
Multimedia Presentation Integrating Media with
Virtual 3D Realistic Environment Produced in Real

Time with High Performance Processing
Arthur Pedro de Godoy 1, Caio César Viel 1, Erick Lazaro Melo 1, Diego R. C. Dias 2, Luis Carlos Trevelin 2,

and Cesar A. C. Teixeira 1

Abstract—Sophisticated interactive animation may be an in-
teresting element to compose a multimedia document. However,
potential demand for high performance computing can make
this option impractical in digital interactive TV and mobile
device environments, due to computing power restrictions of such
platforms, especially when one consider the processing of complex
3D environments with a high degree of realism. In previous work,
we proposed a solution to overcome such restrictions based on
video streaming. Moving forward, in this paper is presented a
solution that is more independent of platform, but still based
on the same principle of video streaming. Each module can be
specialized in different ways to solve problems related to the
computer environment, such as network restrictions and latency
on user interaction. Also in this paper is described how to
take advantage of media-agnostic feature of some multimedia
presentation machines to integrate this type of complex 3D media
into multimedia documents. As a proof of concept, we extended
and tested an NCL presentation engine to add support to this
new type of media.

Keywords—High-Performance Media, Multimedia Presentation
Machine, Remote 3D Processing, Virtual 3D Environment, Video
Streaming, Multimedia.

I. INTRODUCTION

Multimedia presentations composed by different types of
media can enrich the user experience when watching, listening
and interacting with them. An interesting type of media to
be considered is interactive animations with a high degree of
realism and complexity, which produces audiovisual informa-
tion according to user’s interactions. In this paper this type of
media, which usually requires real time and high performance
processing to be produced, is called High Performance Media
(HPM).

For example, consider a TV show based on an interactive
expedition to a tourist spot, such as Machu Picchu. The
application could be composed of a main video presenting an
overview of the site and an HPM object representing a realistic
3D model of Machu Picchu. By means of the HPM object,
users could explore areas and objects that were not explored
or highlighted by the overview. The HPM object would be
synchronized with the video of the overview. When the reporter
moves to another scenario, the application would move too.
It would be even possible for the user to meet the TV crew

Computer Science Department - LINCE/UFSCar 1

Computer Science Department - LaVIIC/UFSCar 2

while navigating through the virtual environment. In addition,
another media in the application, as high-resolution images
or environment sound, could be added and synchronized with
the user experience on HPM object. When the user enters
a particular room, a specific song could start playing, for
example.
Another interesting application could be a virtual contest

between residents of different cities in a variety show. In
addition to the audio and video of the TV show, with a
television presenter, participants and audience attendance, the
application could also include an HPM object offering a virtual
environment with competitions and events to viewers. Some
viewers of the competing cities could be awarded with the
opportunity to participate in the contest, competing from their
homes, while the others could follow the contest by choosing
different visions of the virtual environment.
The framework RV-MTV was presented in previous work

[1]. It uses a strategy based on streaming video to allow devices
with low computing power — smartphones, tablets or Set-Top
Boxes (STB) 1 of Interactive Digital TV (iDTV) and Internet
Protocol TV (IPTV) — to interact with applications running
remotely. The applications run on high-performance rendering
servers. Audiovisual outputs produced by the application are
captured and encoded using audio and video compression
techniques. They are sent on the fly to client’s device via
streaming through IP network, or air or cable broadcast. Using
the RV-MTV one can build applications that allow viewers
from environments with restricted processing power, as iDTV
and mobile environments, to interact with HPM objects exe-
cuted remotely. Controlling the HPM object requires writing an
application to send messages according to a specific protocol
to the HPM object. Despite the possibility of interacting with
an HPM object, it would not be possible with this model to
integrate HPM objects into a multimedia presentation. An in-
dependent video, subject only to the mechanisms implemented
specifically for its control and not related to other media would
represent an HPM object.
This paper presents a transparent solution to incorporate

HPM objects into multimedia presentations. A dedicated player
module for HPM objects is proposed. This player performs
the interface between the multimedia presentation machine
and the HPM object, translating instructions received from

1The STB term is used in the text to refer to both the set-top box for iDTV
and to TVs which have embedded the features of a set-top box

34 SBC Journal on Interactive Systems, volume 5, number 1, 2014

ISSN: 2236-3297



the presentation machine to commands for the HPM object. It
is also proposed an approach for mapping semantic concepts
common to declarative synchronization languages (anchors,
links) to HPM objects. As a proof of concept, we extended
the WebNCL [2], a presentation machine for Nested Context
Language (NCL) [3], to add support for HPM objects. A
multimedia presentation, integrating an HPM object generated
by a graphic cluster, was used for testing purposes. Appli-
cations considered for such a proof of concept, unlike high-
end video games, do not require high responsiveness. Adding
to this the image quality acceptable for such applications
becomes feasible to use efficient compression techniques and
the internet as a distribution platform. A deeper description of
the application developed is presented in section 4.

The remainder of this paper is organized as follows: section
2 presents some related works; section 3 defines the HPM
object and discusses different strategies to enable them to
run on a IDTV environment; section 4 discusses approaches
to run remotely HPM applications; section 5 presents the
proposed mechanisms to aggregate HPM object to multimedia
presentations; section 6 describes a proof of concept developed
and section 7 presents conclusions and future works.

II. RELATED WORK

Cesar, Jansen and Bulterman proposed in [4] a way to enrich
the multimedia content broadcasted in the context of IDTV.
The proposal is to allow viewers to add their comments to
the content transmitted by the broadcaster. The paper also
discusses conceptually the incorporation of this facility in a
declarative language, however it does not present or make
any reference to a enrichment by incorporating an interactive
media/animation in the IDTV declarative environment or a
proof of concept of the ideas.

