26

SBC Journal on Interactive Systems, volume 5, number 1, 2014

A Heuristic Approach to Render Ray Tracing Effects
in Real Time for First-Person Games

Paulo Marcos Figueiredo de Andrade

Esteban Walter Gonzalez Clua
Instituto de Computagdo
Universidade Federal Fluminense (UFF)
Niteroi, Brazil
paulomfa@gmail.com, esteban@jic.uff.br

Thales Luiz Rodrigues Sabino

Tecgraf
Pontificia Universidade Catolica do Rio de Janeiro
Rio de Janeiro, Brazil
tluisrs@gmail.com

Abstract—Realistic computer graphics effects as mirror
reflections, transparency, caustics and detailed shadows are hard
to simulate using real time raster rendering since they require
global illumination approaches. One option is to ray trace these
effects using real time hybrid rendering, where ray tracing and
raster rendering are used together to generate the best visual
experience. Unfortunately, the ray tracing stage of a hybrid
renderer is very demanding, making it hard to maintain real time
frame rates in virtual environments with many elements to be ray
traced. This work presents a heuristic to select the best subset of
elements to ray trace in a real time hybrid renderer, in order to
improve the visual experience offered by an equivalent raster
render, and still maintain a real time experience. The selection
process considers rendering time constraints, spatial information
of the environment, past elements selected for ray tracing and
current information about the candidate elements.

Keywords—Hybrid Rendering;
Deferred Shading;

Real Time Ray Tracing;

L INTRODUCTION

Real time hybrid rendering is a recent research topic [1], [2],
[3], [4], with many studies presenting visual improvements upon
raster renderers. These visual improvements usually deals with
raster rendering limitations, such as detailed shadows,
transparency, reflections, among others. Unfortunately, in many
studies, real time or interactive frame rates are only possible in
very restricted conditions. These conditions are not acceptable
for games, where a steady frame rate and the variety and
sophistication of the virtual environment are crucial for the user
experience.

In this paper, we present a heuristic that chooses, in real time,
the best elements, in a virtual environment, to render using ray
tracing. The selection is based upon four conditions: the
processing power available to maintain acceptable real time
frame rates, the current position and recent movement of the
camera inside de virtual environment, the characteristics of each
element and the previous selection of elements to be rendered
using ray tracing.

Fabio Siqueira D'Alessandri Forti

Design
Escola Superior de Propaganda e Marketing (ESPM)
Rio de Janeiro, Brazil
fabio_forti@yahoo.com.br

In order to validate the heuristic, we test in indoor and
outdoor virtual environments. For each virtual environment, the
camera moves upon fixed paths, simulating the movement of
first-person games. For each path, a group of elements is a
candidate to be rendered using ray tracing. In order to test the
heuristic, not all candidate elements should be ray traced, in
order to maintain real time frame rates. Considering each path,
in order to test the heuristic, some elements are required to be
chosen. It is also required from the heuristic that elements do not
change constantly form raster to ray trace rendering. In the work,
an element can be part of an object or the full object, like a
reflexive area of a mirror or an object made of glass.

The development of an efficient heuristic is challenging due
to the structural diversity of game levels (virtual environments)
in first person shooters and the exploratory liberty of the player
inside the virtual environment. The two main obstacles to
develop a good heuristic are visual consistency (one element
should not change frequently from raster to ray tracing
rendering), and contribution to the visual experience when the
element is in the camera’s field of view. The challenge can be
defined in a simple question: when only one of two elements can
be ray traced, which one best contribute to the visual experience.

This work employs a real time heuristic hybrid renderer
called PHRT. PHRT is an improved version of the hybrid
renderer presented in [4] and was developed to test heuristics for
hybrid rendering. The first heuristic implemented was the
heuristic proposed [5], but not tested. With PHRTs first version,
early heuristic results were presented in [6]. In [6], the test
environment was too generic and with polygon count too high
for good real time results. In order to test the heuristic
considering first person games, we created two virtual
environments with low polygon count. For each environment,
three camera paths inside these environments simulate the
forward movement of a player in a first person shooter game.

