize that the algorithm
is effective whenever the users do not move their feet and
then present a validation experiment using a magnetometer.
Experiments show how this algorithm can be used to solve
the drifting problem. Moreover, we introduce a method using
a hardware prototype to replace the HMD embedded sensors.
Our prototype contains a magnetometer and a fusion function
that combined with the comfortable pose function provides a

56 SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013

ISSN: 2236-3297



Sensor Type
Feet Rotation Incremental Absolute

Free Not solved Body orientation correction
Fixed Drift correction No correction needed

TABLE I
SYSTEM SCENARIOS AND POSSIBLE CORRECTIONS

reliable referential north even when the users move their feet.
The data computed with this method are then used to gently
force the user to stand appropriately oriented in front of the
Kinect sensor. While our main contributions are in those two
methods and their experimental analysis, another contribution
is their application on a case study of a VR training simulator.

Table I categorizes the problems that can be solved using
the comfortable pose function. In cases where an incremental
sensor is used for head tracking, we can fix the drifting
caused by relative errors only if it is assumed that the users
have their feet fixed on ground. When we allow the users
to move and rotate their body, the system must gently force
their orientation in the real world towards an angle aligned
to the real world by gradually changing the orientation of the
avatar in the opposite direction. This is possible only if an
additional absolute orientation sensor such as a magnetometer
is available. The case when free user rotation is allowed in
real world, and only incremental sensors are available is not
covered here and is still an open research topic.

This paper is organized as follows. In Section II we review
the literature to contextualize this work. Next, in Section III,
we explain the illustration of Figure 4 describing how the
comfort pose algorithm works and detail our software and
hardware implementations in the context of VR. Section IV
explains the experiments we developed to evaluate the pro-
posed solution, and Section V brings a discussion and our
conclusions.

II. RELATED WORK

Typical setups for body tracking in VR involve full track-
ing [1] [2]. Magnetic sensors as the Ascension Flock of Birds
or optical sensors as the Vicon system have been used for
more than a decade. The main drawback of these systems is
their very high associated cost and complexity.

One of the main reasons for the delay in the widespread use
of VR is the need for reducing the cost and complexity of the
devices necessary to track the body and to provide immersive
visualization. A number of previous works propose some kind
of low cost techniques for tracking [3]. Despite the lower cost,
however, many of those systems were still based on complex
infrastructure to detect three-dimensional data.

More recently, the Kinect sensor gave a new impulse to the
VR as it offers the possibility to track the body in 3D with
a single device [4] [5]. Nevertheless, it requires the user to
stand at a restricted area in front of the device. As the users
tend to move a few steps and to turn the body inadvertently
while immersed in the VE, Kinect is ineffective in many
situations. In an attempt to minimize this problem, multiple
Kinects have been used [6]. This offers an affordable solution

Fig. 4. Schematic representation of the role of the comfort pose function in
the solution of two key problem in body tracking for VR. In the left using only
the HMD embedded sensors, and in the right using an additional hardware.

in relation to a full tracking system. However, it brings us
back to the situation where the tracking becomes complex,
being necessary to synchronize the devices and process the
input data according to the devices physical position.

Our approach to this problem, instead of multiplying the
sensors along the environment, is to incorporate a sensor in
the user’s body and combine sensor data with algorithms to
induce the user not to move away from the position of the
stationary tracking sensor, the Kinect in our case.

Incorporating sensors is similar to what researchers do in
robotics and augmented reality (AR). They place sensors on
the robot and try to compute the robot’s position based on
them. In AR, cameras have been used with computer vision
algorithms to detect features in the environment and estimate
the camera position [7]. This is necessary because in several
situations, both in AR and robotics, it is unfeasible to rely on
fixed infrastructure for tracking. Still, some kind of tracking
is necessary to align real and virtual objects in AR [8] and for
the robot to know its position while navigating [9].