A possible approach to integrate HPM objects to multimedia
presentations in the context of DTV, adopted in some works
as in Dias et al [5] and Azevedo and Soares [6], is to rely on
local high performance computation by extending the IDTV
middleware or part of it ( for example, a custom player) for
supporting 3D rendering. This approach may be a solution
when the hardware of STB, usually quite limited, evolves to
larger processing power, memory and graphics capability. That
could lead to an increase in the cost of such devices and the
need to rewrite applications for the languages supported by
the embedded execution engines, which may not always be
possible because of third-party resource dependencies, such as
libraries and frameworks.

The strategy of remote execution of applications based on
HPM objects is also considered in the work of Jurgelionis
et al [7]. In that paper the authors propose strategies for
implementation, capture, transmission and remote control of
games, allowing computers with low computational power to
interact with applications. In another related work [1], the
authors extend this concept to IDTV and mobile devices and
present a framework that enables one to interact with remote
applications via a strategy of video streaming. In both works,
applications are not integrated into the context of multimedia
presentations. They are remotely controlled by commands built
with imperative languages.

In the paper of Schmitz [8], the objective is also to enhance
multimedia presentations defined by a declarative language.
The approach proposes an extension of the language to manage
hybrid objects such as animation and video Thus, it combines
the control of a video sequence with the flexibility of an
animation, highlighting the importance of synchronization of
user interactions in a multimedia environment. The solution is
restricted to the web and, as the generation of the hybrid media,
respecting user interaction, is performed locally. Collaborative
interventions between remote users over a shared media are
not supported.
Rahman, Hossain and Lornav [9] propose the inclusion of a

3D media in multimedia objects using a declarative language.
However, the 3D media is treated standalone. The authors do
not address its integration with other media on the composition
of a multimedia object.

III. HPM AND IDTV

The class of HPM objects defined in the context of multi-
media systems refers to interactive applications that produce
results perceived to the human senses, usually sight and/or
hearing, of very high quality and realism. The results arise
from reaction to external stimulus caused by a human interac-
tion, by natural events or events generated by other applica-
tions. The resultant media are consumed by humans and must
be created with time constraints (short delay between stimulus
and response) in order to keep the quality of experience (soft
real-time).
Due to its characteristics, HPM objects require high perfor-

mance computers or clusters to run. Thus, environments with
restricted processing and/or memory, such as smartphones,
STB and tablets are not suitable to run HPM objects.
Two approaches may be adopted to present HPM objects

in IDTV environments. The first one is the inclusion of
high performance graphics chipsets in STB, aiming the local
processing of HPM objects. The second approach is to run
HPM objects remotely on high performance clusters, and then
transmit the visual and audible results to the STB.
The approach of local processing may prevent the reuse

of legacy HPM objects, developed for running on clusters or
high performance computers — environments very flexible as
development platforms — due to constraints like differences
on the programming languages supported. It would not be
possible, for example, the reuse of HPM objects written in
C / C + + in an environment that only understand iDTV
applications written in Java. Moreover, this approach would not
scale and would turn obsolete the chipsets when new types of
HPM objects were designed requiring more processing power
than the available one.
With the approach of remote processing using clusters, the

restriction to reuse legacy HPM objects no longer exists. In
addition, it becomes easier to build collaborative applications,
since the execution of HPM objects from different users can be
held in the same cluster. However, this approach requires that
visual and / or audible results from an HPM object execution
be transmitted via data network to the STB, which can increase
the delay in consumption of the results.

SBC Journal on Interactive Systems, volume 5, number 1, 2014 35

ISSN: 2236-3297



Considering the remote processing approach for HPM ob-
jects that returns high quality visual experience to users, one
can use different ways for transmitting the output produced to
the STB: (1) transmitting uncompressed frames, (2) transmis-
sion of pre-rendered frames and (3) streaming of compressed
digital video.

With approach 1, the latency time would be low as there
would not be delay due to the compression and decompression
processes. However, transmitting high quality uncompressed
frames requires a large bandwidth, which is not compatible
with the reality of the Internet today or terrestrial broadcasting
systems. Huang et al. [10], proposed an open cloud gaming
called GamingAnywhere, which, according to the authors, is
the first open cloud gaming system.

When using pre-rendered frames (2), there would be a
negligible increase in latency and a significant reduction in
the bandwidth needed to transmit the high quality visual in-
formation back to the viewer. However, this approach assumes
that local machines have enough processing capabilities to
complete the rendering process, which cannot be true with
many STB and mobile devices.

Streaming compressed digital video (3) allows the trans-
mission of high quality video over a reasonable bandwidth
network. STB and mobile devices usually already have hard-
ware support to perform video decompression. However, the
problem with this approach is the increasing in latency due to
the time spent in processes of compressing and decompressing
video.

There are studies in the literature that seek solutions to the
latency of video encoding processes. In the Holub et. al. [11]
high-definition videos, which are more costly to be encoded,
are considered. It is also important to consider the increasing
in response time introduced by running applications remotely,
which may be critical for some classes of HPM objects. Barker
and Shenoy [12] explore this issue through empirical analysis
of the performance of collaborative applications running on
cloud computing.

In this work it was adopted the approach of processing
HPM objects remotely in clusters and transmitting the results
via streaming compressed digital video. The framework RV-
MTV, which is able to perform the transmission of objects
with latencies as low as one second [1], was used in pre-
vious works for capturing the HPM object video output,
encoding and transmitting the video. However, in this paper,
was implemented a more extensible solution for capturing,
processing and streaming the video data. While applications
like action electronic games, that require instant feedback, fit
the definition of HPM, the proof of concept implemented in
this work obtains better results with classes of HPM objects
more tolerant to greater response times, like virtual tours in
museums and those presented as example in Section 1.