This paper is organized as follows: section II briefly discuss
related works; section I1I presents PHRT, the GPU based hybrid
renderer employed in the tests. Section IV introduces the

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 5, number 1, 2014

27

heuristic and section V details its mechanics. Section VI
presents tests and results, and section VII details the conclusions
and future works.

II. RELATED WORKS

This work is based on recent developments in real time
hybrid rendering, selective rendering and heuristic based hybrid
rendering.

A. Real Time Ray Tracing

The advance of desktop computers with multi-core
processors and the massive parallel capabilities of current
Graphic Processing Units (GPUs) encouraged the research of
interactive and even real time ray tracing renderers (RTRT). One
of the first relevant studies of RTRT is the OpenRT Project [7].
In 2004, the project succeeded in porting the game Quake 3 to
OpenRT, achieving an average frame rate of 20 frames per
second, in a cluster of 20 state of the art desktops, at that time.
Another important project is Brigade [8], a path tracer for real
time games, developed by Jakko Bikker.

With the advances in general computing using GPU
(GPGPU), hybrid ray tracing renderers [1], [8], [9], [10],
combining the use of CPUs and GPUs were proposed.
Unfortunately, the demanding task of transferring data between
CPU and GPU became a bottleneck to this approach.

The current development of RTRT fully at the GPU level
[11], [12], is promising, however, experiments demonstrate that
even using current parallel architectures, RTRT renderers
cannot compete in speed and overall visual quality with state of
the art real time raster renderers. Real time raster renderers
employs strategies like cascaded light propagation volumes for
real time indirect lighting [13] and rectilinear texture warping
for fast adaptive shadow maps [14], to name a few, in order to
avoid global illumination approaches, and still obtain visual

quality.
B. Hybrid Rendering

Hybrid rendering proposes the use of different rendering
strategies on order to offers an improved visual experience.
Hybrid rendering is a common approach in offline renderers like
Renderman [15] but just became popular as a strategy to
improve the visual experience of real time raster renderers [2],
[16].

C. Selective Rendering

Another research topic related to this work is selective
rendering [17], [18], [19], [20]. Selective rendering considers
psychophysical investigations on how the human visual
perception works, in order to determine whether a detailed
feature in the image is visible to the eye. Based on these
observations, it is possible to avoid unnecessary computations
involved in the generation of some characteristics of the final
image.

Visual attention in real time applications [16], [21], [22],
[23] is also an influence in this work. According to the
experience inside the virtual environment, some details will not
be perceived. Factors like speed of the movement inside the
environment, familiarity with the environment (alien city, as
opposed to a modern city), psychological experiences

ISSN: 2236-3297

(encounter with powerful enemies) and motivations (search of
an object), can affect the perception of details.

D. Heuristic Hybrid Rendering

Heuristic hybrid rendering proposes the use of heuristics to
improve the overall visual experience by choosing the best
render method for each task. One example is the approach
proposed by Ammann [20] to render dynamic heightfields using
a threshold based on terrain screen coverage to choose between
mesh rendering and ray tracing.

III. PHRT - THE GPU BASED HYBRID RENDERING

PHRT can render images using both raster and ray tracing
methods. PHRT employs OpenGL for raster rendering and
NVidia OptiX™ [24], [25] for ray tracing. PHRT can render
scenes using OpenGL, OptiX™, or a combination of both, when
using the heuristic decisions.

PHRT reads a 3D mesh file containing information about the
objects, materials, lights, textures, cameras and animation of the
virtual environment and an XML file containing parameters for
specific rendering tests. We use two files to allow different tests
without changing the virtual environment file. The heuristic,
detailed in section 1V, uses information from both files and real
time information generated during the virtual exploration of the
environment. PHRT is capable of following predefined virtual
paths inside the environment. PHRT collects information related
to the rendering process during for every frame rendered.
Information as average frame rate and elements selected for ray
tracing is stored for later analysis and heuristic fine-tuning,.