One interesting thing in our own approach is that we
integrate data from a fixed device with data from incorporated
sensors. Similar ideas have been tried before using complex
installed sensor infrastructure plus wearable sensors [10]. In
robotics, dead reckoning [11] is also very popular as a means
for estimating tracking information for time periods when
sensor information is not available between two instants when
they are. One simple example is when a driver guided by a
GPS receiver enters a tunnel. Using the car speed and the road
map it is possible to estimate where in the tunnel the car is
while GPS signal is not available.

SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013 57

ISSN: 2236-3297



III. THE COMFORTABLE POSE APPROACH

Here we describe our novel algorithm to find a referential
north based on the assumption that humans spend most of the
time with their heads facing forward in relation to their bodies,
i.e., they assume a comfortable pose. Later in this section we
also describe the implementation and use of the algorithm,
including the associated hardware. An experimental analysis
and the application of this algorithm in VR systems is detailed
in Section IV.

A. The Concept of the Comfortable Pose

The comfort pose algorithm is based on an estimative of
the user’s body orientation using only the head orientation.
The head sensors provides a stream of orientations. The
algorithm uses a window to analyze just the last seconds of
data and infers the body orientation (see Figure 5). This can
be done either on incremental or absolute sensor. The kind
of information provided by this technique will depend of the
scenario, given in table I. In the case of absolute sensors, the
analysis will return an approximation of the user body rotation,
for incremental sensors constraining the user body orientation,
this analysis will be an approximation of the accumulated
error. For incremental sensors and free user body orientation,
nothing can be said.

Fig. 5. Idea behind the comfort pose algorithm.

A simple estimative of the body orientation is found calcu-
lating the median of the user’s head orientation history. This
provides an approximate body orientation for the given time
frame. The inferred body orientation can then be used to solve
the two problems discussed in the introduction.

B. Drift correction

Whenever inertial sensors are used, some drifting is ex-
pected that we aim to correct. The comfort pose algorithm has
been implemented here to estimate and minimize the drifting
of an HMD, as in Figure 6. Using the comfort pose method,
we can estimate the user’s body facing direction. If the users
are not allowed to move their feet, it is expected that the body
facing direction is always forward. If the orientation analysis
returns a direction that is not aligned forward in relation to the
body, then a drift has probably occurred in relative orientation
sensors like those of an HMD.

The drift angle value is exactly the angle found by the
history analysis, because the real user is not allowed to change
their body direction. The drift can be compensated if the
avatar’s head in the virtual world is rotated in the opposite
direction.

The avatar’s head direction will then be fixed according
to a fixing direction and speed. The fixing direction speed is
given by the estimated offset. If, for instance, it is found that
the offset is a few degrees left, fixing direction speed will be

Fig. 6. Comfort pose used to correct HMD drift.

towards right, gradually incrementing the direction to the right
and minimizing the drift.

A Gaussian derivative function is used to define the speed
behavior, as in Equation 1.

speed = offset ×Gauss(offset) (1)

Constant values for the gaussian function are a = 1/300,
b = 0, c = 11 degrees. This generates the curve in Figure 7.
The value 1/300 was chosen because of the average time step,
and 11 because it generates a curve width that ends around 60
degrees, which is the field of view we achieve with the HMD.
This curve augments the importance of smaller offsets, which
will probably be a drift, and gradually lowers the importance of
higher value offsets, to suppress an explosive behavior. Higher
offset values can also mean that the user is doing a large
voluntary head movement, thus the reduced importance.

Fig. 7. Graph showing the fixing direction speed according to the estimated
offset. Less importance is given to higher values.

The resulting drift correction value is updated with the offset
fixing speed. The rotation read from the device is fixed with the
drift correction value, and then stored in the rotation history to
be used in the next time step in the estimated offset analysis.
This whole process is summarized in the Algorithm 1.