IV. DELIVERING HPM OBJECTS PROCESSED REMOTELY

In this section, we detail the challenges that are needed to be
overcome to enable the delivering of HPM objects processed
remotely.

A. Remote Real-time rendering

Real-Time rendering refers to the (necessary low) delay a
graphical application takes to render a new visual output in
response to a stimulus that changed its state. Usually, graphical
applications that are rich in details and with high-quality
textures present a bigger delay, which can impair the user
experience. However, an application with less visual quality
also affects the user experience.
In the case of remote processing a HPM object, the visual

quality also affects the bandwidth necessary to transfers the
application’s output to the users.

B. Graphic Rendering Capture

The capture of graphical rendering is a technique used
in several applications: (i) software for capture presentations
(especially when animations are used); (ii) recording the user’s
interaction with a system for the confection of a video tutorial;
(iii) capture of a videogame’s output for enabling remote play
or streaming via Internet, among others.
The approach used for capturing depends on the technology

used for rendering. It can be implemented in software or by
means of specialized hardware — the second approach leads
to a solution independent from the rendering technology used.
An important characteristic of a graphical rendering tech-

nique is its capture latency, which is the delay from the instant
the rendering engine finalizes a frame to the instant it is copied
(captured). It can be measured by comparing the number of
frames per second (fps) of the rendering engine produces with
the number of fps captured.
Another characteristic is the impact of a capture technique

on the graphical application or system performance. It can be
measured by comparing the number of fps the rendering engine
produces without the capture with the number of fps produced
when the capture technique is running. There are four main
rendering capture techniques: (i) via window manager API,
(ii) via 2D/3D graphic acceleration API, (iii) via mirror drivers
and (iv) via hardware component.
• Window Manager API: this technique is based on the

redraw operations of Window Manager (2D), such as
GDI for Microsoft Windows and X11 for GNU/Linux
based systems;

• 2D/3D Graphic Acceleration API: it performs the
capture directly from the rendering pipeline from the
2D or 3D graphical acceleration API such as Microsoft
DirectX or OpenGL;

• Mirror Drivers : this technique is very used in Virtual
Networking Computing (VNC) clients to enables remote
interacting with a system. However, since the mirror
driver is not the default driver for visual output (which
is the driver connected to the display or GPU), there is
an additional delay between the rendering and the copy
to the mirror driver;

• Hardware Component : this solution uses a hardware
component which is physically connected to the GPU,
capturing the output like a PC’s display. The captured
frames are then compressed and packaged to be delivery

36 SBC Journal on Interactive Systems, volume 5, number 1, 2014

ISSN: 2236-3297



via a data network. Although this solution presents the
lower latency, it requires the use a specialized hardware.

C. Real-Time Pixel Streaming

The need for accessing audiovisual content without com-
pletely download it stimulated the creation of video streaming
services, as known as Pixel Streaming. Roughly, the services
of streaming can be classified in Video on Demand (VoD) and
Live Streaming.

The video streaming process is composed of the stages:
encoding, streaming and playback. The encoding refers to the
encoders used to compress video and audio, as well as the
multiplexing both stream in consistent media. The streaming
is when the data is formatted and segmented in packages, ac-
cording to a streaming protocol. Finally, the playback consists
of grouping back the received packages, demultiplexing the
audio and video back, decoding the streams and present then
to the user.

Usually, the step that demands more resources, including
processing time, is the video encoding. This step presents a
direct relation with the video latency, the time delay between
the instant in which the original image is generated and the
instant in which the coding process is finished. With a higher
latency is possible to obtain a better compression, because it
is possible a higher reduction on temporal redundancy among
the frames. Therefore, it is challenge to specify the encoding
parameters for a real-time pixel streaming because it is nec-
essary to harmonize the requirements for low bandwidth, low
latency and high visual quality. Another technical challenge
is the target playback devices compatibility with the encoding
and streaming protocol. Some devices are only compatible with
a certain combinations of encoding and streaming protocol,
and this may influencing the design of flexible systems that
aims to different devices.

D. Remote Interaction

In order to enable the interaction with the remote HPM
object, interactions performed on the local device need to be
captured. These local interactions also need to be mapped onto
interactions that exist in the remote application. For instance,
from a mobile device such as smartphone can be mapped
the touchscreen interaction onto a mouse click in the remote
application. Interactions captures need to be translated into a
message following a common protocol known by the remote
application. This message is then sent to the remote application
by a reliable channel. This communication protocol can be
extended to support in addition to user interaction events,
triggering of an internal function. When the remote application
receives the message, it translates it to the corresponding
interaction. The interaction can be inserted into the application
simulating a common system event. For instance, the mouse’s
movement simulation. Otherwise, the interaction can be ap-
plied directly to the application, when the HPM object supports
it.

The interaction system used in RV-MTV was developed out-
of-box and did not consider the presentation machine. Each

application should map its interaction into events via the RV-
MTV interaction API. Although this approach is still possible
in our current implementation, it also complies with the
interaction supported by the presentation machine. An HPM
object integrated to a multimedia presentation, which uses
only the interaction supported by the presentation machine,
does not need to handle the interactions by itself — they are
responsibility of the presentation machine.