As most of the recent real time renderers, PHRT employs a
technique called deferred shading [26], [27]. The basic idea of
deferred shading is to compute all the geometry visibility tests
before any light computation (shading) happens, using a raster
process. By separating the geometry rendering from the light
processing and by using visibility tests, the shading process is
done only for specific polygons, avoiding multiple light
computations in unnecessary fragments, typically coming from
elements outside the visible space, a problem that must be
treated in forward rendering approaches. The visible geometry
determination process in the deferred shading pipeline is
equivalent to the primary ray hit phase of a ray tracer, where eye
rays projected from a virtual point of view are launched in the
direction of the scene, crossing a view plane defined by a grid of
pixels that represent the final image. In ray trace rendering, when
a ray hit the surface of an object, information about the object,
like its surface and geometry, is acquired. This information is
used to define the final color of every pixel in the grid. Since the
visibility test made by the GPU, in raster-based rendering, is
very fast, and the result is the same information, the visibility
test substitutes the first phase of the ray trace rendering.

During the first raster render pass, where the visibility tests
are computed, scene Z-depth, surface normals and texture
coordinates are also calculated. This set of related information
about the image generation is called G-Buffer data and are stored
in memory buffers denominated Multiple Render Targets
(MRTs). The G-Buffer data are used in subsequent render passes
of a raster renderer. The same happens in PHRT.

28

SBC Journal on Interactive Systems, volume 5, number 1, 2014

With the information corresponding to the primary ray
intersection and the corresponding geometry of the scene,
particular rays for shadows, direct and indirect light, refractions,
and reflections are calculated and added to the already created
raster data in the MRTs.

This deferred rendering method, in a hybrid renderer, allows
the selection of which visual effects the ray tracing process
should generate and which effects are the responsibility of the
rasterization process.

The real time hybrid render pipeline has four main rendering
stages: deferred rendering and primary ray resolution, shadows,
reflections and refractions, and the final image composition.
Figure 1 illustrates the rendering pipeline.

‘ Start ’

4

Initialization

Textures and
Environment
Map

Scene File

Shaders Load Data Files Parameters
Initialize
Meshes, Lights
and Camera
Initialize Virtual
Initialize OptiX [« Deferred Environm
Renderer ent
1
Deferred Rendering and Primary Ray Resolution
vy j
¥ Clear G-Buffer > Geometric Pass > Light Pass
I
Ray Traced -
Compositing [« Reflections and Heuristic —
. Renderer
Refractions
No Yes
Ray Traced
R Fnd Shadows

Fig. 1. Real Time Heuristic Hybrid Rendering Pipeline.

A. Deferred Rendering and Primary Ray Resolution

During this stage, after all the data is stored in the GPU
memory, a deferred shading pass is calculated in order to fill the
G-Buffer. The G-Buffer now has the information necessary for
the visible geometry determination and the other render stages.

B. Ray Traced Shadows

With the information stored in the G-Buffer, OptiX™ is used
to calculate shadow rays for every light source of the scene. The
ray tracing shadow stage can be specifically ignored for some
elements, according to the heuristic, environment information
and external parameters.

C. Ray Traced Reflections and Refractions

The reflections and refractions also use the information
stored in the G-Buffer. Similar to the shadow stage, the heuristic

decisions, environment information and external parameters are
used to define which elements should have reflections and/or
refractions in the final image.

D. Compositing

The compositing stage is the last stage of the pipeline, where
all the information produced by the other steps are combined in
order to produce the final image for the frame. Figure 2 shows
the four stages of the hybrid renderer. Figure 2 (a) is the deferred
shading result. Figure 2 (b) shows the ray traced shadows.
Figure 2 (c) is the addition of reflections and refractions, and
Figure 2 (d) is the final compositing.