Algorithm 1 Drifting correction
rotation = HMD.read();
offset = Median(history);
speed = offset× Gauss(offset);
driftCorrection.add(speed);
rotation = deviceRotation - driftCorrection;
history.push(rotation);

58 SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013

ISSN: 2236-3297



The drift correction value does not grow infinitely because
the higher the fixing speed, the faster the rotation will return
to origin. That way, the speed will shrink and will not cause
an explosive growth of drift correction.

C. Hardware

We also designed and implemented a sensor hardware
prototype based on the Arduino platform to perform global
tracking of the real user’s head orientation. The prototype
contains a 9 degree of freedom sensor consisting of 3 axial
accelerometer, gyroscope and compass. The compass, which is
not present in the average HMDs, is the sensor that allows us to
perform a correct global tracking of the user head orientation
without drift.

Since the Arduino features three different kind of sensors, a
sensor fusion technique had to be applied to obtain a consis-
tent orientation. We adapted an existing attitude and heading
reference system Arduino sketch to perform the readings [12].

We then fixed the Arduino on top of the HMD in such a
way that they suffer the same movements (see Figure 8). This
allows us to compare the readings. This setup also permits
us to override the readings of the HMD with the readings
from the Arduino, in order to have correct orientation reading.
This hardware is used in an experiment described later in this
paper to globally track the real user head orientation, which
allows us to validate the drift correction software presented in
Section III-B.

Fig. 8. Assembly of the HMD with the Arduino board and the magnetometer.

D. User body orientation correction

In practical situations, users do not feel comfortable in
having their feet fixed. Then, we propose to use the same
methods and hardware described above in a different config-
uration to give the user total freedom but taking measures to
enforce the stand in front of the Kinect condition. Again, the
hardware prototype of Section III-C is rigidly placed on the
top of the HMD. The HMD sensors are now disabled as they
are overridden by those of the hardware prototype. The user
view is then updated based on our sensor hardware, including
magnetometer readings.

As said before, the magnetometer can provide a grounded
reference north. However, as it is placed on the user’s head,
it will give the orientation of the head instead of the body.

The body orientation must then be estimated. We estimate the
user’s body orientation using the same comfort pose algorithm
described above. In simpler words, we assume that if the user’s
head remains a long time facing a given direction, his/her body
is probably turned to that direction as well.

Knowing the estimated body orientation, if it deviates from
the center, small rotations are gradually applied on the user’s
avatar to the same direction. This will force the user to look,
by turning the head, in the opposite direction to keep seeing
the same scene. This eventually induces the users to move their
feet, rotating the body to be in a comfortable pose aligned with
the head. This rotation will bring the user back to the center,
i.e., facing the Kinect sensor. We used this approach on a case
study with a VR simulator as described in Section IV-D. Our
observations show that the users tend to remain in the suitable
orientation in front of the Kinect, which was not the case in
previous experiments where the correction was not applied.
The hypothesis H2 is then also confirmed.

Fig. 9. Comfort pose used to force user body facing direction.

Since we can infer the body orientation using only the head
tracking information, if the user is misaligned from center, we
can apply the same rotation in the virtual world, forcing the
user to look in the opposite direction. After some time, the
user will eventually move their whole body to the comfort
pose, realigning it towards the system.

Fig. 10. Graph showing the fixing speed and direction for fixing the user
forwards.

The algorithm to force the user forwards differs from the
drift correction only on the speed function and the applied
rotation direction. We started using a similar derivative Gaus-
sian function to calculate the speed correction, but a sin curve
multiplied by a small constant was used instead, as it is similar
to the Gaussian derivative curve and covers a higher angle
range, as seen in Fig. 10. Consequently, the correction works
even if the user is almost 180 degrees rotated. The correction
will be applied on the virtual world avatar’s body, instead of
the head, and to the opposite direction. The full algorithm can
be seen in Algorithm 2.

SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013 59

ISSN: 2236-3297



Algorithm 2 User body orientation correction
rotation = arduino.read();
offset = Median(history);
speed = Sin(offset)× c;
avatarBodyRotation.add(speed);
history.push(rotation);

In this algorithm, c has a constant value of 0.01. It is
important to notice that, contrarily to the head direction, the
avatar body rotation is maintained in each iteration. Therefore,
we do not need to incrementally maintain the error as in the
drift correction, so we only add the speed directly to the avatar.