V. HPM AS A MULTIMEDIA PRESENTATION COMPONENT

Multimedia presentations, which define the behavior of
multimedia presentations and interactions, can be produced
using imperative languages such as Java or Lua, declarative
languages, such as SMIL and NCL, or combinations of both,
in which imperative scripting languages provide support to the
declarative one, as NCL and Lua in the Ginga middleware [3]
or HTML and JavaScript.
The combination, declarative language supported by imper-

ative scripting language, is a good compromise since, at the
same time it eases the specification of synchronism between
media it also provides facilities to define specific situations that
may not be adequately supported by the declarative language,
but may be implemented with the scripting language.
For the integration of HPM objects to multimedia presenta-

tions, this paper explores the possibilities of a declarative envi-
ronment with support for imperative language. Two alternatives
may be considered. The first, referenced here as Imperative, is
based on API in the imperative language that offers facilities
for HPM objects manipulation, such as synchronization, com-
munication and delay control. The second approach, referenced
as Declarative, as the declarative language resources are exten-
sively exploited, defines direct interactions between the object
and the HPM presentation machine. In this case, the HPM
objects are in accord with the rest of the media presentation.
The advantages and disadvantages of each alternative are
presented below.

A. Declarative vs. Imperative Approach
One advantage of the Imperative approach is the flexibility

for future changes and specifications due to the ease of
modifying the developed API to add new features. Another
advantage of this approach is a better decoupling of the API
implementation and the presentation machine, which do not
need to be modified. Furthermore, an imperative language
always gives greater freedom for software development.
However, the Imperative approach creates a distance be-

tween the presentation machine and the HPM objects. This
gap hinders the integration and interaction of HPM objects
with other supported media, because the management of the
HPM object is no longer under control of the presentation
machine itself. Furthermore, the development of multimedia
presentations using the Imperative approach is more complex,
as it requires greater skill in programming.
In contrast with the imperative approach, declarative im-

plementation uses the concept of presentation integrated to
media management, leading to a more cohesive and natural
manipulation of the multimedia document. In this approach the

SBC Journal on Interactive Systems, volume 5, number 1, 2014 37

ISSN: 2236-3297



HPM can be used as a conventional media (such as video or
audio), with support to specific demands of HPM objects, such
as the address of the remote machine and the communication
channel configuration. Synchronization between HPM objects
and other media from multimedia object with this approach is
straightforward.

The integration of HPM objects to multimedia presentations
is more coupled to the presentation machine in the declarative
than in the imperative approach. Specifications of the HPM
objects behavior can be carried out using the same semantics
of the declarative language applied to other media, making use,
for example, of interaction concepts common to multimedia
declarative languages, such as anchors, regions, etc. In the
imperative approach, delegating the handling of HPM objects
to an external controller would require re-implementation of
these concepts in a language that was not designed for this.

Considering a declarative language such as NCL, for exam-
ple, which allow transparent addition of new types of media,
one can add support for HPM objects without the need to
change the language grammar [13] . As a result of the dele-
gation of responsibility for interpretation of the new elements
to the presentation machine, this approach strengthens the link
between multimedia presentations (with HPM objects) and the
presentation machine, since the presentation machine must be
extended to support HPM objects.

B. Integration Proposal
Due to the advantages of the Declarative approach presented

before, that was the way we adopted for the integration of HPM
objects to multimedia presentations, promoting a development
model more suitable for multimedia contexts. It is necessary
that the declarative language be media-agnostic, which means
be able of handling and synchronizing transparently different
media, without knowing the media. Examples of languages
that presents such characteristic are NCL and SMIL [14].

This class of languages uses transitions in the state ma-
chine of each media to manage synchronization. For example,
synchronization points may be the beginning, end or pause
of a specific media. Another intrinsic characteristic of these
languages are the concepts of media properties and media
anchors. The anchors refer to portions of media, such as a
time interval in a video. The properties are features that can
be accessed and changed during the presentation, for example,
the audio volume.

To promote the incorporation of HPM objects in multimedia
presentations, some changes must be done in the presentation
machine to support this new class of objects. It is necessary to
map the concepts of properties, anchors and state transitions
onto HPM objects. The interactions between the presentation
machine and the HPM object must be encapsulated in control
messages exchanged via a communication channel. Figure 1
illustrates how the concepts of anchor are mapped onto HPM
objects and how HPM objects can be integrated into multime-
dia presentations. A syntax similar to NCL is use to exemplify
the integration.

There are two regular media (video1, paint1) and a HPM
object which is been produced by a remote application. When

Figure 1. HPM Object in a multimedia presentation

the presentation starts, the video1 starts to play because it
has a port. Moreover, a link defines a casual relation between
video1 and the HPM Object. This relation defines that when
the video1 begins it execution, the HPM object most start.
HPM object also has a anchor called area1 (item 2), and this

anchor has a causal relation defined by a link with the media
paint1 (item 1). When paint1 is selected (i.e. the user click on
it), the area1 anchor must start. When the HPM player (item
3) is notified that it should start the area1, it sends a message
to the remote application (item 4). The remote application will
apply the result of the event in the virtual environment (in this
case modifying the current position of the user in the virtual
environment of to the position specified by the anchor), thereby
updating the produced video streaming. When the HPM player
sends an event to the remote application, it also pauses the
video streaming until it receives an acknowledgment message
from the remote application, which means that the event was
processed.
Synchronization: Due to the delay inherent to the process

of video encoding, decoding and transmission, the video
presented to the viewer does not reflect the current state of
the application running on the remote server. Although the
synchronization between the states is not critical as HPM
objects require only a sufficient synchronization to human
perception, the latency in response time can affect the quality
of experience. The presentation machine extension to integrate
HPM objects must provide mechanisms to circumvent this
problem.
In order to reduce the problem of states inconsistency, a

synchronization mechanism between the state of the presen-
tation and the state of the HPM object, using the clock of
the involved machines (timestamp), is proposed. An initial
calibration is required to synchronize the clock of local and
remote machines. The calibration is repeated periodically to
guarantee the sync. This synchronization does not need to be
exact, tolerating differences that are not relevant to humans’
senses.
The application keeps, for each rendering iteration, the

current state of its objects (e.g. user three-dimensional position
and point of view). The presentation machine contributes with
the sync process adding a timestamp in the messages when

38 SBC Journal on Interactive Systems, volume 5, number 1, 2014

ISSN: 2236-3297



mapping events to messages and stop accepting new event
requests until get confirmation message from the remote HPM
object.