(b) Ray Traced Shadows.

(a) Deferred Rendering.

ANTT

(d) Final mpositng.

(c) Reflections and Refractions.

Fig. 2. (a) Deferred Rendering Result. (b) Ray Traced Shadows. (¢) Addition
of Reflections and Refractions. (d) Final Compositing.

IV. HEURISTIC DEFINITION

Considering only the elements that should be involved in the
ray tracing phase, the heuristic can be defined as “for a given set
of X elements, select the Y most relevant elements that can be
ray traced given a time limit 7”. X is the set of elements that are
relevant for the image generation at a given time and 7 is the
time available for the ray tracing phase. Both parameters X and
T can change for every frame. Depending on the camera position
in the virtual environment, some elements will not be considered
for rendering since these elements are out of the cameras field
of view. In addition, some elements cannot be rendered due to
its cost.

The heuristic definition presents the following challenges:

A. Time Constraints

Since one of the main requisites of the hybrid renderer is a
steady frame rate, one of the main constraints for the ray tracing
phase is the time available after the raster phase. Even to produce
the simplest light effect, ray tracing is a demanding task and can
take a long time to finish. One of the reasons of its high cost is
the recursive nature of the ray tracing algorithm. In order to
produce global illumination effects, light rays must bounce from
surface to surface, in order to produce indirect illumination and
other light effects. The number of light rays bounces and the

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 5, number 1, 2014

29

sequential nature of the bounces can strongly affect the
rendering pipeline and the global performance. A common way
to control render time, in offline ray trace rendering, is to
establish a limit in both the number of ray bounces and the
number of secondary rays created in every bounce. Depending
on the surface characteristics, a ray collision can produce more
than one new ray, greatly affecting the performance.

The heuristic must choose wisely which elements must be
ray traced in a given time, in order to maintain the time
constraints of the ray tracing stage. The time spent in the ray
tracing stage is affected by the type of light effects,
characteristics of the surfaces, number of lights in the virtual
environment and relative size of the visible portion of the
elements to be ray traced, among others. The render of all effects
can surpass the time available for the stage.

B. Element Selection

The reason behind the idea of choosing a subset of elements
Y that most contribute to the visual experience in a first person
game came from the observation on how the vision works when
we are in movement. When images change constantly, as when
we drive a car or walk in the street, the mind ignores many visual
elements. This is the reason we have orientation signs in the
streets. Signs call attention to inform about something relevant.
In a first person shooter game or a driving simulator, the faster
the experience is, the less is the perception of details in the
virtual environment.

Considering the way the human vision works, it is
reasonable to assume that objects near the center of the field of
view call more attention than objects far from it. The same can
be said for objects near the observer when compared to objects
afar. Another observation is that according to environment
features and conditions (weather, indoor, underwater, for
example), some objects cannot be visually improved by ray
tracing effects.

Psychological and motivation aspects can also affect visual
perception. For example, if the user is looking for a gold coin in
the environment, the user will be more susceptible to pay
attention to golden objects.

V. HEURISTIC MECHANICS

The heuristic employs a directed graph as the support data
structure to choose the elements for the ray tracing phase. The
heuristic has four phases, two phases that happen before the
rendering process, called oft-line phases, one phase that happens
during the rendering process and another phase that happens
when all the elements have already been selected for rendering.

A. Pre-production Phase

This is an off-line phase, where an environment or level
designer identifies the elements in the virtual environment that
are the candidates for ray tracing. The same way an environment
designer chooses shaders for a given element, in the pre-
production phase, the environment designer chooses which
elements must be ray traced and what ray tracing effects should
be used. For the tests, the ray tracing effects are shadows,
reflections, refractions and transparency. The designer also
defines a priority index K for each candidate. Priority index K is
used to identify how important, when compared to the other

ISSN: 2236-3297

elements, this element is, according to the designer point of
view. Priority index K is a designer tool to guarantee that an
element will always be chosen for ray tracing, or is more
relevant than others.