IV. EXPERIMENTAL EVALUATION

A. Hypotheses

We consider the use of our implementations described in
Section III to:

• enforce the alignment of the head and body of a user’s
avatar

• enforce alignment of the user body with the real environ-
ment

We then elaborate two hypotheses, as described below:
• H1. The comfortable pose algorithm provides drifting

correction as accurate as the hardware implemented mag-
netometer measurements.

• H2. The comfortable pose algorithm combined with the
hardware implemented magnetometer prototype is able
to induce the user to remain facing toward the same
direction of the real space.

Later, we propose experiments to test each hypothesis,
which we describe below.

B. Evaluating drifting and head-body misalignment

The hardware prototype of Section III-C is rigidly placed
on the top of the HMD (as seen in Figure 8). This al-
lows us to obtain three simultaneous measurements for the
head angles: HMD-based, magnetometer-based, and software-
based. We know that the HMD is susceptible to drifting and
that the hardware implemented magnetometer measurements
are always correct. Then we assume the magnetometer-based
measurements as a baseline and compare these data with the
data computed from the other measurements. This allows us
to measure how much the HMD data and the software data
differ from the correct orientation, thus testing hypothesis H1.

Instead of testing with users, we decided to stress the system
to the maximum and to make controlled movements that are
reproducible. Users would rather make random movements
that are too complex to analyse. Then we manually applied
a sequence of movements that repeatedly accelerates and
decelerates the device in various directions. The sequence we
used lasts for about 2 minutes and is given below:

1) 5 times turn alternately from right to left and vice versa
2) turn 45◦ up and apply the 5 times turn alternately from

right to left and vice versa

3) turn 45◦ down and apply the 5 times turn alternately
from right to left and vice versa

4) translate 5 times without turning following an∞ symbol
in the vertical plane

Figure 11 shows the measurements obtained from the three
different tracking methods for six repetitions of the experi-
ment. Notice that even with movements made manually, the
magnetometer based readings are almost identical, with only
barely noticeable differences in time. Also, notice that the ac-
tive user motion follows the same pattern for all three tracking
modalities. However, while the HMD data diverges from the
actual measurements of the magnetometer, the corrected data
obtained with our comfort pose function follows the actual
data much closer, ending at the same position.

From the data obtained we verify that the algorithm is an
adequate software solution for the drifting problem depicted in
Figure 2a that does not require any additional hardware, thus
proving hypothesis H1. This method is applicable in VR setups
as simple as those containing an HMD and no other tracking
sensor or infrastructure. In the case a sensor like Kinect is
used to track body motion and assuming that the user does
not move their feet, this solution guarantees that the virtual
head will always be aligned with the real head, avoiding the
problem depicted in Figure 2b.

C. Evaluating deviation from the real world

With globally correct user head orientation readings, it
is also possible to solve another spectrum of problem, like
forcing the user to always stay oriented forward, as shown in
Figure 9. This is helpful when using other interaction devices
that require the user to keep facing the same direction, like
the Microsoft Kinect, for instance.

We then proposed an experiment where users are invited to
move around a virtual environment and select objects. There
are two system setups. With the first setup the users received
the correctional rotations described above. With the second
setup the users use the system as is, without correctional
rotations. A within-subjects experiment design was used to
maximize the number of collected samples. This means that
all users tested the two setups. We swapped the order in
which the setups were presented to each user to avoid bias.
We hypothesize that the users will perform better (faster and
more accurate) in the setup with corrections as they will have
consistent real-virtual positions all the time. Althought this
might be thought as obvious, the hypothesis can only be
proven if the approach is correct, the implementation is sound,
and the imposed constraints do not make the users feel they
are not in control of the interaction.