Further, to counterbalance the video coding/decoding delay,
it is necessary that the remote application be able to evaluate
the time spent in the process. Adding this time with the
difference between the timestamps of control messages, the
application can return to the state the presentation was when
it sent the event.

There is also the need to address possible remote application
freezes, discovered by the lack of response message. To do
that, the extended machine triggers a timer waiting for a con-
firmation. In the event of a timeout, the presentation machine
takes steps to alert the user, to reestablish communication or
to replace the remote server.
Application Manifest: To make simple the integration of

HPM objects into multimedia presentations, we use an XML
file to specify the characteristic of the HPM object. This file
can hold information about the video stream address generated
from the HPM object and the ways by which messages can
be sent to the remote application that is generating the HPM
object. It also lists the proprieties and anchors of the HPM
object by which the multimedia presentation can interact with
the HPM object. The HPM object’s authors should provide
this Manifest File.

The Listing 1 contains a manifest file sample. In the lines 1
and 2 is defined the address of the video stream produced by
the remote application. Between lines 3 and 8 the HPM object
anchors and propriety are listed. Between lines 9 and 13 is
specified how the communication with the remote application
will be performed — in this case, via a message broker.
Between lines 14 and 17 is specified the alternative content
that will be displayed by the latency dissimulating mechanism.

<man i f e s t c l a s s =”HPM”>
<media t y p e =” v id eo ”

� mr l=” r tmp : / / m ed i a s e rv e r / s t r e am i ng ” / >
<an cho r s>

<a r e a name=”PAINT 001” />
<a r e a name=”PAINT 002” />
<a r e a name=”PAINT 003” />
<p r o p e r t y name=” speed ” />

< / a n c ho r s>
<communica t ion p r o t o c o l =” stomp ”>

<a d d r e s s brokerURI=
�� ” f a i l o v e r : ( t c p : / / b ro k e r : 6 1 616 ) ” / >

< t o p i c d e s t =”HPM APP” />
< / communica t ion>
<holdOn>

<wa i t i n g T r i c k t y p e =” image ”
�� mr l=” l o a d i n g . g i f ” / >

< / holdOn>
< / m a n i f e s t>

Listing 1. NCL Link

VI. PROOF-OF-CONCEPT

Our proof of concept for the proposed integration of HPM
objects into multimedia objects is composed of two parts. The
first part is the extension of an NCL presentation machine

to support HPM objects as a new media type, which was
done by adding a new media player for HPM objects. The
second part is building a distributed application, consisting
of an application running on high-performance clusters that
produces HPM object and a NCL document, which embedded
this HPM object. The virtual environment used was the Torre
de Papel by Sonia Menna Barreto [15]. As the environment of
the validation and testing of our proof of concept we used a
local network composed by the server, a machine capable of
running smoothly the 3D application (60 frames per second or
more), on a wired connection bandwidth 100Mbps and with a
latency to the router of 1ms or less. There are two types of
customer, a laptop and a tablet, both with a wireless (802.11n)
and a latency lower than 10ms between customer and the
server. For the approximation of the actual conditions of use
of the solution on the Internet the latency between the end
points was increased by 80ms, which is an acceptable latency
in the region of Brazil 2 For network monitoring, bandwidth
and latency analysis, we used a tool for network sniffer 3.

A. HPM Remote Solution in TVDi

In the diagram showed in Figure 2 are observed modules
components of remote interaction solution with HPM, as well
as its two main features: (i) sending the rendering of HPM
object captured in the form of a pixel stream (upper arrow) and
the receiving of the remote user interactions (bottom arrow).
It is also shown systematic progress that is used to perform

the pixel streaming. The first step is the insertion of dynamics
library into the HPM object (clearly higher arrow). After that,
the capture module begins receiving rendering bits captured
from HPM object and arranges data as an image (bitmap) and
sending it to the encoding module. This module encodes the
images, using a selected video encoding, multiplexes streams,
and send forwards it to the streaming module. The stream
module packages the multiplexed stream and streaming it as a
pixel stream.
Finally, the pixel stream is received and played by the

playback module. At the bottom of Figure 2 are showed steps
to perform remote interaction with the HPM object. First, the
control module intercepts the user interactions (mouse, key-
board, touchscreen, etc.). After that, it sends via an established
connection (using a message broker) these commands to the
interaction module, using a common message protocol. This
means of communication eases and decouples the interaction
module and the control module. In conclusion, the interaction
module maps these events into interactions directly in the HPM
object.
For the implementation of the prototype solution for HPM

remote interaction were developed the following modules:
• Capture Module: responsible for all operations related

to screen capture and HPM audio application;
• Encoding Module: responsible for preparing capture

frames of images and encoding them in a chosen stan-
dard;

2SIMET - http://www.ceptro.br/CEPTRO/SiMeT
3Wireshark - http://www.wireshark.org/

SBC Journal on Interactive Systems, volume 5, number 1, 2014 39

ISSN: 2236-3297



Figure 2. Components Diagrams of HPM Interaction Solution

• Playback Module: responsible for playing the video
streaming received at the web page;

• Control Module: it intercepts all user interactions with
the web page and sending commands to the remote
interaction;

• Remote Interaction Module: responsible for mapping
commands in HPM interactions.