B. Selection Graph Construction Phase

This second phase, also off-line, is used to construct the
weighted selection graph employed by the heuristic to select the
best elements for ray tracing. Every node in the selection graph
correspond to an element. In addition, every node has an
estimated processing cost C and a relevance R. Cost C is
estimated by taking into account the element visibility /" and its
ray tracing cost Q. Equation (1) presents visibility V. 4 is the
area of the element in the view plane of the camera. P is the
normalized distance between the center of the element and the
center of the view plane, where the value of 1 means that the
element is in the view plane centre, and a value of 0 means that
the element is outside the view plane. D is the distance between
the element and the view plane in the virtual environment. The
higher is the distance from the view plane the smaller is visibility
V, making big and distant elements less “visible” than near
elements with the same area 4 in the view plane. Equation (2)
presents the element cost C.

_(4*P) ey
V=5
C=V*0 (@)

While cost C is a way to measure how much work is
necessary to render an element, relevance R represents the
element contribution to the visual experience. In Equation (3),
selection S is a binary value where the value 1 means that the
object was previously selected for ray tracing and the value 0
means it was not. Selection weight / is a constant that defines
how important is choosing a previously selected element for ray
tracing.

R=(S*I+V)*K 3)

The selection graph has two kinds of edges. The first kind is
a linked list where one node connects to the other node which
cost C is smaller than its own cost, but bigger than the cost C of
all the other nodes. the time spent in the ray tracing stage the
time spent in the ray tracing stage The second kind connects
each node to all the other nodes where relevance R is bigger than
its own relevance.

Table I presents all the parameters mentioned before and
inform if the parameter can change its values for every frame or
has a fixed value.

TABLE 1. EQUATION PARAMETERS
Param. Definition Constant | Variable

K [Element relevance among the others X
V__ [Element visibility X
Q [Ray tracing cost X
C |Processing cost X
A [Element area in the view plane X
P |Distance from the center of the view plane X
D |Distance from the view plane (camera) X
R [Relevancy X
S [Previously selected or not X
1 |Weight of past selection X

30

SBC Journal on Interactive Systems, volume 5, number 1, 2014

At the end of this phase, the heuristic has a directed graph
ready for use during the rendering phase.

C. Node Selection Phase

The third phase happens during the rendering phase, when
the GPU receives the selection graph. The heuristic chooses the
N most relevant R nodes whose cost C allows the nodes to be
rendered and still maintain the expected frame rate. N is the
number of the stream processors of the GPU. If there is still time
to render other elements, the heuristic chooses the most relevant
nodes that have cost C small enough to be rendered in the
available time.

D. Graph Rebuild Phase

When there is no more time available to choose another
node, the selection graph is reconstructed and updated for the
next rendering phase. New cost C and relevance R are
calculated, and the node edges are rebuilt. When the new graph
is created, the renderer clears the G-Buffer and renders the new
frame.

VI. TESTS AND RESULTS

For the indoor tests, we use the sponza virtual environment
with some primitives created in Autodesk 3ds Max 2013. Just
the primitives are candidates for ray tracing. Reflection and
transparency are the focus of the sponza tests. For the outdoor
tests, we created the atrium virtual environment with trees and
curved surfaces of different sizes. In atrium, the focus is detailed
shadows. The candidate elements to ray trace in sponza are the
primitives. In atrium, the candidate elements are the trees, the
statues and the water in the pool.

Three camera paths were created for each environment.
These camera paths simulate the movement of a first person
game. The camera animation resulted from following the paths
helped verify if the heuristic chooses the right elements to render
during the movement inside the virtual environment.

Figure 3 and Figure 4 are, respectively, perspective views of
sponza and atrium virtual environments. In Figure 3, only the
primitives are ray traced. In Figure 4, the entire environment is
rendered using ray tracing.