All users were then asked to move in the environment, and
point and select all the fire estinguishers they can find. To keep
the users focused, a path indicated by arrows is drawn on the
ground in the VE. The fire estinguisher has been choosen as
it is easily spotted by their shape and color. The users are not
informed about the purpose of the experiment. Therefore, they
do not know that there is a pose correction or that we might
be interested by that question.

60 SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013

ISSN: 2236-3297



# Arduino Magnetometer HMD sensors Comfort pose function

(1)

(2)

(3)

(4)

(5)

(6)
Fig. 11. Time normalized examples of data obtained from 6 repetitions of the experiment. The first column shows the baseline magnetometer reading, the
second column shows the raw data measured from the HMD sensors, and the last one shows the data corrected with our comfort pose function. Yaw values
are angles in degrees.

The users were also invited to fill a characterization ques-
tionnaire before entering the experiment and an opinion ques-
tionnaire just after they finished the test.

1) Population: The population of the experiment consisted
of five randomly selected users. The users tested the system
twice, once with the body rotation correction and another
without it. Three users started the experiment first with the
correction and 2 users started the experiment without the
correction first to avoid bias.

The experience of the users using VR systems ranged from
no experience to experienced. There was 1 female subject and
4 male subjects. 2 Subjects had previously used the MS Kinect
controller.

2) Results and Discussion: We keep track of the yaw
component of a magnetometer attached on the body of the
subject, that indicates how much the subject rotated their body.
When the rotation correction was active, it was possible to
observe that the users keep their body directed forward.

The raw data is presented in figures 12 and 13. This data

will be further explored in the future.
During the experiment the users who performed the task

with the correction pose algorithm remained aligned to the
Kinect whereas the users who performed the task without the
algorithm showed a misalignment. Although it was possible
to perceive it in the experiments, we still need to process the
captured data in order to provide a better insight.

D. Case study: a VR simulator

With the confirmation of the main hypotheses we felt
encouraged to apply the methods presented in this paper on a
simulator developed in our lab, the AES-risk [13] [14]. This
simulator allows a user to walk in a VE that represents the
facilities of a power distribution company. There, the user
is invited to explore the environment and select any objects
they think might be a potential risk (see Figure 15). The
simulator is used to assess the risk perception competences
of the company’s employees aiming at improving safety.

This simulator is based on the architecture depicted in

SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013 61

ISSN: 2236-3297



# Arduino Head Magnetometer Body Magnetometer Avatar Rotation Speed

(1)

(2)

(3)

(4)

(5)
Fig. 12. Raw data of the sensors and avatar rotation correction speed. The first column shows the head magnetometer reading, the second column shows
the raw data measured from the body Magnetometer sensors, the third column is the avatar rotation correction speed. Yaw values are angles in degrees.

Figure 16. The user interacts with the system using three
different devices: the HMD, the Kinect and the gamepad. The
system is based on the Unreal Development Kit (UDK) game
engine. The integration of UDK with Microsoft Kinect is made
through the OpenNI Unreal Implementation (NIUI). The use
of Kinect is strategic to track the user’s limbs and apply their
motion to the user’s avatar.

During the system development many users seemed to have
enjoyed the experience of having control of avatar limbs using
body motion. This actually increases the feeling of presence.
Besides, we also use a standard gamepad, which is readily
supported by UDK and has a very accurate response to trigger
actions. The gamepad was used to provide constant speed
locomotion while the push of any of the gamepad buttons

select or deselect items. The HMD maps the head movement
to quaternion rotations. We use a dll bound to UDK to pass
this information into the engine. We handle the quaternion data
inside UDK, converting them to rotators for compatibility.