B. Adding a HPM Player to the presentation machine
The presentation machine we choose to extend was the

WebNCL [2], an NCL presentation machine developed on top
of web stack technologies (HTML/CSS /JavaScript) that allows
the execution of NCL documents on HTML5 compatible
browsers.

The WebNCL’s Event Manager is responsible for controlling
the processing of NCL links. It is media-agnostic, which means
it does not need to know if the media is an image or a
video — or even non-standard type such as HPM objects
— to perform the processing of events. The responsibility to
inform the event manager about the transitions occurred in the
media presentation that can represent conditions in NCL links
— as beginning of an anchor — is delegated to players of
each media. In addition, the media players are responsible for
receiving and processing the actions triggered by links — as
modify a media property.

Because of this decoupling between the event manager and
the media players in WebNCL, in order to add support for
HPM objects to WebNCL we needed to implement a new
media player. This new player is responsible for playing and
controlling HPM objects. This approach also does not require
modifications in the presentation machine core.

Figure 3 depicts the WebNCL’s architecture and details
the HPM object player that was added to the presentation
machine. The HPM player was inserted into presentation layer,
the same layer where the other media players are situated.
It is composed of components responsible for parsing the
manifest file (Manifest Parser), handling and presenting the
video streamed by the remote application (Video Stream
Player), exchanging messages with the remote application
(Communication Module) and synchronizing and performing
dissimulation delay mechanisms (Synchronization Module).

The HPM object player receives video stream using RTMP
(Real Time Messaging Protocol)4 and displays the video

4RTMP - http://www.adobe.com/devnet/rtmp.html

Figure 3. NCLweb and HPM Player Architecture

frames on the screen in the position defined by the presentation
machine. Whenever an action event is triggered over an HPM
object media node — as to start a certain anchor — the
HPM player encodes that event in a JSON (JavaScript Object
Notation) 5 message and sends it to the remote application.
In a similar way, when the remote application notices any

transition that can be used as a condition to NCL links — such
as HPM object’s anchors starts — it sends a message to the
HPM player. The HPM player decodes the message received
and triggers the corresponding events to the presentation
machine.
The HPM player also implements synchronization mecha-

nisms to work around possible delay resulting from the video
encoding strategy. When a user stimulus can generate some in-
consistencies in the presentation due to the difference between
what the user see and the HPM object state in the cluster, the
HPM player sends a message to the remote application with
the video package timestamp. The remote application uses the
timestamp to retrieve the HPM object state for the moment
when user’s stimulus has been happened. In this state, the
remote application processes the stimulus, producing the right
visual output. While the cluster processes the user’s stimulus
and adjust the HPM object state, the HPM player can display
some alternative content to dissimulate latency.

C. HPM object embedded in a NCL presentation

Figure 4 depicts the infrastructure used for integrating HPM
objects into an NCL presentation.
The graphic cluster is an instantiation of a Cave Automatic

Virtual Environment (CAVE) [16] called Mini CAVE [17]. The
graphics rendering applications is done in a distributed way.
Thus, complex environments can be presented with a high
frame rate.
The running application was developed in C++ using the

5JSON - http://www.json.org

40 SBC Journal on Interactive Systems, volume 5, number 1, 2014

ISSN: 2236-3297



Figure 4. HPM Architecture

OGRE 3D 6, a graphic engine. It runs on a cluster of six
nodes, equipped with Intel i7 processors and NVIDIA GPU.

The application responsible for generating the HPM object
is an 3D modeling of a painting of Sonia Menna Barreto, a
Brazilian artist, called Torre de Papel. The environment has
some predefined animations and other paintings scattered by
the environment, such as an art exhibition of Sonia’s works.
Users can navigate in the virtual environment using traditional
devices (mouse, keyboard) and unconventional ones (mobile
devices, Kinect and Wii Remote).

The application has been modified to incorporate the compo-
nents for performing pixel streaming. Using the components,
the rendering frames are captured and encoded, generating a
video stream that is sent to the HPM player.

The anchors of the HPM object were defined as certain
positions within the 3D environment (the coordinates x, y,
z and the camera angle by which the image is seen). Each
anchor points to an environment location that faces one of the
exhibited paintings. When the application receives a message
from the HPM player informing a play event in a certain
anchor, the application adjusts its display to show the painting
associated with that anchor. One can also set the predefined
animations speed by modifying the value of speed property
via events sent by HPM player.

In addition, it was implemented a new interaction mecha-
nism, allowing navigation via NCL application. If a user, navi-
gating in the environment, approaches to a painting associated
to an anchor, the application will send an event to the HPM
player, informing the start of an anchor. When the user leaves
the area, an event indicating the end of an anchor will also be
sent in an analogous manner. Figure 5 shows the application
running on the cluster graphic.

A module for controlling the messages exchanged between
the HPM Player and the HPM object running on the cluster
is important. We chose to use the ActiveMQ broker 7 to
accomplish the management of these messages.

6OGRE 3D - http://www.ogre3d.org/
7ActiveMQ - http://activemq.apache.org

Figure 5. HPM object running on the cluster graphic

The advantages of a using a broker for message exchange
are its reliability and security. Furthermore, as libraries for
integration with ActiveMQ are present in many different lan-
guages, the construction of distributed applications on different
platforms and languages, as occurs in this proof of concept, is
facilitated.
We used the STOMP protocol (Simple Text Message Ori-

ented Protocol) 8 to realize the communication between ap-
plications, encoding messages in JSON format. Streaming
video produced by the application is sent to a remote media
server. The media server then retransmits the video for the
presentation machine using a multimedia streaming protocol
(RTMP).
The NCL document, which embed the HPM object, allows

users to navigate among the anchors through a menu. When
the user is viewing any HPM anchor, a high-resolution image
of the associed artwork is displayed. The user can also change
the speed of the animations in HPM object using the colored
buttons in the remote control.