[

Fig. 3. Perspective View of the Sponza Virtual Environment.

Fig. 4. Perspective View of the Atrium Virtual Environment.

For the tests, three camera paths for each environment were
rendered in OpenGL (raster), ray tracing and using the heuristic
hybrid renderer. We measure the average time to render each
frame in milliseconds. Each camera animation runs for 1000
frames.

All the tests were performed in an Asus GJ73JW notebook
with 16 GBytes of RAM, an Intel Core 17 Q 740 1.73GHz CPU
and an NVIDIA GeForce GTX460M GPU running Windows 8.
The screen resolution for the tests is 640x480 pixels.

To validate the heuristic, the tests have three pre-requisites:

e The average frame rendered by the hybrid renderer must
be around 150 milliseconds.

e The most relevant elements must be rendered in ray
tracing.

e Elements rendered in ray tracing can only be rendered
again in raster if it does not affect the visual continuity.

Figure 5, Figure 6 and Figure 7 are from the sponza tests and
represent the raster rendering, the ray trace rendering and the
hybrid rendering, respectively.

\ \ ST

Fig. 5. Raster Rendering. Sponza.

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 5, number 1, 2014 31

Fig. 6. Ray Trace Rendering. Sponza. Fig. 8. Ray Trace Rendering. Atrium.

In the sponza tests, no ray traced shadows are visible because
the surface to receive the shadows must participate in the ray
tracing phase of the hybrid renderer, demanding that all the
scene floor became a ray tracing surface. This was a limitation
of PHRT early versions. PHRT Current version does not have
this limitation, but we decided to maintain the sponza virtual
environment in the tests to verify PHRTs performance
improvements.

In Figure 7, the heuristic decided not to ray trace the green

Fig. 9. Heuristic Hybrid Rendering. Atrium.

TABLE IL RENDER TIMES FOR THE ANIMATION TESTS
(IN MILLISECONDS)
Sponza Virtual Environment
Path Raster Rendering| Hybrid Rendering | Ray Tracing Rend.
1 15,2 102,2 361,7
2 22,1 117,3 3985
3 25,2 139,7 594,1
Atrium Virtual Envir t
Path Raster Rendering| Hybrid Rendering | Ray Tracing Rend.
1 26,7 1654 3404
Fig. 7. Heuristic Hybrid Rendering. Sponza. P 218 1256 5432
3 30,6 2079 8453

Figure 8 and Figure 9 are, respectively, raster and hybrid

renderings of the atrium tests.
In all the tests, the heuristic did good choices in the selection

of the elements to ray trace. During the tests, no element
repeatedly changed from raster to ray tracing and vice-versa.

Table II summarizes the results for the three animation tests.
The first column identifies the path used in the animation test.
The second column is the average time to render a frame, for
that path. The third column is the average time to render using We also did some fine-tuning in the heuristic in order to deal
the heuristic, and the fourth column is the average time to render ~ With huge ray tracing elements. When the area to ray trace
all the candidate elements using in ray tracing. All the valuesare ~ corresponds to more than 40% of the frame size, the heuristic
in milliseconds. ignores the ray tracing phase.

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 5, number 1, 2014

Figure 10 represents a scene where more than 60% of the
image was rendered using ray tracing. This image, with huge
transparent and reflexive areas, took more than 10 times the
average time to render than the heuristic hybrid render tests. This
image was created using the hybrid renderer, with the heuristic
selection turned off. Without the heuristic, the floor and some
walls were selected for ray tracing, making the scene impossible
to render in real time.

Fig. 10. Hybrid Rendering. 60% of the Scene is Ray Traced.