One important element in the design of VR simulators is to
ensure that the user task is not significantly influenced by the
user interface itself. We have then made experiments to assess
different interaction techniques with more than 40 users [15].
When comparing them, however, we noticed that drifting and
user’s body misalignments were injecting too much error in the
measurements. This happened because each user eventually
assumed very different poses to complete the same task. As
some poses were tiresome, some of them presented very
low performances comparing with the average, resulting in

62 SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013

ISSN: 2236-3297



# Arduino Head Magnetometer Body Magnetometer

(1)

(2)

(3)

(4)

(5)
Fig. 13. Raw data of the sensors when there is no correction. The first column shows the head magnetometer reading, the second column shows the raw
data measured from the body Magnetometer sensors. Yaw values are angles in degrees.

less statistically significant data. Only after the application of
the algorithms and methods described here we could obtain
consistent data.

V. DISCUSSION AND CONCLUSIONS

In this paper we presented a unified software solution for
two common tracking problems in VR systems. Both problems
exist whenever a full tracking infrastructure is not available,
which is often the case in current systems based on the Kinect
device and inertial sensors. Even if the Kinect can be barely
used as a position tracker, it was not conceived for this task
and is not sufficiently precise for most VE applications. Our
solution for this problem is based on the assumption that
users are more comfortable when looking forward and, thus,

privilege this pose. Our main contribution is in a comfort pose
function that decides what is forward based only on inertial
sensors mounted on the head. Thus, our solution remains
independent of Kinect or any other tracking device.

We demonstrated that the function can be applied to correct
the drifting caused by HMD sensors without additional hard-
ware. We used a magnetometer in an experiment to evaluate
the function performance. In our experiments we noticed that
the magnetometer may be influenced by magnetic interference
from the HMD, which we solved by placing the magnetometer
away from metallic parts. We focused our attention in the
yaw movement, which is the one the accelerometers have
more difficulty in detecting accurately. We used yaw and pitch
movements but avoided roll. We did so because roll is much

SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013 63

ISSN: 2236-3297



(a) (b)

Fig. 14. Two screenshots of our VR simulator for risk perception analysis. Notice that the user can see her/his own body, which increases presence.

Fig. 15. Overview of the VR simulator architecture. User can interact with
three devices simultaneously. The dll binds are a requirement of UDK engine
to include hardware devices that it does not support by default.

affected by sensor axes misalignments, i.e., the axes of our
hardware prototype should be perfectly aligned with the HMD
axes to avoid perturbations.

We presented samples of data collected in the experiments.
While our first idea was to repeat the experiment at least
30 times and apply a more statistically valid analysis, we
dropped this idea because the different hardware provide
different latencies and sensitivity that are not comparable.
Notice, however, that the monotonous data for the 6 samples
provided in Figure 11 indicate that they are reliable.

We also demonstrated that the comfort pose function can be
used to gently force a user to keep his/her body aligned with a
motion sensor fixed in the real world. While this is very useful,
as we have observed with our risk perception VR simulator, we
acknowledge that different applications may stress the tracking
approach differently and should be further evaluated.

We then suggest as a future work that formal comparative
experiments with a larger number of users focus on this issue.

A second magnetometer placed on the user trunk or waist,
should be necessary to quantitatively compare subject groups
with the correction enabled and disabled. We also identify
research ground for doing both correction techniques, user
body and drift, using incremental sensors while not fixing the
user feet. Finally, another path to be followed in future works
is to make longer experimental sessions as it is common that
inertial sensors present cumulative errors that highly increase
over time. We believe that our method’s results will be even
more interesting in longer sessions.

ACKNOWLEDGMENT

We would like to thank Martin Reus form valuable help
in the hardware implementation, as well as all the users who
kindly tested the system. We also thank AES Sul for funding
this project, and CNPq-Brazil for the financial support through
projects 311547/2011-7, 485820/2012-9, 302679/2009-0 and
305071/2012-2.

REFERENCES

[1] F. Kellner, B. Bolte, G. Bruder, U. Rautenberg, F. Steinicke, M. Lappe,
and R. Koch, “Geometric calibration of head-mounted displays and its
effects on distance estimation,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 18, no. 4, pp. 589–596, April 2012.