<media i d =” i n t e r a c t i v e P a i n t ”
� s r c =”HPM manifest . xml ”
� d e s c r i p t o r =” d I n t e r a c t i v e P a i n t ” >

<a r e a i d =” p a i n t 1 ” t e x t =”PAINT 001” />
<a r e a i d =” p a i n t 2 ” t e x t =”PAINT 002” />
<a r e a i d =” p a i n t 3 ” t e x t =”PAINT 003” />
<p r o p e r t y name=” speed ” v a l u e =” 1 . 0 ” />

< / media>

� < l i n k i d =” lGoPa i n t 1 ”
�� x c o n n ec t o r =” o n Se l e c t i o n S t o p S t a r t ” >

<b ind component=”menuItem1 ”
�� r o l e =” o nS e l e c t i o n ” / >

<b ind component=” i n t e r a c t i v e P a i n t ”
�� r o l e =” s t o p ” / >

<b ind component=” i n t e r a c t i v e P a i n t ”
�� i n t e r f a c e =” p a i n t 1 ” r o l e =” s t a r t ” / >

< / l i n k>

< l i n k i d =” lRedKey ”
�� x c onn e c t o r =” onKeyS e l e c i onS e t ” >

<b ind component=” i n t e r a c t i v e P a i n t ”
�� r o l e =” o nS e l e c t i o n ” >

<bindParam name=” keyCode ”

8STOMP - http://stomp.github.com

SBC Journal on Interactive Systems, volume 5, number 1, 2014 41

ISSN: 2236-3297



�� v a l u e =”RED” / >
< / b i nd>
<b ind component=” i n t e r a c t i v e P a i n t ”

�� i n t e r f a c e =” speed ” r o l e =” s e t ” >
<bindParam name=” s e tV a l u e ”

�� v a l u e =” 1 . 5 ” / >
< / b i nd>

< / l i n k>

< l i n k i d =” lShowPa in t2 ”
�� x co n n e c t o r =” o n Be g i n S t a r t ” >

<b ind component=” i n t e r a c t i v e P a i n t ”
�� i n t e r f a c e =” p a i n t 2 ” r o l e =” onBegin ” / >

<b ind component=” p l a i n P a i n t 2 ”
�� r o l e =” s t a r t ” / >

< / l i n k>

< l i n k i d =” lH i d e P a i n t 2 ”
�� x co n n e c t o r =” onEndStop ” >

<b ind component=” i n t e r a c t i v e P a i n t ”
�� i n t e r f a c e =” p a i n t 2 ” r o l e =” onEnd ” / >

<b ind component=” p l a i n P a i n t 2 ”
�� r o l e =” s t o p ” / >

< / l i n k>

Listing 2. NCL Link

Listing 2 presents some excerpts from the NCL document.
Between lines 1 and 8 a HPM media node is defined. The
media’s source is the HPM manifest (HPM manifest.xml). It
describes the possible properties, anchors and how to commu-
nicate with the HPM object (the address of streaming and other
information that defines the object). Inside the media node are
defined three anchors and one property.

The link lGoPaint1 (lines 10-18) defines an action that
causes the HPM object to be moved to the anchor Paint1 when
a particular menu icon is selected. The link lRedKey modifies
the value of HPM oject speed property to 1.5 when the red
button is pressed, in other words, increasing the speed of the
animations in 50 %.

The links lShowPaint2 (lines 34-40) and lHidePaint2 (lines
42-48) make the image plainPaint2, a high-resolution image of
an artwork, be presented when the user is near to the equivalent
painting in the HPM object.

Figure 6 shows the NCL document being presented. The
user can interact with the application using the arrow keys to
navigate between artworks from a side menu. When the user
selects a menu item, the HPM object is moved to its anchor
and a high resolution image of the artwork is displayed (Figure
7).

VII. FINAL REMARKS

The work presented in this paper confirms the feasibility of
the proposed approach for embedding HPM objects in multi-
media presentations with a platform-decoupled solution for re-
mote processing HPM applications. From a multimedia presen-
tation platform with declarative language, complemented by
imperative scripting language, interpretation capabilities, the
approach adopted was to promote changes in the presentation
machine so that the new media could be fully managed by the
declarative part of the environment only. Thus, HPM objects
can be better integrated with the multimedia presentation, as all
its management is kept under the control of the presentation

Figure 6. Navigation in the virtual environment

Figure 7. HPM synchronization with other media

machine. It was also shown the feasibility of incorporating
HPM objects on TVDi and mobile devices environments, using
a strategy of video streaming.
It was presented as proof of concept the upgrade of a NCL

presentation machine needed to enable it to run multimedia
presentations that have HPM objects as one of their media. The
presentation machine manages the new media generically, as it
was an image or a video. Upgrading the presentation machine
demanded no modification in the grammar of NCL as it is
a media-agnostic language. A NCL multimedia application,
including an HPM object generated remotely by a graphics
cluster, was also developed and tested. This experience showed
that creating a multimedia presentation with HPM objects is
natural for developers who already have experience in author-
ing NCL documents. Also, it was developed a modularized
solution to allow the remote processing and control of a HPM
application with minimal impact in such processing and with
low latency in video capture and streaming. The solution
reached less than 4 Mbps for a HD live stream and increasing
only 27ms (or less) in latency between the production of the
media and the client consumption.
The main issues that may be addressed in future works,

in order to improve the proposed approach of embedding
HPM objects in multimedia applications for IDTV and mobile
devices environments, are related to the delay of encoding and

42 SBC Journal on Interactive Systems, volume 5, number 1, 2014

ISSN: 2236-3297



streaming video. One can explore an approach based on the
generation of pre-rendered frames at the cluster, leaving the
final rendering to the local application. This process can be
improved with embedded GPUs as OpenGL-ES 9 or even
a web version like WebGL. Another future work could be
the study of different client technologies to the remote control
module for a more extensible compatibility with different OS
devices.