VII. CONCLUSIONS AND FUTURE WORKS

We have described a heuristic to select elements to be ray
traced in a hybrid rendering pipeline. The selected elements are
the ones that better contribute to the visual experience,
considering constraints and the assumption that objects near the
observed, and near the center of the field of view are more
relevant, when playing a first person shooter. We also present a
strategy to create and maintain, in real time, a graph with the
best candidates to be ray traced. All the tests and scenarios were
built to run at a minimum of 20 frames per second in the target
computer.

The tests indicate that the ray tracing phase is still too
demanding to deal with very complex environments with many
elements to ray trace, but we believe that the ray tracing phase
will become less and less demanding as the GPU architecture
evolves. We informally tested the renderer in newest machines
to guarantee that the hybrid renderer could run for more than 20
frames per second in the selected virtual environments. It is
worth mention that we noticed impressive speed gains when
using recent NVidia’s GPUs.

We are still testing the heuristic and developing more virtual
environments that resemble indoor and outdoor game
environments. We plan to run stress tests with these new virtual
environments. In order to measure both the performance and
degradation level of the selection graph reconstruction, the
heuristic hybrid renderer will run for very long and random
paths, in the new environments. New variations of the basic
heuristic are also in development and will be compared to the
original heuristic.

Considering the hybrid heuristic, we plan to implement an
option to generate low quality versions of reflections as another
option to the hybrid renderer, instead of discarding the render of
reflections that are too demanding to render given the time
constraints.

Finally, we plan to test PHRTs new version in a state of the
art hardware in order to verify if the gap between the raster and
ray tracing renderer is decreases or not, when compared to order
GPUs.

REFERENCES

[1] S. Beck, A. Bernstein, D. Danch, and B. Frohlich, “CPU-GPU
Hybrid Real Time Ray Tracing Framework,” Eurographics 2005,
vol. 0, no. 0, pp. 1-8, 2005.

[2] S. Hertel, K. Hormann, and R. Westermann, “A hybrid GPU
rendering pipeline for alias-free hard shadows,” Eurographics 2009
Areas Pap., no. April, pp. 59-66, 2009.

[3] J. Cabeleira, “Combining Rasterization and Ray Tracing
Techniques to Approximate Global Illumination in Real-Time,”
Direct. 2010.

[4] T. Sabino, P. Andrade, E. Gonzales Clua, A. Montenegro, and P.
Pagliosa, “A Hybrid GPU Rasterized and Ray Traced Rendering
Pipeline for Real Time Rendering of Per Pixel Effects,” in in
Entertainment Computing - ICEC 2012 SE - 25, vol. 7522, M.
Herrlich, R. Malaka, and M. Masuch, Eds. Springer Berlin
Heidelberg, 2012, pp. 292-305.

[5] P. M. F. Andrade, T. L. R. Sabino, E. W. G. Clua, and P. A.
Pagliosa, “A Heuristic to Selectively Ray Trace Light Effects in
Real Time,” in X7 Simpdsio Brasileiro de Jogos e Entretenimento
Digital (SBGames 2012),2012, pp. 1-4.

[6] P. Andrade, T. Sabino, and E. Clua, “Towards a Heuristic based
Real Time Hybrid Rendering - A Strategy to Improve Real Time
Rendering Quality using Heuristics and Ray Tracing,” in
Proceedings of the 9th International Conference on Computer
Vision Theory and Applications, 2014, pp. 12-21.

[7] A. Dietrich, I. Wald, and P. Slusallek, “The OpenRT Application
Programming Interface - Towards A Common API for Interactive
Ray Tracing,” Proceeding 2003 OpenSG Symp., pp. 23-31, 2003.

[8] J. Bikker and J. van Schijndel, “The Brigade Renderer: A Path
Tracer for Real-Time Games,” Int. J. Comput. Games Technol., vol.
2013, pp. 1-14, 2013.

[9] C.-C. Chen and D. S.-M. Liu, “Use of hardware Z-buffered
rasterization to accelerate ray tracing,” in Proceedings of the 2007
ACM symposium on Applied computing SAC 07, 2007, pp. 1046—
1050.