[2] J. J. H. Carlo Camporesi, Marcelo Kalmann, “A framework for immer-
sive vr and full-body avatar interaction,” in Virtual Reality Conference
(VR), 2013 IEEE, March, 2013, pp. –.

[3] S.-M. Rhee, R. Ziegler, J. Park, M. Naef, M. Gross, and M.-H.
Kim, “Low-cost telepresence for collaborative virtual environments,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 13,
no. 1, pp. 156–166, Jan.-Feb. 2007.

[4] B. Lange, A. Rizzo, C.-Y. Chang, E. Suma, and M. Bolas, “Markerless
full body tracking: Depth-sensing technology within virtual environ-
ments,” in Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC) 2011, Orlando, FL, 2011.

[5] T. Motta and L. Nedel, “Deviceless gestural interaction for public
displays,” in Proceedings of the 2013 XV Symposium on Virtual Reality,
ser. SVR ’13. Washington, DC, USA: IEEE Computer Society, 2013.

[6] S. Satyavolu, G. Bruder, P. Willemsen, and F. Steinicke, “Analysis of ir-
based virtual reality tracking using multiple kinects,” in Virtual Reality
Short Papers and Posters (VRW), 2012 IEEE, March 2012, pp. 149–150.

[7] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration
for a video-based augmented reality conferencing system,” in
Proceedings of the 2nd IEEE and ACM International Workshop
on Augmented Reality, ser. IWAR ’99. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 85–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=857202.858134

64 SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013

ISSN: 2236-3297



[8] S. You, U. Neumann, and R. Azuma, “Hybrid inertial and vision tracking
for augmented reality registration,” Virtual Reality Conference, IEEE,
vol. 0, p. 260, 1999.

[9] J. Borenstein, H. R. Everett, and L. Feng, Where am
I? Sensors and Methods for Autonomous Mobile Robot
Positioning. University of Michigan, 1996. [Online]. Available:
http://books.google.com.br/books?id=QYBD7vHWUgIC

[10] M. Akula, S. Dong, V. R. Kamat, L. Ojeda, A. Borrell, and J. Borenstein,
“Integration of infrastructure based positioning systems and inertial navi-
gation for ubiquitous context-aware engineering applications,” Advanced
Engineering Informatics, vol. 25, no. 4, pp. 640–655, 2011.

[11] S.-h. Won, W. Melek, and F. Golnaraghi, “A fastened bolt tracking
system for a hand-held tool using an inertial measurement unit and
a triaxial magnetometer,” in Industrial Electronics, 2009. IECON ’09.
35th Annual Conference of IEEE, Nov., pp. 2703–2708.

[12] P. R. . Electronics. (2012) Pololu minimu-9 + arduino ahrs
(attitude and heading reference system). [Online]. Available:
https://github.com/pololu/MinIMU-9-Arduino-AHRS

[13] V. A. Jorge, A. Hoppe, A. Maciel, L. Nedel, G. Reinaldo, F. Faria,
J. Oliveira, and P. Montani, “Development of an immersive vr simulator
using the unreal development kit,” in Proceedings of the 2012 XV
Symposium on Virtual Reality, ser. SVR ’12. Brazilian Computing
Society, 2012.

[14] V. Jorge, L. Nedel, A. Maciel, J. Oliveira, and F. Faria, “Aes-risk: An
environment for simulation of risk perception,” in Virtual Reality Con-
ference (VR), 2013 IEEE, ser. Research Demos, March, 2013. [Online].
Available: http://ieeevr.org/2013/program/activities/researchdemos

[15] V. Jorge, A. Maciel, L. Nedel, J. Oliveira, and F. Faria, “What is the
effect of interface complexity on risk perception tasks?” in Virtual
Reality Short Papers and Posters (VRW), 2013 IEEE, ser. Posters,
March, 2013. [Online]. Available: http://ieeevr.org/2013/posters

SBC Journal on 3D Interactive Systems, volume 4, number 2, 2013 65

ISSN: 2236-3297