ACKNOWLEDGMENTS

The authors acknowledge the financial support provided by
CAPES and CNPq.

REFERENCES

[1] C. C. Viel, E. L. Melo, L. Trevelin, and C. A. C. Teixeira, “Rv-
mtv: Framework para interação multimodal com aplicações de realidade
virtual em tv digital e dispositivos móveis,” in WebMedia 2011, 2011.

[2] E. L. Melo, C. C. Viel, and C. A. C. Teixeira, “Webncl: A web-based
presentation machine for multimedia documents,” in WebMedia 2012,
2012.

[3] L. Soares, R. Rodrigues, and M. Moreno, “Ginga-ncl: the declarative
environment of the brazilian digital tv system,” Journal of the Brazilian
Computer Society, vol. 12, no. 4, pp. 37–46, 2007.

[4] P. Cesar, D. Bulterman, and A. Jansen, “An architecture for end-user
tv content enrichment,” Journal of Virtual Reality and Broadcasting,
vol. 3, no. 9, p. 14, 2006.

[5] D. F. Souza, T. A. Tavares, L. S. Machado, and G. L. Souza Filho,
“Incorporating 3d technologies to the brazilian dtv standard: a study of
integration strategies based on middleware ginga,” in Proceedings of the
8th international interactive conference on Interactive TV&#38;Video,
ser. EuroITV ’10. New York, NY, USA: ACM, 2010, pp. 251–258.
[Online]. Available: http://doi.acm.org/10.1145/1809777.1809828

[6] R. G. D. A. Azevedo and L. F. G. Soares, “Embedding 3d objects
into ncl multimedia presentations,” in Proceedings of the 17th
International Conference on 3D Web Technology, ser. Web3D ’12.
New York, NY, USA: ACM, 2012, pp. 143–151. [Online]. Available:
http://doi.acm.org/10.1145/2338714.2338739

[7] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P.
Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä,
A. De Gloria, and C. Bouras, “Platform for distributed 3d gaming,”
Int. J. Comput. Games Technol., vol. 2009, pp. 1:1–1:15, Jan. 2009.
[Online]. Available: http://dx.doi.org/10.1155/2009/231863

[8] P. Schmitz, “Multimedia meets computer graphics in smil2.0: a
time model for the web,” in Proceedings of the 11th international
conference on World Wide Web, ser. WWW ’02. New York,
NY, USA: ACM, 2002, pp. 45–53. [Online]. Available: http:
//doi.acm.org/10.1145/511446.511453

[9] M. Rahman, M. Hossain, and A. Saddik, “Lornav: A demo of a virtual
reality tool for navigation and authoring of learning object repositories,”
in Distributed Simulation and Real-Time Applications, 2004. DS-RT
2004. Eighth IEEE International Symposium on, oct. 2004, pp. 240 –
243.

[10] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen, “Gamin-
gAnywhere: An open cloud gaming system,” in Proceedings of ACM
Multimedia Systems 2013, Feb 2013.

[11] P. Holub, L. Matyska, M. Liška, L. Hejtmánek, J. Denemark, T. Rebok,
A. Hutanu, R. Paruchuri, J. Radil, and E. Hladká, “High-definition
multimedia for multiparty low-latency interactive communication,”
Future Generation Computer Systems, vol. 22, no. 8, pp. 856 –
861, 2006. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X06000380

9OpenGL-ES - http://www.khronos.org/registry/gles/

[12] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the first
annual ACM SIGMM conference on Multimedia systems, ser. MMSys
’10. New York, NY, USA: ACM, 2010, pp. 35–46. [Online].
Available: http://doi.acm.org/10.1145/1730836.1730842

[13] L. F. G. Soares, M. F. Moreno, and F. Sant’Anna, “Relating declarative
hypermedia objects and imperative objects through the ncl glue
language,” in Proceedings of the 9th ACM symposium on Document
engineering, ser. DocEng ’09. New York, NY, USA: ACM, 2009,
pp. 222–230. [Online]. Available: http://doi.acm.org/10.1145/1600193.
1600243

[14] SMIL3. (2012, Maio) êsSynchronized multimedia integration language
(smil 3.0). http://www.w3.org/TR/SMIL3/. [Online]. Available: http:
//www.w3.org/TR/SMIL3/

[15] B. B. Gnecco, D. R. C. Dias, and M. P. a. Guimaraes, “Traditional
paintings and the digital medium,” SBC Journal on 3D Interactive
Systems, vol. 2, no. 3, p. 6, 2012.

[16] L. P. Soares, “Um ambiente de multiprojeção totalmente imersivo
baseado em aglomerados de computadores,” Ph.D. dissertation, USP,
São Paulo, 2005.

[17] D. R. C. Dias, J. R. F. Brega, M. Paiva Guimarães, F. Modesto, B. B.
Gnecco, and J. R. P. Lauris, “3d semantic models for dental education,”
in ENTERprise Information Systems, ser. Communications in Computer
and Information Science, M. M. Cruz-Cunha, J. a. Varajão, P. Powell,
and R. Martinho, Eds. Springer Berlin Heidelberg, 2011, vol. 221, pp.
89–96.

SBC Journal on Interactive Systems, volume 5, number 1, 2014 43

ISSN: 2236-3297