[10] A. Pajot, L. Barthe, M. Paulin, and P. Poulin, “Combinatorial
Bidirectional Path-Tracing for Efficient Hybrid CPU/GPU
Rendering,” Comput. Graph. Forum, vol. 30, no. 2, pp. 315-324,
2011.

[11] A. Garcia, F. Avila, S. Murguia, and L. Reyes, “Interactive Ray
Tracing Using the Compute Shader in DirectX11,” in in GPU Pro
3, W. Engel, Ed. A K Peters/CRC Press, 2012, pp. 353-376.

ISSN: 2236-3297

SBC Journal on Interactive Systems, volume 5, number 1, 2014

33

[12]

[13]

[14]

[13]

[1e]

[17]

[18]

[19]

S. Parker, “Interactive ray tracing with the NVIDIA®OptiX™
engine.” SIGGRAPH, 2009.

A. Kaplanyan and C. Dachsbacher, “Cascaded light propagation
volumes for real-time indirect illumination,” in Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games - 13D 10,2010, vol. 1, no. 212, p. 99.

P. Rosen, “Rectilinear texture warping for fast adaptive shadow
mapping,” in Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games - I3D 12,2012, vol. 512, no.
row 1, p. 151.

P. Christensen, “Ray Tracing for the Movie ‘Car’,” in 2006 I[EEE
Symposium on Interactive Ray Tracing, 2006, vol. 138, no. 1, pp.
ix—ix.

C. Lauterbach, “Fast Hard and Soft Shadow Generation on
Complex Models using Selective Ray Tracing,” Lloydia Cincinnati,
no. January, 2009.

K. Cater, A. Chalmers, and G. Ward, “Detail to attention: exploiting
visual tasks for selective rendering,” in EGRW 03 Proceedings of
the 14th Eurographics Workshop on Rendering Techniques, 2003,
pp. 270-280.

A. Chalmers, K. Debattista, G. Mastoropoulou, and L. Paulo,
“There-Reality : Selective Rendering in High Fidelity Virtual
Environments,” /nt. J., vol. 6, no. 1, pp. 1-10, 2007.

K. Cater, A. Chalmers, and P. Ledda, “Selective quality rendering
by exploiting human inattentional blindness: looking but not
seeing,” in Human Factors, 2002, pp. 17-24.

ISSN: 2236-3297

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. S. Green and D. Bavelier, “Action video game modifies visual
selective attention.,” Nature Publishing Group, 2003.

M. S. El-Nasr and S. Yan, “Visual attention in 3D video games,”
Proc. 2006 Symp. Eye Track. Res. Appl. ETRA 06, vol. 31, no. 1980,
p. 42, 2006.

V. Sundstedt, K. Debattista, P. Longhurst, A. Chalmers, and T.
Troscianko, “Visual attention for efficient high-fidelity graphics,”
Proc. 21st spring Conf. Comput. Graph. SCCG 05, p. 169, 2005.

K. F. Cater, “Detail to Attention : Exploiting Limits of the Human
Visual System for Selective Rendering,” University of Bristol,
2004.

S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D.
Luebke, D. Mcallister, and M. Stich, “OptiX : A General Purpose
Ray Tracing Engine,” ACM Trans. Graph. TOG, vol. 29, no. 4, pp.
1-13,2010.

H. Ludvigsen and A. C. Elster, “Real-Time Ray Tracing Using
Nvidia OptiX,” Science (80-.)., pp. 1-4, 2010.

M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The
Triangle Processor and Normal Vector Shader: A VLSI System for
High Performance Graphics,” ACM SIGGRAPH Proc., vol. 22, no.
4, pp. 21-30, 1988.

T. Saito and T. Takahashi, “Comprehensible rendering of 3-D
shapes,” ACM SIGGRAPH Comput. Graph., vol. 24, no. 4, pp. 197—
206, 1990.

